Universal Pre-Ejection Period Estimation Using Seismocardiography: Quantifying the Effects of Sensor Placement and Regression Algorithms

Seismocardiography (SCG), the measurement of local chest vibrations due to the heart and blood movement, is a noninvasive technique to assess cardiac contractility via systolic time intervals such as the pre-ejection period (PEP). Recent studies show that SCG signals measured before and after exerci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 18; H. 4; S. 1665 - 1674
Hauptverfasser: Ashouri, Hazar, Hersek, Sinan, Inan, Omer T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 15.02.2018
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Seismocardiography (SCG), the measurement of local chest vibrations due to the heart and blood movement, is a noninvasive technique to assess cardiac contractility via systolic time intervals such as the pre-ejection period (PEP). Recent studies show that SCG signals measured before and after exercise can effectively classify compensated and decompensated heart failure patients through PEP estimation. However, the morphology of the SCG signal varies from person to person and sensor placement making it difficult to automatically estimate PEP from SCG and electrocardiogram signals using a global model. In this proof-of-concept study, we address this problem by extracting a set of timing features from SCG signals measured from multiple positions on the upper body. We then test global regression models that combine all the detected features to identify the most accurate model for PEP estimation obtained from the best performing regressor and the best sensor location or combination of locations. Our results show that ensemble regression using extreme gradient boosting with a combination of sensors placed on the sternum and below the left clavicle provide the best RMSE = 11.6 ± 0.4 ms across all subjects. We also show that placing the sensor below the left or right clavicle rather than the conventional placement on the sternum results in more accurate PEP estimates.
AbstractList Seismocardiography (SCG), the measurement of local chest vibrations due to the heart and blood movement, is a non-invasive technique to assess cardiac contractility via systolic time intervals such as the pre-ejection period (PEP). Recent studies show that SCG signals measured before and after exercise can effectively classify compensated and decompensated heart failure (HF) patients through PEP estimation. However, the morphology of the SCG signal varies from person to person and sensor placement making it difficult to automatically estimate PEP from SCG and electrocardiogram signals using a global model. In this proof-of-concept study, we address this problem by extracting a set of timing features from SCG signals measured from multiple positions on the upper body. We then test global regression models that combine all the detected features to identify the most accurate model for PEP estimation obtained from the best performing regressor and the best sensor location or combination of locations. Our results show that ensemble regression using XGBoost with a combination of sensors placed on the sternum and below the left clavicle provide the best RMSE = 11.6 ± 0.4 ms across all subjects. We also show that placing the sensor below the left or right clavicle rather than the conventional placement on the sternum results in more accurate PEP estimates.Seismocardiography (SCG), the measurement of local chest vibrations due to the heart and blood movement, is a non-invasive technique to assess cardiac contractility via systolic time intervals such as the pre-ejection period (PEP). Recent studies show that SCG signals measured before and after exercise can effectively classify compensated and decompensated heart failure (HF) patients through PEP estimation. However, the morphology of the SCG signal varies from person to person and sensor placement making it difficult to automatically estimate PEP from SCG and electrocardiogram signals using a global model. In this proof-of-concept study, we address this problem by extracting a set of timing features from SCG signals measured from multiple positions on the upper body. We then test global regression models that combine all the detected features to identify the most accurate model for PEP estimation obtained from the best performing regressor and the best sensor location or combination of locations. Our results show that ensemble regression using XGBoost with a combination of sensors placed on the sternum and below the left clavicle provide the best RMSE = 11.6 ± 0.4 ms across all subjects. We also show that placing the sensor below the left or right clavicle rather than the conventional placement on the sternum results in more accurate PEP estimates.
Seismocardiography (SCG), the measurement of local chest vibrations due to the heart and blood movement, is a noninvasive technique to assess cardiac contractility via systolic time intervals such as the pre-ejection period (PEP). Recent studies show that SCG signals measured before and after exercise can effectively classify compensated and decompensated heart failure patients through PEP estimation. However, the morphology of the SCG signal varies from person to person and sensor placement making it difficult to automatically estimate PEP from SCG and electrocardiogram signals using a global model. In this proof-of-concept study, we address this problem by extracting a set of timing features from SCG signals measured from multiple positions on the upper body. We then test global regression models that combine all the detected features to identify the most accurate model for PEP estimation obtained from the best performing regressor and the best sensor location or combination of locations. Our results show that ensemble regression using extreme gradient boosting with a combination of sensors placed on the sternum and below the left clavicle provide the best RMSE = 11.6 ± 0.4 ms across all subjects. We also show that placing the sensor below the left or right clavicle rather than the conventional placement on the sternum results in more accurate PEP estimates.
Seismocardiography (SCG), the measurement of local chest vibrations due to the heart and blood movement, is a non-invasive technique to assess cardiac contractility via systolic time intervals such as the pre-ejection period (PEP). Recent studies show that SCG signals measured before and after exercise can effectively classify compensated and decompensated heart failure (HF) patients through PEP estimation. However, the morphology of the SCG signal varies from person to person and sensor placement making it difficult to automatically estimate PEP from SCG and electrocardiogram signals using a global model. In this proof-of-concept study, we address this problem by extracting a set of timing features from SCG signals measured from multiple positions on the upper body. We then test global regression models that combine all the detected features to identify the most accurate model for PEP estimation obtained from the best performing regressor and the best sensor location or combination of locations. Our results show that ensemble regression using XGBoost with a combination of sensors placed on the sternum and below the left clavicle provide the best RMSE = 11.6 ± 0.4 ms across all subjects. We also show that placing the sensor below the left or right clavicle rather than the conventional placement on the sternum results in more accurate PEP estimates.
Author Inan, Omer T.
Hersek, Sinan
Ashouri, Hazar
Author_xml – sequence: 1
  givenname: Hazar
  orcidid: 0000-0003-4134-0880
  surname: Ashouri
  fullname: Ashouri, Hazar
  email: hazarashouri@gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 2
  givenname: Sinan
  orcidid: 0000-0001-7333-005X
  surname: Hersek
  fullname: Hersek, Sinan
  email: shersek3@gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 3
  givenname: Omer T.
  surname: Inan
  fullname: Inan, Omer T.
  email: inan@gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29867294$$D View this record in MEDLINE/PubMed
BookMark eNp9UUuP0zAQjtAi9gE_ACEhH7mkTB6ubQ5Iq1V4aQWFpRI3y7HHrVeJ3bXTlfoP-Nkk21IBB04eeb7HzHzn2YkPHrPseQGzogDx-tNN83lWQsFmJeNsXvJH2VlBKc8LVvOTqa4gryv24zQ7T-kWoBCMsifZaSn4nJWiPst-Lr27x5hURxYR8-YW9eCCJwuMLhjSpMH16uFnmZxfkRt0qQ9aRePCKqrNeveGfN0qPzi7m_rDGklj7aiSSLAj3KcQyaJTGnv0A1HekG-4ipjSJHrZrUJ0w7pPT7PHVnUJnx3ei2z5rvl-9SG__vL-49Xlda7rQgy51W2lFUWrakBqW0orRitbzectKGNag4ZVtKSWCqNAC8oNAOUAjAtoRVldZG_3uptt26PR41BRdXITxz3jTgbl5N8d79ZyFe4lFbyCUowCrw4CMdxtMQ2yd0lj1ymPYZtkCRRqTgXACH35p9fR5Pf5R0CxB-gYUopoj5AC5BSxnCKWU8TyEPHIYf9wtBseIhrHdd1_mS_2TIeIRyde1jDt9gt-97f3
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2019_2951068
crossref_primary_10_1109_JSEN_2024_3382347
crossref_primary_10_1109_JBHI_2020_3009903
crossref_primary_10_1088_2057_1976_ad6a67
crossref_primary_10_1109_JBHI_2020_3032938
crossref_primary_10_1007_s42835_025_02339_7
crossref_primary_10_1093_jamia_ocad067
crossref_primary_10_1109_JBHI_2020_3021532
crossref_primary_10_1109_JBHI_2019_2931872
crossref_primary_10_3390_s23115351
crossref_primary_10_1109_TBME_2023_3264940
crossref_primary_10_3390_s24072139
crossref_primary_10_1038_s41598_020_74150_5
crossref_primary_10_1109_JTEHM_2024_3368291
crossref_primary_10_1007_s13755_019_0071_7
crossref_primary_10_3390_math9182243
crossref_primary_10_1038_s44325_024_00034_6
crossref_primary_10_1109_JSEN_2019_2944235
crossref_primary_10_1002_smm2_1311
crossref_primary_10_1109_JBHI_2020_2980979
crossref_primary_10_3389_fphys_2021_748367
crossref_primary_10_1109_TBME_2020_3014040
Cites_doi 10.1093/jnci/djk018
10.1109/TBME.2016.2600945
10.1016/j.cardfail.2016.06.135
10.1016/j.jacc.2013.01.022
10.1016/0002-9149(71)90435-8
10.1111/j.2517-6161.1996.tb02080.x
10.1007/s10994-006-6226-1
10.1109/IEMBS.2007.4353199
10.1109/EMBC.2012.6346795
10.1111/j.1469-8986.1979.tb01519.x
10.2307/1267351
10.1161/01.cir.0000441139.02102.80
10.3390/s16060787
10.1145/2939672.2939785
10.1214/aos/1013203451
10.1161/CIR.0b013e31820a55f5
10.1109/JSEN.2017.2701349
10.1109/TBME.2016.2641958
10.1109/TITB.2011.2161998
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1109/JSEN.2017.2787628
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1674
ExternalDocumentID PMC5983029
29867294
10_1109_JSEN_2017_2787628
8240598
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Heart, Lung and Blood Institute
  grantid: R01HL130619
  funderid: 10.13039/100000050
– fundername: NHLBI NIH HHS
  grantid: R01 HL130619
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c419t-fcb3ca5efa40e5fb553753f366b0addbded73525f59da0c958d0058007890b923
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423207200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Tue Sep 30 16:44:05 EDT 2025
Wed Oct 01 13:00:58 EDT 2025
Thu Jan 02 23:03:32 EST 2025
Sat Nov 29 05:42:44 EST 2025
Tue Nov 18 20:44:37 EST 2025
Wed Aug 27 02:30:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords heart failure
Seismocardiogram
accelerometer
ensemble regression
sensor fusion
unobtrusive cardiovascular monitoring
pre-ejection period
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-fcb3ca5efa40e5fb553753f366b0addbded73525f59da0c958d0058007890b923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7333-005X
0000-0003-4134-0880
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5983029
PMID 29867294
PQID 2050485900
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5983029
crossref_primary_10_1109_JSEN_2017_2787628
pubmed_primary_29867294
crossref_citationtrail_10_1109_JSEN_2017_2787628
ieee_primary_8240598
proquest_miscellaneous_2050485900
PublicationCentury 2000
PublicationDate 2018-02-15
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationTitleAlternate IEEE Sens J
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref14
ref10
dietterich (ref18) 2002; 2
demšar (ref27) 2006; 7
ref2
katz (ref1) 1977
ref17
ref16
pedregosa (ref26) 2011; 12
friedman (ref19) 2001
ref25
ref20
ref22
ref21
liaw (ref24) 2002; 2
tavakolian (ref11) 2010
ref8
ref7
ref9
ref4
bishop (ref15) 2006
ref3
ref6
ref5
tibshirani (ref23) 1996; 58
References_xml – ident: ref20
  doi: 10.1093/jnci/djk018
– ident: ref14
  doi: 10.1109/TBME.2016.2600945
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref26
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: ref5
  doi: 10.1016/j.cardfail.2016.06.135
– ident: ref3
  doi: 10.1016/j.jacc.2013.01.022
– ident: ref7
  doi: 10.1016/0002-9149(71)90435-8
– volume: 58
  start-page: 267
  year: 1996
  ident: ref23
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Statist Soc Series B (Methodol )
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref25
  doi: 10.1007/s10994-006-6226-1
– ident: ref13
  doi: 10.1109/IEMBS.2007.4353199
– ident: ref12
  doi: 10.1109/EMBC.2012.6346795
– start-page: 450
  year: 1977
  ident: ref1
  publication-title: Physiology of the Heart
– ident: ref6
  doi: 10.1111/j.1469-8986.1979.tb01519.x
– year: 2006
  ident: ref15
  publication-title: Pattern Recognition and Machine Learning
– volume: 2
  start-page: 18
  year: 2002
  ident: ref24
  article-title: Classification and regression by randomforest
  publication-title: R News
– ident: ref22
  doi: 10.2307/1267351
– ident: ref2
  doi: 10.1161/01.cir.0000441139.02102.80
– ident: ref9
  doi: 10.3390/s16060787
– year: 2001
  ident: ref19
  publication-title: The Elements of Statistical Learning
– ident: ref16
  doi: 10.1145/2939672.2939785
– volume: 2
  start-page: 110
  year: 2002
  ident: ref18
  article-title: Ensemble learning
  publication-title: The Handbook of Brain Theory and Neural Networks
– ident: ref17
  doi: 10.1214/aos/1013203451
– ident: ref4
  doi: 10.1161/CIR.0b013e31820a55f5
– ident: ref8
  doi: 10.1109/JSEN.2017.2701349
– ident: ref21
  doi: 10.1109/TBME.2016.2641958
– ident: ref10
  doi: 10.1109/TITB.2011.2161998
– start-page: 1055
  year: 2010
  ident: ref11
  article-title: Estimation of hemodynamic parameters from seismocardiogram
  publication-title: Proc Comput Cardiol
– volume: 7
  start-page: 1
  year: 2006
  ident: ref27
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
SSID ssj0019757
Score 2.3295376
Snippet Seismocardiography (SCG), the measurement of local chest vibrations due to the heart and blood movement, is a noninvasive technique to assess cardiac...
Seismocardiography (SCG), the measurement of local chest vibrations due to the heart and blood movement, is a non-invasive technique to assess cardiac...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1665
SubjectTerms accelerometer
Accelerometers
Electrocardiography
ensemble regression
Feature extraction
heart failure
pre-ejection period
Seismocardiogram
sensor fusion
Sensors
Sternum
Timing
unobtrusive cardiovascular monitoring
Valves
Title Universal Pre-Ejection Period Estimation Using Seismocardiography: Quantifying the Effects of Sensor Placement and Regression Algorithms
URI https://ieeexplore.ieee.org/document/8240598
https://www.ncbi.nlm.nih.gov/pubmed/29867294
https://www.proquest.com/docview/2050485900
https://pubmed.ncbi.nlm.nih.gov/PMC5983029
Volume 18
WOSCitedRecordID wos000423207200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aIqgPfrRW40dZwScx7eaSze76VuSK-HCcVuHeQvYjvZM2keRO8D_wz3Zmk4aeFMG3wM4kG2ZmZ3b3NzMAb3hS5iZxNkZf72JUCkfJypO4tNwIm2eVy11oNiFnM7VY6PkOvBtzYbz3AXzmj-kx3OW7xm7oqOxEofsRWu3CrpSyz9Uabwy0DFU90YB5nKVyMdxgJlyffDqfzgjEJY8nkoxfbfmg0FTltvjyb5jkDb9z9vD_ZvwIHgzxJTvtFeIx7Ph6H-7fqDq4D3eHxufLXwfwewBmIMu89fH0e0Bm1WyOtI1jU1wA-txGFrAF7Nyvuit0fwRi7d_xnn3elIQ4onwphuEk6wsid6ypkLzumpbN6ayeZsrK2rEv_qIH39bs9PKiaVfr5VX3BL6dTb9--BgPzRlimyV6HVfWpLYUvioz7kVlhEhx51OleW44rpnGeSep1GoltCu51UI5amFIIYnmBsPKQ9irm9o_A5ZUJe4aLY5irKFVrrVLcy-NMjmXVa4i4NfiKuxQuZwaaFwWYQfDdUESLkjCxSDhCN6OLD_6sh3_Ij4gyY2Eg9AieH2tEwXaHF2klLVvNh0yC1z4qN9qBE97HRmZJ_gDuGHJIpBb2jMSUD3v7ZF6tQx1vfGbKZ_o57dP5wXcw0krQown4iXsrduNfwV37M_1qmuP0CQW6iiYxB8__gvO
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGQBo8DNgGlPERJJ4Q3dKPtMnepummAeN0sCHdW9Um6e7Q1qL2Don_gD8bO-2qHZqQeKtUp01kO7aTn22AtzzIkyIw2kdbb3wUCkPJyqGfa14IncSlSYxrNpGOx3I6VZM1eD_kwlhrHfjM7tGju8s3tV7SUdm-RPMjlLwDd0Uch0GXrTXcGajU1fVEFeZ-HKXT_g4z4Gr_49loTDCudC9MSf3lihVybVVu8zD_BkresDzHD_9vzo9gs_cw2WEnEo9hzVZb8OBG3cEt2Ohbn89-bcPvHpqBQyaN9UffHTarYhOkrQ0b4RbQZTcyhy5gZ3beXqEBJBhr940D9mWZE-aIMqYYOpSsK4ncsrpE8qqtGzah03qaKcsrw77aiw5-W7HDy4u6mS9mV-0OfDsenR-d-H17Bl_HgVr4pS4inQtb5jG3oiyEiDD2KaMkKTjumoWxJqViq6VQJudaCWmoiSE5JYoX6Fg-gfWqruwzYEGZY9yo8S16G0omSpkosWkhi4SnZSI94NfsynRfu5xaaFxmLobhKiMOZ8ThrOewB--GIT-6wh3_It4mzg2EPdM8eHMtExlqHV2l5JWtly0OFrj1UcdVD552MjIMDnEBGLLEHqQr0jMQUEXv1TfVfOYqe-M_Ix6q57dP5zVsnJx_Ps1OP4w_7cJ9XIAk_HggXsD6olnal3BP_1zM2-aVU4w_9a8OLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+Pre-Ejection+Period+Estimation+Using+Seismocardiography%3A+Quantifying+the+Effects+of+Sensor+Placement+and+Regression+Algorithms&rft.jtitle=IEEE+sensors+journal&rft.au=Ashouri%2C+Hazar&rft.au=Hersek%2C+Sinan&rft.au=Inan%2C+Omer+T.&rft.date=2018-02-15&rft.issn=1530-437X&rft.volume=18&rft.issue=4&rft.spage=1665&rft.epage=1674&rft_id=info:doi/10.1109%2Fjsen.2017.2787628&rft_id=info%3Apmid%2F29867294&rft.externalDocID=PMC5983029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon