Fundamentals of Physics-Informed Neural Networks Applied to Solve the Reynolds Boundary Value Problem

This paper presents a complete derivation and design of a physics-informed neural network (PINN) applicable to solve initial and boundary value problems described by linear ordinary differential equations. The objective with this technical note is not to develop a numerical solution procedure which...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Lubricants Ročník 9; číslo 8; s. 82
Hlavní autor: Almqvist, Andreas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2021
Témata:
ISSN:2075-4442, 2075-4442
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a complete derivation and design of a physics-informed neural network (PINN) applicable to solve initial and boundary value problems described by linear ordinary differential equations. The objective with this technical note is not to develop a numerical solution procedure which is more accurate and efficient than standard finite element- or finite difference-based methods, but to give a fully explicit mathematical description of a PINN and to present an application example in the context of hydrodynamic lubrication. It is, however, worth noticing that the PINN developed herein, contrary to FEM and FDM, is a meshless method and that training does not require big data which is typical in machine learning.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2075-4442
2075-4442
DOI:10.3390/lubricants9080082