The directed search method for multi-objective memetic algorithms

We propose a new iterative search procedure for the numerical treatment of unconstrained multi-objective optimization problems (MOPs) which steers the search along a predefined direction given in objective space. Based on this idea we will present two methods: directed search (DS) descent which seek...

Full description

Saved in:
Bibliographic Details
Published in:Computational optimization and applications Vol. 63; no. 2; pp. 305 - 332
Main Authors: Schütze, Oliver, Martín, Adanay, Lara, Adriana, Alvarado, Sergio, Salinas, Eduardo, Coello, Carlos A. Coello
Format: Journal Article
Language:English
Published: New York Springer US 01.03.2016
Springer Nature B.V
Subjects:
ISSN:0926-6003, 1573-2894
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a new iterative search procedure for the numerical treatment of unconstrained multi-objective optimization problems (MOPs) which steers the search along a predefined direction given in objective space. Based on this idea we will present two methods: directed search (DS) descent which seeks for improvements of the given model, and a novel continuation method (DS continuation) which allows to search along the Pareto set of a given MOP. One advantage of both methods is that they can be realized with and without gradient information, and if neighborhood information is available the computation of the search direction comes even for free. The latter makes our algorithms interesting candidates for local search engines within memetic strategies. Further, the approach can be used to gain some interesting insights into the nature of multi-objective stochastic local search which may explain one facet of the success of multi-objective evolutionary algorithms (MOEAs). Finally, we demonstrate the strength of the method both as standalone algorithm and as local search engine within a MOEA.
AbstractList We propose a new iterative search procedure for the numerical treatment of unconstrained multi-objective optimization problems (MOPs) which steers the search along a predefined direction given in objective space. Based on this idea we will present two methods: directed search (DS) descent which seeks for improvements of the given model, and a novel continuation method (DS continuation) which allows to search along the Pareto set of a given MOP. One advantage of both methods is that they can be realized with and without gradient information, and if neighborhood information is available the computation of the search direction comes even for free. The latter makes our algorithms interesting candidates for local search engines within memetic strategies. Further, the approach can be used to gain some interesting insights into the nature of multi-objective stochastic local search which may explain one facet of the success of multi-objective evolutionary algorithms (MOEAs). Finally, we demonstrate the strength of the method both as standalone algorithm and as local search engine within a MOEA.
Author Salinas, Eduardo
Martín, Adanay
Schütze, Oliver
Lara, Adriana
Coello, Carlos A. Coello
Alvarado, Sergio
Author_xml – sequence: 1
  givenname: Oliver
  surname: Schütze
  fullname: Schütze, Oliver
  email: schuetze@cs.cinvestav.mx
  organization: Cinvestav-IPN, Computer Science Department
– sequence: 2
  givenname: Adanay
  surname: Martín
  fullname: Martín, Adanay
  organization: Cinvestav-IPN, Computer Science Department
– sequence: 3
  givenname: Adriana
  surname: Lara
  fullname: Lara, Adriana
  organization: Mathematics Department, ESFM-IPN
– sequence: 4
  givenname: Sergio
  surname: Alvarado
  fullname: Alvarado, Sergio
  organization: Cinvestav-IPN, Computer Science Department
– sequence: 5
  givenname: Eduardo
  surname: Salinas
  fullname: Salinas, Eduardo
  organization: Cinvestav-IPN, Computer Science Department
– sequence: 6
  givenname: Carlos A. Coello
  surname: Coello
  fullname: Coello, Carlos A. Coello
  organization: Cinvestav-IPN, Computer Science Department
BookMark eNp9kD1LBDEURYMouK7-ALsBG5voSyYz2VeK-AWCjdYhm3njZpmZaJIV_PdmWQsRtHrFPedxuUdsfwoTMXYq4EIA6MskoFkgB9Fw1Fpx2GMz0eiaywWqfTYDlC1vAepDdpTSGgBQ13LGrp5XVHU-ksvUVYlsdKtqpLwKXdWHWI2bIXselusC-A8qUQm9q-zwGqLPqzEds4PeDolOvu-cvdzePF_f88enu4frq0fulMDMqdXdooMONbQk-7Z1BIiwbGpUne0U9rVWqhdALWLvQOse0S6UXC4dCqvqOTvf_X2L4X1DKZvRJ0fDYCcKm2SExlo2QjZb9OwXug6bOJV2hWolNlI1slB6R7kYUorUG-ezzT5MOVo_GAFmO63ZTWvKtGY7rYFiil_mW_SjjZ__OnLnpMJOrxR_dPpT-gJBQoxd
CitedBy_id crossref_primary_10_1080_0305215X_2019_1617286
crossref_primary_10_1007_s10845_018_1432_9
crossref_primary_10_1007_s00170_019_03432_8
crossref_primary_10_1016_j_ins_2022_02_017
crossref_primary_10_1109_TEVC_2020_3008822
crossref_primary_10_1007_s11047_018_9685_y
crossref_primary_10_1016_j_swevo_2018_05_004
crossref_primary_10_1016_j_eswa_2023_121535
crossref_primary_10_1007_s10957_024_02571_7
crossref_primary_10_1080_0305215X_2024_2343884
crossref_primary_10_1007_s00500_018_3553_7
crossref_primary_10_1016_j_swevo_2021_100938
crossref_primary_10_1109_TEVC_2017_2785224
crossref_primary_10_1109_TEVC_2018_2871362
crossref_primary_10_1080_0305215X_2016_1211127
crossref_primary_10_1007_s00170_017_0102_y
crossref_primary_10_1016_j_ejor_2017_06_039
crossref_primary_10_1080_0305215X_2024_2420726
crossref_primary_10_3233_ICA_200641
crossref_primary_10_3390_math7100894
crossref_primary_10_1007_s12293_018_0273_6
crossref_primary_10_1016_j_ins_2022_12_095
crossref_primary_10_1109_TCYB_2018_2885974
crossref_primary_10_1007_s10732_016_9310_0
crossref_primary_10_1016_j_swevo_2019_100617
crossref_primary_10_3390_mca23020030
Cites_doi 10.1109/TEVC.2010.2051445
10.1137/S1052623496307510
10.1007/1-84628-137-7_6
10.1007/978-3-319-10762-2_35
10.1109/TEVC.2007.892759
10.1007/978-3-540-71618-1_36
10.1162/106365600568202
10.1007/s11075-010-9425-6
10.1145/1276958.1277130
10.1109/CEC.2000.870313
10.1145/1276958.1277120
10.1109/TEVC.2011.2150754
10.1287/ijoc.1120.0528
10.1007/3-540-32363-5_14
10.1007/978-3-0348-8280-4
10.1142/S0218127402004498
10.1023/A:1015472306888
10.1109/TEVC.2003.810752
10.1007/s10589-013-9552-9
10.1007/978-0-387-21582-2
10.1177/0954410011410274
10.1109/ICEEE.2010.5608652
10.1007/978-3-642-61257-2
10.1109/TEVC.2011.2161872
10.1109/TEVC.2009.2024143
10.1109/TAC.1975.1101105
10.1007/s11786-011-0066-5
10.1007/BF01584088
10.1007/978-3-642-31519-0_10
10.1016/j.ejor.2006.08.008
10.1007/s00158-011-0729-5
10.1109/ICEC.1996.542345
10.1007/978-3-540-88051-6_15
10.1525/9780520411586-036
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Springer Science+Business Media New York 2016
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Springer Science+Business Media New York 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-015-9774-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 332
ExternalDocumentID 3945500501
10_1007_s10589_015_9774_0
GrantInformation_xml – fundername: Conacyt
  grantid: 128554
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c419t-e67d8d0d9706e2f66ce0990b5394dad49f3744f10e699fc077f99a842bbc91a43
IEDL.DBID BENPR
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370561000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Sun Nov 09 12:23:37 EST 2025
Wed Nov 26 13:52:31 EST 2025
Sat Nov 29 01:51:27 EST 2025
Tue Nov 18 21:53:58 EST 2025
Fri Feb 21 02:30:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Memetic algorithm
Continuation
Multi-objective optimization
Stochastic local search
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-e67d8d0d9706e2f66ce0990b5394dad49f3744f10e699fc077f99a842bbc91a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1762952452
PQPubID 30811
PageCount 28
ParticipantIDs proquest_miscellaneous_1793251254
proquest_journals_1762952452
crossref_citationtrail_10_1007_s10589_015_9774_0
crossref_primary_10_1007_s10589_015_9774_0
springer_journals_10_1007_s10589_015_9774_0
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References IshibuchiHYoshidaTMurataTBalance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop schedulingIEEE Trans. Evol. Comput.20037220422310.1109/TEVC.2003.810752
SchützeOEsquivelXLaraACoelloCACUsing the averaged Hausdorff distance as a performance measure in evolutionary multi-objective optimizationIEEE Trans. Evol. Comput.201216450452210.1109/TEVC.2011.2161872
MottaRSilvanaSAMLyraPA modified NBI and NC method for the solution of n-multiobjective optimization problemsStruct. Multidiscip. Optim.201246223925910.1007/s00158-011-0729-529549661274.90370
Schütze, O., Laumanns, M., Tantar, E., Coello, C.A.C., Talbi, E.-G.: Convergence of stochastic search algorithms to gap-free Pareto front approximations. In: GECCO-2007, pp. 892–901 (2007)
VasileMZuianiFMulti-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory designProc. Inst. Mech. Eng. G2011225111211122710.1177/0954410011410274
BrownMSmithREDirected multi-objective optimisationInt. J. Comput. Syst. Signals200561317
AllgowerELGeorgKNumerical Continuation Methods1990New YorkSpringer10.1007/978-3-642-61257-20717.65030
Schütze, O., Lara, A., Coello, C.A.C.: The directed search method for unconstrained multi-objective optimization problems. In: Proceedings of the EVOLVE—a bridge between probability, set oriented numerics, and evolutionary computation, pp. 1–4 (2011)
Domínguez, I.S., Aguirre, A.H., Valdez, S.I.: A new EDA by a gradient-driven density. In: Parallel Problem Solving from Nature—PPSN XIII—13th International Conference, pp. 352–361 (2014)
ZuianiFVasileMMulti agent collaborative search based on tchebycheff decompositionComput. Optim. Appl.201356118920810.1007/s10589-013-9552-930735971276.90065
Köppen, M., Yoshida, K.: Many-objective particle swarm optimization by gradual leader selection. In: ICANNGA 2007, pp. 323–331. Springer, Berlin (2007)
ZhangQLiHMOEA/D: a multi-objective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.200711671273110.1109/TEVC.2007.892759
Kuhn, H., Tucker, A.: Nonlinear programming. In: Neumann, J. (ed.) Proceeding of the 2nd Berkeley symposium on mathematical statistics and probability, pp. 481–492 (1951)
SchäfflerSSchultzRWeinzierlKA stochastic method for the solution of unconstrained vector optimization problemsJ. Optim. Theory Appl.2002114120922210.1023/A:101547230688819108601022.90027
NocedalJWrightSNumerical Optimization. Springer Series in Operations Research and Financial Engineering2006New YorkSpringer
ZitzlerEDebKThieleLComparison of multiobjective evolutionary algorithms: empirical resultsEvol. Comput.20008217319510.1162/106365600568202
Knowles, J., Corne, D.: M-PAES: a memetic algorithm for multiobjective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 325–332. Piscataway, NJ (2000)
HendersonMEMultiple parameter continuation: computing implicitly defined k-manifolds, IJ. Bifurc. Chaos200312345147610.1142/S0218127402004498
Ishibuchi, H., Murata, T.: Multi-objective genetic local search algorithm. In: Proceedings of 3rd IEEE International Conference on Evolutionary Computation, Nagoya, Japan, pp. 119–124 (1996)
Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., Tiwari, S.: Multi-objective optimisation test instances for the CEC 2009 special session and competition, Working Report CES-887, School of Computer Science and Electrical Engineering, University of Essex, revised on 20/04/2009 (2008)
Lara, A., Alvarado, S., Salomon, S., Avigad, G., Coello, C.A.C., Schütze, O.: The gradient free directed search method as local search within multi-objective evolutionary algorithms. In: EVOLVE II, pp. 153–168 (2013)
Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: IEEE Congress on Evolutionary Computation, 2009 (CEC’09), pp. 203–208. IEEE (2009)
CaponioANeriFIntegrating Cross-Dominance Adaptation in Multi-objective Memetic Algorithms2009BerlinSpringer10.1007/978-3-540-88051-6_15
RoyBProblems and methods with multiple objective functionsMath. Program.1971123926610.1007/BF015840880254.90061
ParetoVManual of Political Economy1971LondonThe MacMillan PressOriginal edition in French in 1927
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. Thesis, ETH Zurich, Switzerland (1999)
DeuflhardPBornemanFScientific Computing with Ordinary Differential Equations. Texts in Applied Mathematics 422002New YorkSpringer10.1007/978-0-387-21582-2
HillermeierCNonlinear Multiobjective Optimization—A Generalized Homotopy Approach2001BaselBirkhäuser10.1007/978-3-0348-8280-40966.90069
BeumeNNaujoksBEmmerichMSMS-EMOA: multiobjective selection based on dominated hypervolumeEur. J. Oper. Res.200718131653166910.1016/j.ejor.2006.08.0081123.90064
BosmanPANOn gradients and hybrid evolutionary algorithms for real-valued multiobjective optimizationIEEE Trans. Evol. Comput.2012161516910.1109/TEVC.2010.2051445
Harada, K., Sakuma, J., Kobayashi, S., Ono, I.: Uniform sampling of local Pareto-optimal solution curves by Pareto path following and its applications in multi-objective GA. In: GECCO (2007)
Schütze, O., Dell’Aere, A., Dellnitz, M.: On continuation methods for the numerical treatment of multi-objective optimization problems. In: Branke, J. et al. (ed.) Practical Approaches to Multi-objective Optimization, no. 04461 in Dagstuhl Seminar Proceedings (2005)
BoissonnatJ-DGhoshATriangulating smooth submanifolds with light scaffoldingMath. Comput. Sci.20104443146110.1007/s11786-011-0066-528518501229.68077
LinJ-YChenY-PAnalysis on the collaboration between global search and local search in memetic computationIEEE Trans. Evol. Comput.201115560862310.1109/TEVC.2011.2150754
LaraASanchezGCoelloCACSchützeOHCS: a new local search strategy for memetic multiobjective evolutionary algorithmsIEEE Trans. Evol. Comput.201014111213210.1109/TEVC.2009.2024143
KnowlesJCorneDMemetic algorithms for multiobjective optimization: issues, methods and prospectsRecent Advances in Memetic Algorithms2005BerlinSpringer31335210.1007/3-540-32363-5_14
DebKThieleLLaumannsMZitzlerEAbrahamAJainLGoldbergRScalable test problems for evolutionary multiobjective optimizationEvolutionary Multiobjective Optimization. Theoretical Advances and Applications2005LondonSpringer10514510.1007/1-84628-137-7_6
ShuklaPObayashiSOn gradient based local search methods in unconstrained evolutionary multi-objective mptimizationEMO2007HeidelbergSpringer96110
GembickiFWHaimesYYApproach to performance and multiobjective sensivity optimization: the goal attainment methodIEEE Trans. Autom. Control19752076977110.1109/TAC.1975.1101105
DasIDennisJNormal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problemsSIAM J. Optim.1998863165710.1137/S105262349630751016271560911.90287
WangHZigzag search for continuous multiobjective optimizationInf. J. Comput.201325465466510.1287/ijoc.1120.0528
DebKMulti-objective Optimization Using Evolutionary Algorithms2001ChichesterWiley0970.90091
Mejia, E., Schütze, O.: A predictor corrector method for the computation of boundary points of a multi-objective optimization problem. In: CCE 2010, pp. 395–399 (2010)
Alvarado, S.: El punto a punto de las técnicas de búsquedas local para algoritmos de optimización multiobjetivo. MSc Thesis, Cinvestav-IPN (2012)
PotschkaALogistFImpeJFVBockHGTracing the Pareto frontier in bi-objective optimization problems by ODE techniquesNum. Algorithms201157221723310.1007/s11075-010-9425-61217.65110
N Beume (9774_CR2) 2007; 181
A Lara (9774_CR6) 2010; 14
H Ishibuchi (9774_CR5) 2003; 7
R Motta (9774_CR36) 2012; 46
O Schütze (9774_CR44) 2012; 16
ME Henderson (9774_CR26) 2003; 12
J-Y Lin (9774_CR39) 2011; 15
9774_CR27
C Hillermeier (9774_CR18) 2001
J Knowles (9774_CR40) 2005
FW Gembicki (9774_CR10) 1975; 20
M Brown (9774_CR29) 2005; 6
9774_CR43
P Deuflhard (9774_CR21) 2002
PAN Bosman (9774_CR13) 2012; 16
J Nocedal (9774_CR20) 2006
9774_CR42
9774_CR4
9774_CR23
9774_CR45
Q Zhang (9774_CR3) 2007; 11
A Caponio (9774_CR38) 2009
V Pareto (9774_CR17) 1971
H Wang (9774_CR24) 2013; 25
M Vasile (9774_CR7) 2011; 225
I Das (9774_CR11) 1998; 8
K Deb (9774_CR35) 2005
9774_CR19
K Deb (9774_CR1) 2001
9774_CR16
EL Allgower (9774_CR22) 1990
F Zuiani (9774_CR8) 2013; 56
S Schäffler (9774_CR25) 2002; 114
J-D Boissonnat (9774_CR28) 2010; 4
9774_CR32
P Shukla (9774_CR41) 2007
A Potschka (9774_CR12) 2011; 57
9774_CR33
9774_CR30
9774_CR31
E Zitzler (9774_CR37) 2000; 8
9774_CR14
B Roy (9774_CR9) 1971; 1
9774_CR15
9774_CR34
References_xml – reference: Schütze, O., Dell’Aere, A., Dellnitz, M.: On continuation methods for the numerical treatment of multi-objective optimization problems. In: Branke, J. et al. (ed.) Practical Approaches to Multi-objective Optimization, no. 04461 in Dagstuhl Seminar Proceedings (2005)
– reference: Mejia, E., Schütze, O.: A predictor corrector method for the computation of boundary points of a multi-objective optimization problem. In: CCE 2010, pp. 395–399 (2010)
– reference: DebKThieleLLaumannsMZitzlerEAbrahamAJainLGoldbergRScalable test problems for evolutionary multiobjective optimizationEvolutionary Multiobjective Optimization. Theoretical Advances and Applications2005LondonSpringer10514510.1007/1-84628-137-7_6
– reference: BeumeNNaujoksBEmmerichMSMS-EMOA: multiobjective selection based on dominated hypervolumeEur. J. Oper. Res.200718131653166910.1016/j.ejor.2006.08.0081123.90064
– reference: AllgowerELGeorgKNumerical Continuation Methods1990New YorkSpringer10.1007/978-3-642-61257-20717.65030
– reference: Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: IEEE Congress on Evolutionary Computation, 2009 (CEC’09), pp. 203–208. IEEE (2009)
– reference: CaponioANeriFIntegrating Cross-Dominance Adaptation in Multi-objective Memetic Algorithms2009BerlinSpringer10.1007/978-3-540-88051-6_15
– reference: VasileMZuianiFMulti-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory designProc. Inst. Mech. Eng. G2011225111211122710.1177/0954410011410274
– reference: BosmanPANOn gradients and hybrid evolutionary algorithms for real-valued multiobjective optimizationIEEE Trans. Evol. Comput.2012161516910.1109/TEVC.2010.2051445
– reference: GembickiFWHaimesYYApproach to performance and multiobjective sensivity optimization: the goal attainment methodIEEE Trans. Autom. Control19752076977110.1109/TAC.1975.1101105
– reference: ParetoVManual of Political Economy1971LondonThe MacMillan PressOriginal edition in French in 1927
– reference: LinJ-YChenY-PAnalysis on the collaboration between global search and local search in memetic computationIEEE Trans. Evol. Comput.201115560862310.1109/TEVC.2011.2150754
– reference: Lara, A., Alvarado, S., Salomon, S., Avigad, G., Coello, C.A.C., Schütze, O.: The gradient free directed search method as local search within multi-objective evolutionary algorithms. In: EVOLVE II, pp. 153–168 (2013)
– reference: Knowles, J., Corne, D.: M-PAES: a memetic algorithm for multiobjective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 325–332. Piscataway, NJ (2000)
– reference: LaraASanchezGCoelloCACSchützeOHCS: a new local search strategy for memetic multiobjective evolutionary algorithmsIEEE Trans. Evol. Comput.201014111213210.1109/TEVC.2009.2024143
– reference: Kuhn, H., Tucker, A.: Nonlinear programming. In: Neumann, J. (ed.) Proceeding of the 2nd Berkeley symposium on mathematical statistics and probability, pp. 481–492 (1951)
– reference: NocedalJWrightSNumerical Optimization. Springer Series in Operations Research and Financial Engineering2006New YorkSpringer
– reference: ShuklaPObayashiSOn gradient based local search methods in unconstrained evolutionary multi-objective mptimizationEMO2007HeidelbergSpringer96110
– reference: SchäfflerSSchultzRWeinzierlKA stochastic method for the solution of unconstrained vector optimization problemsJ. Optim. Theory Appl.2002114120922210.1023/A:101547230688819108601022.90027
– reference: BoissonnatJ-DGhoshATriangulating smooth submanifolds with light scaffoldingMath. Comput. Sci.20104443146110.1007/s11786-011-0066-528518501229.68077
– reference: MottaRSilvanaSAMLyraPA modified NBI and NC method for the solution of n-multiobjective optimization problemsStruct. Multidiscip. Optim.201246223925910.1007/s00158-011-0729-529549661274.90370
– reference: PotschkaALogistFImpeJFVBockHGTracing the Pareto frontier in bi-objective optimization problems by ODE techniquesNum. Algorithms201157221723310.1007/s11075-010-9425-61217.65110
– reference: Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., Tiwari, S.: Multi-objective optimisation test instances for the CEC 2009 special session and competition, Working Report CES-887, School of Computer Science and Electrical Engineering, University of Essex, revised on 20/04/2009 (2008)
– reference: ZitzlerEDebKThieleLComparison of multiobjective evolutionary algorithms: empirical resultsEvol. Comput.20008217319510.1162/106365600568202
– reference: Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. Thesis, ETH Zurich, Switzerland (1999)
– reference: RoyBProblems and methods with multiple objective functionsMath. Program.1971123926610.1007/BF015840880254.90061
– reference: DasIDennisJNormal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problemsSIAM J. Optim.1998863165710.1137/S105262349630751016271560911.90287
– reference: IshibuchiHYoshidaTMurataTBalance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop schedulingIEEE Trans. Evol. Comput.20037220422310.1109/TEVC.2003.810752
– reference: HillermeierCNonlinear Multiobjective Optimization—A Generalized Homotopy Approach2001BaselBirkhäuser10.1007/978-3-0348-8280-40966.90069
– reference: BrownMSmithREDirected multi-objective optimisationInt. J. Comput. Syst. Signals200561317
– reference: Alvarado, S.: El punto a punto de las técnicas de búsquedas local para algoritmos de optimización multiobjetivo. MSc Thesis, Cinvestav-IPN (2012)
– reference: ZhangQLiHMOEA/D: a multi-objective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.200711671273110.1109/TEVC.2007.892759
– reference: Domínguez, I.S., Aguirre, A.H., Valdez, S.I.: A new EDA by a gradient-driven density. In: Parallel Problem Solving from Nature—PPSN XIII—13th International Conference, pp. 352–361 (2014)
– reference: KnowlesJCorneDMemetic algorithms for multiobjective optimization: issues, methods and prospectsRecent Advances in Memetic Algorithms2005BerlinSpringer31335210.1007/3-540-32363-5_14
– reference: Ishibuchi, H., Murata, T.: Multi-objective genetic local search algorithm. In: Proceedings of 3rd IEEE International Conference on Evolutionary Computation, Nagoya, Japan, pp. 119–124 (1996)
– reference: ZuianiFVasileMMulti agent collaborative search based on tchebycheff decompositionComput. Optim. Appl.201356118920810.1007/s10589-013-9552-930735971276.90065
– reference: Köppen, M., Yoshida, K.: Many-objective particle swarm optimization by gradual leader selection. In: ICANNGA 2007, pp. 323–331. Springer, Berlin (2007)
– reference: Schütze, O., Lara, A., Coello, C.A.C.: The directed search method for unconstrained multi-objective optimization problems. In: Proceedings of the EVOLVE—a bridge between probability, set oriented numerics, and evolutionary computation, pp. 1–4 (2011)
– reference: DeuflhardPBornemanFScientific Computing with Ordinary Differential Equations. Texts in Applied Mathematics 422002New YorkSpringer10.1007/978-0-387-21582-2
– reference: Harada, K., Sakuma, J., Kobayashi, S., Ono, I.: Uniform sampling of local Pareto-optimal solution curves by Pareto path following and its applications in multi-objective GA. In: GECCO (2007)
– reference: SchützeOEsquivelXLaraACoelloCACUsing the averaged Hausdorff distance as a performance measure in evolutionary multi-objective optimizationIEEE Trans. Evol. Comput.201216450452210.1109/TEVC.2011.2161872
– reference: DebKMulti-objective Optimization Using Evolutionary Algorithms2001ChichesterWiley0970.90091
– reference: HendersonMEMultiple parameter continuation: computing implicitly defined k-manifolds, IJ. Bifurc. Chaos200312345147610.1142/S0218127402004498
– reference: WangHZigzag search for continuous multiobjective optimizationInf. J. Comput.201325465466510.1287/ijoc.1120.0528
– reference: Schütze, O., Laumanns, M., Tantar, E., Coello, C.A.C., Talbi, E.-G.: Convergence of stochastic search algorithms to gap-free Pareto front approximations. In: GECCO-2007, pp. 892–901 (2007)
– volume: 16
  start-page: 51
  issue: 1
  year: 2012
  ident: 9774_CR13
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2051445
– volume: 8
  start-page: 631
  year: 1998
  ident: 9774_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– start-page: 105
  volume-title: Evolutionary Multiobjective Optimization. Theoretical Advances and Applications
  year: 2005
  ident: 9774_CR35
  doi: 10.1007/1-84628-137-7_6
– ident: 9774_CR33
  doi: 10.1007/978-3-319-10762-2_35
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 9774_CR3
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– ident: 9774_CR27
– ident: 9774_CR30
  doi: 10.1007/978-3-540-71618-1_36
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 9774_CR37
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– volume: 57
  start-page: 217
  issue: 2
  year: 2011
  ident: 9774_CR12
  publication-title: Num. Algorithms
  doi: 10.1007/s11075-010-9425-6
– ident: 9774_CR31
  doi: 10.1145/1276958.1277130
– ident: 9774_CR4
  doi: 10.1109/CEC.2000.870313
– ident: 9774_CR23
  doi: 10.1145/1276958.1277120
– volume: 15
  start-page: 608
  issue: 5
  year: 2011
  ident: 9774_CR39
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2150754
– volume: 25
  start-page: 654
  issue: 4
  year: 2013
  ident: 9774_CR24
  publication-title: Inf. J. Comput.
  doi: 10.1287/ijoc.1120.0528
– start-page: 313
  volume-title: Recent Advances in Memetic Algorithms
  year: 2005
  ident: 9774_CR40
  doi: 10.1007/3-540-32363-5_14
– ident: 9774_CR43
– ident: 9774_CR45
– volume-title: Nonlinear Multiobjective Optimization—A Generalized Homotopy Approach
  year: 2001
  ident: 9774_CR18
  doi: 10.1007/978-3-0348-8280-4
– start-page: 96
  volume-title: EMO
  year: 2007
  ident: 9774_CR41
– volume: 12
  start-page: 451
  issue: 3
  year: 2003
  ident: 9774_CR26
  publication-title: J. Bifurc. Chaos
  doi: 10.1142/S0218127402004498
– volume: 6
  start-page: 3
  issue: 1
  year: 2005
  ident: 9774_CR29
  publication-title: Int. J. Comput. Syst. Signals
– volume: 114
  start-page: 209
  issue: 1
  year: 2002
  ident: 9774_CR25
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1015472306888
– volume: 7
  start-page: 204
  issue: 2
  year: 2003
  ident: 9774_CR5
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810752
– volume-title: Numerical Optimization. Springer Series in Operations Research and Financial Engineering
  year: 2006
  ident: 9774_CR20
– volume: 56
  start-page: 189
  issue: 1
  year: 2013
  ident: 9774_CR8
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-013-9552-9
– volume-title: Scientific Computing with Ordinary Differential Equations. Texts in Applied Mathematics 42
  year: 2002
  ident: 9774_CR21
  doi: 10.1007/978-0-387-21582-2
– volume: 225
  start-page: 1211
  issue: 11
  year: 2011
  ident: 9774_CR7
  publication-title: Proc. Inst. Mech. Eng. G
  doi: 10.1177/0954410011410274
– ident: 9774_CR15
  doi: 10.1109/ICEEE.2010.5608652
– ident: 9774_CR34
– volume-title: Numerical Continuation Methods
  year: 1990
  ident: 9774_CR22
  doi: 10.1007/978-3-642-61257-2
– volume: 16
  start-page: 504
  issue: 4
  year: 2012
  ident: 9774_CR44
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2161872
– volume-title: Multi-objective Optimization Using Evolutionary Algorithms
  year: 2001
  ident: 9774_CR1
– volume: 14
  start-page: 112
  issue: 1
  year: 2010
  ident: 9774_CR6
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2024143
– volume: 20
  start-page: 769
  year: 1975
  ident: 9774_CR10
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1975.1101105
– volume: 4
  start-page: 431
  issue: 4
  year: 2010
  ident: 9774_CR28
  publication-title: Math. Comput. Sci.
  doi: 10.1007/s11786-011-0066-5
– volume: 1
  start-page: 239
  year: 1971
  ident: 9774_CR9
  publication-title: Math. Program.
  doi: 10.1007/BF01584088
– ident: 9774_CR16
  doi: 10.1007/978-3-642-31519-0_10
– ident: 9774_CR42
– ident: 9774_CR14
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 9774_CR2
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.008
– volume-title: Manual of Political Economy
  year: 1971
  ident: 9774_CR17
– volume: 46
  start-page: 239
  issue: 2
  year: 2012
  ident: 9774_CR36
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-011-0729-5
– ident: 9774_CR32
  doi: 10.1109/ICEC.1996.542345
– volume-title: Integrating Cross-Dominance Adaptation in Multi-objective Memetic Algorithms
  year: 2009
  ident: 9774_CR38
  doi: 10.1007/978-3-540-88051-6_15
– ident: 9774_CR19
  doi: 10.1525/9780520411586-036
SSID ssj0009732
Score 2.2902598
Snippet We propose a new iterative search procedure for the numerical treatment of unconstrained multi-objective optimization problems (MOPs) which steers the search...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 305
SubjectTerms Algorithms
Computation
Convex and Discrete Geometry
Gain
Genetic algorithms
Management Science
Mathematical models
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Optimization algorithms
Pareto optimum
Search engines
Searches
Searching
Statistics
Strategy
Studies
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6keqgHH1UxWiWCJ2Uhj81m91hE8WIRfNBbyG42PmgbaVp_v7PZpK2igh7DvsLMzs63zOw3AKdZrpRQoU8M5Q2hwouIRL9EmAqozqhQQaaqYhNxv88HA3Fbv-Mum2z3JiRZndRLj90ik97jR8RgFoL39NXIkM2YK_rd44JpN66qknkiYAS9ediEMr-b4rMzWiDML0HRytdcbf7rL7dgo4aWbs_uhW1Y0eMOrC8RDuLXzZyltexA2yBNS9S8Az3cMK51cDpzrQG4tr60i8DWrTIPSSFf7QmJTSPz_tFNh0_F5GX6PCp34eHq8v7imtT1FYiivpgSzeKMZ14mYo_pIGdMaRMmk1EoaJaiovIwpjT3Pc2EyJUXx7kQKaeBlEr4KQ33oDUuxnofXJlyjt5QaZ9zGkrB0a6lQmtnkeSSKge8RtCJqsnHTQ2MYbKgTTaCS1BwiRFc4jlwNh_yZpk3fuvcbbSX1EZYJrh6ICITWnbgZN6M5mNiIulYFzPTBwEsgp6IOnDeaHRpip8WPPhT70NoI9BiNnetC63pZKaPYE29o5Inx9X-_QCPHuip
  priority: 102
  providerName: Springer Nature
Title The directed search method for multi-objective memetic algorithms
URI https://link.springer.com/article/10.1007/s10589-015-9774-0
https://www.proquest.com/docview/1762952452
https://www.proquest.com/docview/1793251254
Volume 63
WOSCitedRecordID wos000370561000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: 7WY
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M0C
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: K7-
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M7S
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: P5Z
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M2P
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4V6IEe-qBUpAXkSj2BVl3b632cKhoFVaoSRaEttBfL-3BbBAnFgd_PjB8JIMGll5FWu_Zanqd2Zr8B-OBL54xLY0aQN0wYnjGLfolJl4jghXGJd3WzCTUa6ZMTM24P3Kq2rLKzibWh9jNHZ-QfY9Rak1Ge8NPFP0Zdoyi72rbQWIE1QipDOV_7PBiNJ0vYXVW3KOMmkQxde9rlNZvLcxmVC8UZoxiI8bueaRlu3suQ1o7n8MX_fvJLeN6GnNFBIyOv4EmYbsCzW0CEOBou0Fur13CAshM1vi74qNGFqGk1HWGMG9VFiGxmTxtjiVPndBUyKs5-4_bzP-fVJnw_HHzrf2FtqwXmRGzmLEjltefeKC5DUkrpAmXMbJYa4QvkWZkqIcqYB2lM6bhSpTGFFom1zsSFSN_A6nQ2DVsQ2UJrdIwuxFqL1BqNKm4dKr7MrLbC9YB3vzl3LQ45tcM4y5cIysSZHDmTE2dy3oO9xSMXDQjHY4u3O27krT5W-ZIVPXi_mEZNovRIMQ2zK1qDsSzGP5nowX7H81uveGjDt49v-A7WMciSTd3aNqzOL6_CDjx11_O_1eUurKjjn7ut2OLoq2JIh7xPNBkTVUdIx9kvpJOjHzd3Nfbi
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQGo58CpVl0drpPZCZeEkjmMfEEJQBIJd9UAlbiF-BKhgF8gC4k_xGxnHm11aCW4ceozs-JF5fc6MZwC-2dIYZZKI-pQ3lCuWUo12iQoTc2e5MrE1dbGJrNORx8fq1xg8NndhfFhloxNrRW17xv8jX49QalXq_YSbV9fUV43y3tWmhEZgiwP3cI9Htmpjfwfp-z2Od38ebe_RQVUBanik-tSJzErLrMqYcHEphHHeOaTTRHFb4PLKJOO8jJgTSpWGZVmpVCF5rLVRUcETHPcdTHA8eHm5arPtUZLfrC6IxlQsKAKJpPGihqt6qQ9OilLqERdlf9vBEbj9xx9bm7ndmf_tA83C9ABQk60gAXMw5rrzMPUszSI-tYe5aauPsIWSQYIld5aEFZNQSJsggid1iCXt6T_BFGDTpb_oSYqLU9xu_-yyWoDfb7KjTzDe7XXdZyC6kBLNvnGRlDzRSqIC0wbVmki11Ny0gDVkzc0gy7ov9nGRj_JDe07IkRNyzwk5a8Ha8JWrkGLktc7LDfXzgbap8hHpW7A6bEY94Z0_Rdf1bn0fROqI7lLegh8Njz0b4qUJF1-f8Cu83ztqH-aH-52DJfiAcFKECL1lGO_f3LoVmDR3_fPq5kstKgRO3pr1ngCWmktD
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xqCo4QF-I5dG6UntpZa2TOI59QAhBV0W0qz20EuoljR8pINgFslD1r_HrGMfJLq1Ubhw4Rk78iL-Z-ZIZzwC8s6UxyiQR9SlvKFcspRrtEhUm5s5yZWJr6mITWb8vDw_VYAZu2rMwPqyy1Ym1orYj4_-RdyOUWpV6P2G3bMIiBnu97fML6itIeU9rW04jQOTA_fmNn2_V1v4e7vX7OO59-rb7mTYVBqjhkRpTJzIrLbMqY8LFpRDGeUeRThPFbYFTLZOM8zJiTihVGpZlpVKF5LHWRkUFT7DfWZjPuJA-nGyQ_pgm_M3q4mhMxYIiqUhaj2o4tpf6QKUopZ59Ufa3TZwS3X98s7XJ6y0_5pf1DJYaok12gmQ8hxk3fAGLd9Iv4tXXSc7a6iXsoMSQYOGdJWHGJBTYJsjsSR16SUf6JJgIbDrzB0BJcfoLlzs-OqtewfcHWdEKzA1HQ7cKRBdSIh0wLpKSJ1pJVGzaoLoTqZaamw6wdotz02Rf90VATvNp3miPihxRkXtU5KwDHyaPnIfUI_fdvNEiIW-0UJVPYdCBt5Nm1B_eKVQM3ejK34MMHllfyjvwscXbnS7-N-Da_QO-gaeIuPzLfv9gHRaQZYoQuLcBc-PLK7cJT8z1-Li6fF1LDYGfD428Wxk9VFM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+directed+search+method+for+multi-objective+memetic+algorithms&rft.jtitle=Computational+optimization+and+applications&rft.au=Sch%C3%BCtze%2C+Oliver&rft.au=Mart%C3%ADn%2C+Adanay&rft.au=Lara%2C+Adriana&rft.au=Alvarado%2C+Sergio&rft.date=2016-03-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=63&rft.issue=2&rft.spage=305&rft.epage=332&rft_id=info:doi/10.1007%2Fs10589-015-9774-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_015_9774_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon