Cadec: A corpus of adverse drug event annotations

[Display omitted] •Introduction of CADEC an annotated corpus of consumer reviews in pharmacovigilance.•A review and comparison of available relevant resources.•Challenges and lessons from the process of creating such resources. CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical informatics Vol. 55; pp. 73 - 81
Main Authors: Karimi, Sarvnaz, Metke-Jimenez, Alejandro, Kemp, Madonna, Wang, Chen
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.06.2015
Subjects:
ISSN:1532-0464, 1532-0480
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Introduction of CADEC an annotated corpus of consumer reviews in pharmacovigilance.•A review and comparison of available relevant resources.•Challenges and lessons from the process of creating such resources. CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus of medical forum posts on patient-reported Adverse Drug Events (ADEs). The corpus is sourced from posts on social media, and contains text that is largely written in colloquial language and often deviates from formal English grammar and punctuation rules. Annotations contain mentions of concepts such as drugs, adverse effects, symptoms, and diseases linked to their corresponding concepts in controlled vocabularies, i.e., SNOMED Clinical Terms and MedDRA. The quality of the annotations is ensured by annotation guidelines, multi-stage annotations, measuring inter-annotator agreement, and final review of the annotations by a clinical terminologist. This corpus is useful for studies in the area of information extraction, or more generally text mining, from social media to detect possible adverse drug reactions from direct patient reports. The corpus is publicly available at https://data.csiro.au.1The data can be used for research purposes only, under the CSIRO data licence.1
AbstractList CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus of medical forum posts on patient-reported Adverse Drug Events (ADEs). The corpus is sourced from posts on social media, and contains text that is largely written in colloquial language and often deviates from formal English grammar and punctuation rules. Annotations contain mentions of concepts such as drugs, adverse effects, symptoms, and diseases linked to their corresponding concepts in controlled vocabularies, i.e., SNOMED Clinical Terms and MedDRA. The quality of the annotations is ensured by annotation guidelines, multi-stage annotations, measuring inter-annotator agreement, and final review of the annotations by a clinical terminologist. This corpus is useful for studies in the area of information extraction, or more generally text mining, from social media to detect possible adverse drug reactions from direct patient reports. The corpus is publicly available at https://data.csiro.au. 1
CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus of medical forum posts on patient-reported Adverse Drug Events (ADEs). The corpus is sourced from posts on social media, and contains text that is largely written in colloquial language and often deviates from formal English grammar and punctuation rules. Annotations contain mentions of concepts such as drugs, adverse effects, symptoms, and diseases linked to their corresponding concepts in controlled vocabularies, i.e., SNOMED Clinical Terms and MedDRA. The quality of the annotations is ensured by annotation guidelines, multi-stage annotations, measuring inter-annotator agreement, and final review of the annotations by a clinical terminologist. This corpus is useful for studies in the area of information extraction, or more generally text mining, from social media to detect possible adverse drug reactions from direct patient reports. The corpus is publicly available at https://data.csiro.au.(1).
[Display omitted] •Introduction of CADEC an annotated corpus of consumer reviews in pharmacovigilance.•A review and comparison of available relevant resources.•Challenges and lessons from the process of creating such resources. CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus of medical forum posts on patient-reported Adverse Drug Events (ADEs). The corpus is sourced from posts on social media, and contains text that is largely written in colloquial language and often deviates from formal English grammar and punctuation rules. Annotations contain mentions of concepts such as drugs, adverse effects, symptoms, and diseases linked to their corresponding concepts in controlled vocabularies, i.e., SNOMED Clinical Terms and MedDRA. The quality of the annotations is ensured by annotation guidelines, multi-stage annotations, measuring inter-annotator agreement, and final review of the annotations by a clinical terminologist. This corpus is useful for studies in the area of information extraction, or more generally text mining, from social media to detect possible adverse drug reactions from direct patient reports. The corpus is publicly available at https://data.csiro.au.1The data can be used for research purposes only, under the CSIRO data licence.1
Author Karimi, Sarvnaz
Wang, Chen
Metke-Jimenez, Alejandro
Kemp, Madonna
Author_xml – sequence: 1
  givenname: Sarvnaz
  surname: Karimi
  fullname: Karimi, Sarvnaz
  email: sarvnaz.karimi@csiro.au
– sequence: 2
  givenname: Alejandro
  surname: Metke-Jimenez
  fullname: Metke-Jimenez, Alejandro
– sequence: 3
  givenname: Madonna
  surname: Kemp
  fullname: Kemp, Madonna
– sequence: 4
  givenname: Chen
  surname: Wang
  fullname: Wang, Chen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25817970$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtvFDEUha0oKO8fQIOmpNnhXr8HqmgFCVIkGqgtj30HebU7XuyZlfj3mWgTCopAdW_xfac455Kdjnkkxt4itAioP2zaTZ9aDqhaEC0gnLALVIKvQFo4_fNrec4ua90AICqlz9g5VxZNZ-CC4dpHCh-b2ybksp9rk4fGxwOVSk0s88-GDjROjR_HPPkp5bFeszeD31a6eb5X7MeXz9_X96uHb3df17cPqyCxm1akBgxisFpHRKmjxV4aRQP03GDwfZCGC7TBS8UjV0HZoIdoCJTuoxVCXLH3x9x9yb9mqpPbpRpou_Uj5bk6NNAZCYbr_0FR2q7j8t-otkZIIyxf0HfP6NzvKLp9STtffruX8hbAHIFQcq2FBhfSsaSp-LR1CO5pJrdxy0zuaSYHwi0zLSb-Zb6Ev-Z8Ojq0lH5IVFwNicZAMRUKk4s5vWI_AlZTpsM
CitedBy_id crossref_primary_10_1016_j_jbi_2021_103982
crossref_primary_10_1016_j_jbi_2018_06_006
crossref_primary_10_1016_j_jbi_2021_103983
crossref_primary_10_1038_s41598_022_13894_8
crossref_primary_10_3390_bdcc6040145
crossref_primary_10_1007_s00521_024_09646_6
crossref_primary_10_1007_s40264_023_01322_3
crossref_primary_10_1155_2018_2379208
crossref_primary_10_1109_JBHI_2018_2861213
crossref_primary_10_1007_s10579_022_09596_2
crossref_primary_10_1177_1747016117738559
crossref_primary_10_1080_14740338_2018_1531847
crossref_primary_10_3390_math11020354
crossref_primary_10_1109_TASLP_2024_3458796
crossref_primary_10_1007_s11063_018_9873_x
crossref_primary_10_1007_s11704_024_40555_y
crossref_primary_10_1007_s10462_025_11321_8
crossref_primary_10_1016_j_rineng_2025_107362
crossref_primary_10_1093_jamia_ocaa106
crossref_primary_10_1136_annrheumdis_2019_216791
crossref_primary_10_1016_j_neucom_2025_130856
crossref_primary_10_1007_s11227_025_07442_0
crossref_primary_10_1007_s00521_022_07287_1
crossref_primary_10_1016_j_asoc_2021_107358
crossref_primary_10_1016_j_jbi_2024_104744
crossref_primary_10_1016_j_ijmedinf_2018_06_008
crossref_primary_10_1016_j_jbi_2022_104228
crossref_primary_10_2196_13914
crossref_primary_10_1016_j_neucom_2024_127938
crossref_primary_10_1109_JBHI_2020_3042549
crossref_primary_10_3390_electronics13020261
crossref_primary_10_1111_bcp_12746
crossref_primary_10_2196_45289
crossref_primary_10_1162_tacl_a_00602
crossref_primary_10_1177_15353702221128577
crossref_primary_10_1177_1178222617713018
crossref_primary_10_1007_s11227_023_05224_0
crossref_primary_10_1371_journal_pdig_0000468
crossref_primary_10_2196_62924
crossref_primary_10_3390_electronics13071407
crossref_primary_10_1007_s00521_024_09454_y
crossref_primary_10_1016_j_jbi_2025_104812
crossref_primary_10_1016_j_jbi_2020_103522
crossref_primary_10_1007_s40264_023_01323_2
crossref_primary_10_1016_j_jbi_2020_103568
crossref_primary_10_1007_s40264_016_0491_0
crossref_primary_10_1007_s40264_020_00912_9
crossref_primary_10_1002_jrsm_1692
crossref_primary_10_3390_ai6020031
crossref_primary_10_1134_S036176882307006X
crossref_primary_10_1016_j_jbi_2022_104252
crossref_primary_10_1007_s40264_020_00942_3
crossref_primary_10_1016_j_artmed_2021_102008
crossref_primary_10_1016_j_jbi_2015_11_001
crossref_primary_10_1016_j_jbi_2018_11_007
crossref_primary_10_2174_0115748936278299231213045441
crossref_primary_10_1016_j_jbi_2020_103437
crossref_primary_10_1016_j_artmed_2016_05_004
crossref_primary_10_3390_app12010491
crossref_primary_10_1016_j_ipm_2025_104129
crossref_primary_10_1016_j_jksuci_2023_01_014
crossref_primary_10_1093_jamia_ocae029
crossref_primary_10_1038_s41467_022_29763_x
crossref_primary_10_1109_TNNLS_2020_3015912
crossref_primary_10_1016_j_jbi_2020_103431
crossref_primary_10_1016_j_jbi_2018_12_005
crossref_primary_10_1016_j_jbi_2021_103896
crossref_primary_10_1016_j_procs_2021_06_082
crossref_primary_10_3390_mti3030060
crossref_primary_10_1016_j_jbi_2025_104783
crossref_primary_10_1134_S0361768819080024
crossref_primary_10_2196_68291
crossref_primary_10_1016_j_nexres_2024_100044
crossref_primary_10_1007_s41060_019_00175_3
crossref_primary_10_1038_s41597_019_0342_9
crossref_primary_10_1016_j_jbi_2022_104080
crossref_primary_10_1093_jamia_ocz100
crossref_primary_10_2196_resprot_5621
crossref_primary_10_1109_TASLP_2022_3221009
crossref_primary_10_1155_2017_9451342
crossref_primary_10_1016_j_knosys_2023_110675
crossref_primary_10_1016_j_therap_2015_09_001
crossref_primary_10_1016_j_therap_2015_09_002
crossref_primary_10_2196_38140
crossref_primary_10_1016_j_procs_2020_04_145
crossref_primary_10_1186_s12859_023_05350_9
Cites_doi 10.1093/nar/gkj067
10.1016/j.jbi.2013.07.011
10.3115/1641484.1641490
10.1145/2632188.2632200
10.1093/nar/gkt441
10.1093/llc/8.4.275
10.1016/j.jbi.2012.04.008
10.1016/j.jbi.2013.12.006
10.1186/1743-8462-6-18
10.1007/978-3-642-39844-5_16
10.1177/183335831003900206
10.3115/v1/S14-2007
10.1016/j.jbi.2008.12.013
10.1016/j.jbi.2011.07.005
10.1016/j.sbspro.2013.10.641
10.1145/2719920
10.1126/science.307.5707.196
10.1007/s40264-013-0018-x
10.1016/j.jbi.2012.04.004
10.1016/S1553-7250(12)38016-1
10.2105/AJPH.2007.124537
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7U8
7X8
C1K
JXQ
7QO
8FD
FR3
P64
7SC
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.jbi.2015.03.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
TOXLINE
MEDLINE - Academic
Environmental Sciences and Pollution Management
Toxline
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
TOXLINE
MEDLINE - Academic
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Engineering Research Database
TOXLINE

MEDLINE
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1532-0480
EndPage 81
ExternalDocumentID 25817970
10_1016_j_jbi_2015_03_010
S1532046415000532
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXUO
AAYFN
ABBOA
ABBQC
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DIK
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UAP
UHS
UNMZH
XPP
ZGI
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7U8
7X8
C1K
JXQ
7QO
8FD
FR3
P64
7SC
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c419t-e5f1c3f866d1146d81b475ef0b271cabc472318ca452d25c58c6fd7e056bd8333
ISICitedReferencesCount 151
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356564700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0464
IngestDate Sun Nov 09 12:55:31 EST 2025
Tue Oct 07 09:36:01 EDT 2025
Sun Sep 28 06:54:24 EDT 2025
Thu Apr 03 07:00:33 EDT 2025
Sat Nov 29 06:23:12 EST 2025
Tue Nov 18 21:38:04 EST 2025
Fri Feb 23 02:33:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SNOMED CT
Consumer reviews
MedDRA
Social media
Medical forum
Annotated corpus
Information extraction
Adverse drug reaction
Drug safety
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c419t-e5f1c3f866d1146d81b475ef0b271cabc472318ca452d25c58c6fd7e056bd8333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.jbi.2015.03.010
PMID 25817970
PQID 1687347382
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1709740726
proquest_miscellaneous_1701489924
proquest_miscellaneous_1687347382
pubmed_primary_25817970
crossref_citationtrail_10_1016_j_jbi_2015_03_010
crossref_primary_10_1016_j_jbi_2015_03_010
elsevier_sciencedirect_doi_10_1016_j_jbi_2015_03_010
PublicationCentury 2000
PublicationDate June 2015
2015-06-00
2015-Jun
20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical informatics
PublicationTitleAlternate J Biomed Inform
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Herrero-Zazo, Segura-Bedmar, Martinez (b0060) 2013; 95
I. Lewin, S. Kafkas, D. Rebholz-Schuhmann, Centroids: gold standards with distributional variations, in: The Eighth International Conference on Language Resources and Evaluation, Istanbul, Turkey, 2012, pp. 3894–3900.
R. Leaman, L. Wojtulewicz, R. Sullivan, A. Skariah, J. Yang, G. Gonzalez, Towards Internet-age pharmacovigilance: Extracting adverse drug reactions from user posts to health-related social networks, in: Workshop On Biomedical Natural Language Processing, Uppsala, Sweden, 2010, pp. 117–125.
R. Leaman, C. Miller, G. Gonzalez, Enabling recognition of diseases in biomedical text with machine learning: corpus and benchmark, in: The 3rd International Symposium on Languages in Biology and Medicine, Jeju Island, South Korea, 2009, pp. 82–89.
Gurulingappa, Rajput, Roberts, Fluck, Hofmann-Apitius, Toldo (b0055) 2012; 45
X. Liu, H. Chen, AZDrugminer: an information extraction system for mining patient-reported adverse drug events in online patient forums, in: The 2013 International Conference On Smart Health, Beijing, China, 2013, pp. 134–150.
Michel, Lawley, Chu, Barned (b0115) 2010; 168
Leech (b0095) 1993; 8
L. Deleger, Q. Li, T. Lingren, M. Kaiser, K. Molnar, L. Stoutenborough, M. Kouril, K. Marsolo, I. Solti, Building gold standard corpora for medical natural language processing tasks, in: AMIA Annual Symposium, Washington, DC, 2012, pp. 144–153.
Coloma, Trifiró, Patadia, Sturkenboom (b0030) 2013; 36
NEHTA, Australian Medicines Terminology v3 model–common v1.4, Tech. rep. EP-1825:2014, National E-Health Transition Authority, 2014.
H. Gurulingappa, R. Klinger, M. Hofmann-Apitius, J. Fluck, An empirical evaluation of resources for the identification of diseases and adverse effects in biomedical literature, in: The 2nd Workshop on Building and Evaluating Resources for Biomedical Text Mining (7th edition of the Language Resources and Evaluation Conference), 2010, pp. 15–22.
S. Karimi, S. Kim, L. Cavedon, Drug side-effects: What do patient forums reveal? in: The 2nd International Workshop On Web Science and Information Exchange in the Medical Web, Glasgow, UK, 2011, pp. 14–15.
A. Metke-Jimenez, S. Karimi, C. Paris, Evaluation of text processing algorithms for adverse drug event extraction from social media, in: The First International Workshop on Social Media Retrieval and Analysis, Gold Coast, Australia, 2014, pp. 15–20.
K. Cohen, P. Ogren, L. Fox, L. Hunter, Corpus design for biomedical natural language processing, in: The ACL-ISMB Workshop on Linking Biological Literature, Ontologies and Databases: Mining Biological Semantics, Detroit, Michigan, 2005, pp. 38–45.
Dogan, Leaman, Lu (b0045) 2014; 47
Karimi, Wang, Metke-Jimenez, Gaire, Paris (b0080) 2015
Wishart, Knox, Guo, Shrivastava, Hassanali, Stothard, Chang, Woolsey (b0160) 2006; 34
Couzin (b0035) 2005; 307
Herrero-Zazo, Segura-Bedmar, Martínez, Declerck (b0065) 2013; 46
Roughead, Semple (b0135) 2009; 6
Wei, Kao, Lu (b0155) 2013; 41
Hug, Keohane, Seger, Yoon, Bates (b0070) 2012; 38
S. Pradhan, N. Elhadad, W. Chapman, S. Manandhar, G. Savova, Semeval 2014 task 7: analysis of clinical text, in: The 8th International Workshop on Semantic Evaluation, Dublin, Ireland, 2014, pp. 54–62.
P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, J. Tsujii, Brat: a web-based tool for NLP-assisted text annotation, in: The Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France, 2012, pp. 102–107.
Truran, Saad, Zhang, Innes (b0145) 2010; 39
B. Chee, R. Berlin, B. Schatz, Predicting adverse drug events from personal health messages, in: AMIA Annual Symposium Proceedings, Washington, DC, 2011, pp. 217–226.
Roberts, Gaizauskas, Hepple, Demetriou, Guo, Roberts, Setzer (b0130) 2009; 42
C. Yang, L. Jiang, H. Yang, X. Tang, Detecting signals of adverse drug reactions from health consumer contributed content in social media, in: ACM SIGKDD Workshop On Health Informatics, Beijing, China, 2012.
Benton, Ungar, Hill, Hennessy, Mao, Chung, Leonard, Holmes (b0010) 2011; 44
ACSQHC, National safety and quality health service standards, 2012.
Berlin, Glasser, Ellenberg (b0015) 2008; 98
Van Mulligen, Fourrier-Reglat, Gurwitz, Molokhia, Nieto, Trifiro, Kors, Furlong (b0150) 2012; 45
Coloma (10.1016/j.jbi.2015.03.010_b0030) 2013; 36
10.1016/j.jbi.2015.03.010_b0090
10.1016/j.jbi.2015.03.010_b0050
10.1016/j.jbi.2015.03.010_b0110
10.1016/j.jbi.2015.03.010_b0075
Roughead (10.1016/j.jbi.2015.03.010_b0135) 2009; 6
Couzin (10.1016/j.jbi.2015.03.010_b0035) 2005; 307
Berlin (10.1016/j.jbi.2015.03.010_b0015) 2008; 98
Hug (10.1016/j.jbi.2015.03.010_b0070) 2012; 38
Wishart (10.1016/j.jbi.2015.03.010_b0160) 2006; 34
Van Mulligen (10.1016/j.jbi.2015.03.010_b0150) 2012; 45
Wei (10.1016/j.jbi.2015.03.010_b0155) 2013; 41
Karimi (10.1016/j.jbi.2015.03.010_b0080) 2015
Herrero-Zazo (10.1016/j.jbi.2015.03.010_b0065) 2013; 46
Roberts (10.1016/j.jbi.2015.03.010_b0130) 2009; 42
Herrero-Zazo (10.1016/j.jbi.2015.03.010_b0060) 2013; 95
Michel (10.1016/j.jbi.2015.03.010_b0115) 2010; 168
10.1016/j.jbi.2015.03.010_b0085
10.1016/j.jbi.2015.03.010_b0140
10.1016/j.jbi.2015.03.010_b0040
Truran (10.1016/j.jbi.2015.03.010_b0145) 2010; 39
Gurulingappa (10.1016/j.jbi.2015.03.010_b0055) 2012; 45
10.1016/j.jbi.2015.03.010_b0100
10.1016/j.jbi.2015.03.010_b0165
10.1016/j.jbi.2015.03.010_b0120
10.1016/j.jbi.2015.03.010_b0020
10.1016/j.jbi.2015.03.010_b0005
10.1016/j.jbi.2015.03.010_b0125
10.1016/j.jbi.2015.03.010_b0025
Leech (10.1016/j.jbi.2015.03.010_b0095) 1993; 8
Dogan (10.1016/j.jbi.2015.03.010_b0045) 2014; 47
Benton (10.1016/j.jbi.2015.03.010_b0010) 2011; 44
10.1016/j.jbi.2015.03.010_b0105
References_xml – volume: 44
  start-page: 989
  year: 2011
  end-page: 996
  ident: b0010
  article-title: Identifying potential adverse effects using the web: a new approach to medical hypothesis generation
  publication-title: J. Biomed. Inform.
– reference: K. Cohen, P. Ogren, L. Fox, L. Hunter, Corpus design for biomedical natural language processing, in: The ACL-ISMB Workshop on Linking Biological Literature, Ontologies and Databases: Mining Biological Semantics, Detroit, Michigan, 2005, pp. 38–45.
– year: 2015
  ident: b0080
  article-title: Text and data mining techniques in adverse drug reaction detection
  publication-title: ACM Comput. Surveys
– reference: H. Gurulingappa, R. Klinger, M. Hofmann-Apitius, J. Fluck, An empirical evaluation of resources for the identification of diseases and adverse effects in biomedical literature, in: The 2nd Workshop on Building and Evaluating Resources for Biomedical Text Mining (7th edition of the Language Resources and Evaluation Conference), 2010, pp. 15–22.
– volume: 39
  start-page: 37
  year: 2010
  end-page: 39
  ident: b0145
  article-title: SNOMED CT and its place in health information management practice
  publication-title: Health Inform. Manage.
– volume: 46
  start-page: 914
  year: 2013
  end-page: 920
  ident: b0065
  article-title: The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions
  publication-title: Biomed. Inform.
– reference: L. Deleger, Q. Li, T. Lingren, M. Kaiser, K. Molnar, L. Stoutenborough, M. Kouril, K. Marsolo, I. Solti, Building gold standard corpora for medical natural language processing tasks, in: AMIA Annual Symposium, Washington, DC, 2012, pp. 144–153.
– reference: I. Lewin, S. Kafkas, D. Rebholz-Schuhmann, Centroids: gold standards with distributional variations, in: The Eighth International Conference on Language Resources and Evaluation, Istanbul, Turkey, 2012, pp. 3894–3900.
– volume: 45
  start-page: 879
  year: 2012
  end-page: 884
  ident: b0150
  article-title: The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships
  publication-title: Biomed. Inform.
– reference: ACSQHC, National safety and quality health service standards, 2012.
– reference: R. Leaman, C. Miller, G. Gonzalez, Enabling recognition of diseases in biomedical text with machine learning: corpus and benchmark, in: The 3rd International Symposium on Languages in Biology and Medicine, Jeju Island, South Korea, 2009, pp. 82–89.
– reference: R. Leaman, L. Wojtulewicz, R. Sullivan, A. Skariah, J. Yang, G. Gonzalez, Towards Internet-age pharmacovigilance: Extracting adverse drug reactions from user posts to health-related social networks, in: Workshop On Biomedical Natural Language Processing, Uppsala, Sweden, 2010, pp. 117–125.
– reference: A. Metke-Jimenez, S. Karimi, C. Paris, Evaluation of text processing algorithms for adverse drug event extraction from social media, in: The First International Workshop on Social Media Retrieval and Analysis, Gold Coast, Australia, 2014, pp. 15–20.
– reference: S. Karimi, S. Kim, L. Cavedon, Drug side-effects: What do patient forums reveal? in: The 2nd International Workshop On Web Science and Information Exchange in the Medical Web, Glasgow, UK, 2011, pp. 14–15.
– volume: 8
  start-page: 275
  year: 1993
  end-page: 281
  ident: b0095
  article-title: Corpus annotation schemes
  publication-title: Literary Linguist. Comput.
– reference: C. Yang, L. Jiang, H. Yang, X. Tang, Detecting signals of adverse drug reactions from health consumer contributed content in social media, in: ACM SIGKDD Workshop On Health Informatics, Beijing, China, 2012.
– volume: 168
  start-page: 104
  year: 2010
  end-page: 116
  ident: b0115
  article-title: Mapping the Queensland health iPharmacy medication file to the Australian medicines terminology using Snapper
  publication-title: Stud. Health Technol. Inform.
– reference: X. Liu, H. Chen, AZDrugminer: an information extraction system for mining patient-reported adverse drug events in online patient forums, in: The 2013 International Conference On Smart Health, Beijing, China, 2013, pp. 134–150.
– volume: 36
  start-page: 183
  year: 2013
  end-page: 197
  ident: b0030
  article-title: Postmarketing safety surveillance
  publication-title: Drug Safety
– volume: 42
  start-page: 950
  year: 2009
  end-page: 966
  ident: b0130
  article-title: Building a semantically annotated corpus of clinical texts
  publication-title: Biomed. Inform.
– volume: 41
  start-page: 518
  year: 2013
  end-page: 522
  ident: b0155
  article-title: PubTator: a web-based text mining tool for assisting biocuration
  publication-title: Nucl. Acids Res.
– volume: 98
  start-page: 1366
  year: 2008
  end-page: 1371
  ident: b0015
  article-title: Adverse event detection in drug development: recommendations and obligations beyond phase 3
  publication-title: Am. J. Public Health
– reference: NEHTA, Australian Medicines Terminology v3 model–common v1.4, Tech. rep. EP-1825:2014, National E-Health Transition Authority, 2014.
– volume: 95
  start-page: 211
  year: 2013
  end-page: 219
  ident: b0060
  article-title: Annotation issues in pharmacological texts
  publication-title: Proc. – Social Behav. Sci.
– volume: 307
  start-page: 196
  year: 2005
  end-page: 198
  ident: b0035
  article-title: Drug safety: gaps in the safety net
  publication-title: Science
– reference: P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, J. Tsujii, Brat: a web-based tool for NLP-assisted text annotation, in: The Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France, 2012, pp. 102–107.
– reference: B. Chee, R. Berlin, B. Schatz, Predicting adverse drug events from personal health messages, in: AMIA Annual Symposium Proceedings, Washington, DC, 2011, pp. 217–226.
– volume: 47
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0045
  article-title: NCBI disease corpus: a resource for disease name recognition and concept normalization
  publication-title: J. Biomed. Inform.
– reference: S. Pradhan, N. Elhadad, W. Chapman, S. Manandhar, G. Savova, Semeval 2014 task 7: analysis of clinical text, in: The 8th International Workshop on Semantic Evaluation, Dublin, Ireland, 2014, pp. 54–62.
– volume: 38
  start-page: 120
  year: 2012
  end-page: 126
  ident: b0070
  article-title: The costs of adverse drug events in community hospitals
  publication-title: Joint Commission J. Quality Patient Safety
– volume: 6
  start-page: 18
  year: 2009
  ident: b0135
  article-title: Medication safety in acute care in Australia: where are we now? Part 1: A review of the extent and causes of medication problems 2002–2008
  publication-title: Australia New Zealand Health Policy
– volume: 45
  start-page: 885
  year: 2012
  end-page: 892
  ident: b0055
  article-title: Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports
  publication-title: Biomed. Inform.
– volume: 34
  start-page: 668
  year: 2006
  end-page: 672
  ident: b0160
  article-title: Drug Bank: a comprehensive resource for in silico drug discovery and exploration
  publication-title: Nucl. Acids Res.
– volume: 34
  start-page: 668
  year: 2006
  ident: 10.1016/j.jbi.2015.03.010_b0160
  article-title: Drug Bank: a comprehensive resource for in silico drug discovery and exploration
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkj067
– volume: 46
  start-page: 914
  issue: 5
  year: 2013
  ident: 10.1016/j.jbi.2015.03.010_b0065
  article-title: The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions
  publication-title: Biomed. Inform.
  doi: 10.1016/j.jbi.2013.07.011
– ident: 10.1016/j.jbi.2015.03.010_b0025
  doi: 10.3115/1641484.1641490
– ident: 10.1016/j.jbi.2015.03.010_b0110
  doi: 10.1145/2632188.2632200
– volume: 41
  start-page: 518
  issue: W1
  year: 2013
  ident: 10.1016/j.jbi.2015.03.010_b0155
  article-title: PubTator: a web-based text mining tool for assisting biocuration
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkt441
– volume: 8
  start-page: 275
  issue: 4
  year: 1993
  ident: 10.1016/j.jbi.2015.03.010_b0095
  article-title: Corpus annotation schemes
  publication-title: Literary Linguist. Comput.
  doi: 10.1093/llc/8.4.275
– ident: 10.1016/j.jbi.2015.03.010_b0100
– volume: 45
  start-page: 885
  issue: 5
  year: 2012
  ident: 10.1016/j.jbi.2015.03.010_b0055
  article-title: Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports
  publication-title: Biomed. Inform.
  doi: 10.1016/j.jbi.2012.04.008
– ident: 10.1016/j.jbi.2015.03.010_b0120
– volume: 47
  start-page: 1
  year: 2014
  ident: 10.1016/j.jbi.2015.03.010_b0045
  article-title: NCBI disease corpus: a resource for disease name recognition and concept normalization
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2013.12.006
– ident: 10.1016/j.jbi.2015.03.010_b0165
– volume: 6
  start-page: 18
  issue: 1
  year: 2009
  ident: 10.1016/j.jbi.2015.03.010_b0135
  article-title: Medication safety in acute care in Australia: where are we now? Part 1: A review of the extent and causes of medication problems 2002–2008
  publication-title: Australia New Zealand Health Policy
  doi: 10.1186/1743-8462-6-18
– ident: 10.1016/j.jbi.2015.03.010_b0090
– ident: 10.1016/j.jbi.2015.03.010_b0105
  doi: 10.1007/978-3-642-39844-5_16
– volume: 39
  start-page: 37
  issue: 2
  year: 2010
  ident: 10.1016/j.jbi.2015.03.010_b0145
  article-title: SNOMED CT and its place in health information management practice
  publication-title: Health Inform. Manage.
  doi: 10.1177/183335831003900206
– ident: 10.1016/j.jbi.2015.03.010_b0040
– ident: 10.1016/j.jbi.2015.03.010_b0125
  doi: 10.3115/v1/S14-2007
– volume: 42
  start-page: 950
  issue: 5
  year: 2009
  ident: 10.1016/j.jbi.2015.03.010_b0130
  article-title: Building a semantically annotated corpus of clinical texts
  publication-title: Biomed. Inform.
  doi: 10.1016/j.jbi.2008.12.013
– volume: 44
  start-page: 989
  issue: 6
  year: 2011
  ident: 10.1016/j.jbi.2015.03.010_b0010
  article-title: Identifying potential adverse effects using the web: a new approach to medical hypothesis generation
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2011.07.005
– ident: 10.1016/j.jbi.2015.03.010_b0050
– volume: 95
  start-page: 211
  year: 2013
  ident: 10.1016/j.jbi.2015.03.010_b0060
  article-title: Annotation issues in pharmacological texts
  publication-title: Proc. – Social Behav. Sci.
  doi: 10.1016/j.sbspro.2013.10.641
– ident: 10.1016/j.jbi.2015.03.010_b0075
– year: 2015
  ident: 10.1016/j.jbi.2015.03.010_b0080
  article-title: Text and data mining techniques in adverse drug reaction detection
  publication-title: ACM Comput. Surveys
  doi: 10.1145/2719920
– volume: 307
  start-page: 196
  issue: 5707
  year: 2005
  ident: 10.1016/j.jbi.2015.03.010_b0035
  article-title: Drug safety: gaps in the safety net
  publication-title: Science
  doi: 10.1126/science.307.5707.196
– volume: 36
  start-page: 183
  issue: 3
  year: 2013
  ident: 10.1016/j.jbi.2015.03.010_b0030
  article-title: Postmarketing safety surveillance
  publication-title: Drug Safety
  doi: 10.1007/s40264-013-0018-x
– ident: 10.1016/j.jbi.2015.03.010_b0140
– ident: 10.1016/j.jbi.2015.03.010_b0085
– volume: 168
  start-page: 104
  year: 2010
  ident: 10.1016/j.jbi.2015.03.010_b0115
  article-title: Mapping the Queensland health iPharmacy medication file to the Australian medicines terminology using Snapper
  publication-title: Stud. Health Technol. Inform.
– ident: 10.1016/j.jbi.2015.03.010_b0005
– ident: 10.1016/j.jbi.2015.03.010_b0020
– volume: 45
  start-page: 879
  issue: 5
  year: 2012
  ident: 10.1016/j.jbi.2015.03.010_b0150
  article-title: The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships
  publication-title: Biomed. Inform.
  doi: 10.1016/j.jbi.2012.04.004
– volume: 38
  start-page: 120
  issue: 3
  year: 2012
  ident: 10.1016/j.jbi.2015.03.010_b0070
  article-title: The costs of adverse drug events in community hospitals
  publication-title: Joint Commission J. Quality Patient Safety
  doi: 10.1016/S1553-7250(12)38016-1
– volume: 98
  start-page: 1366
  issue: 8
  year: 2008
  ident: 10.1016/j.jbi.2015.03.010_b0015
  article-title: Adverse event detection in drug development: recommendations and obligations beyond phase 3
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2007.124537
SSID ssj0011556
Score 2.5504086
Snippet [Display omitted] •Introduction of CADEC an annotated corpus of consumer reviews in pharmacovigilance.•A review and comparison of available relevant...
CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus of medical forum posts on patient-reported Adverse Drug Events (ADEs). The corpus is...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 73
SubjectTerms Adverse drug reaction
Adverse Drug Reaction Reporting Systems - organization & administration
Annotated corpus
Annotations
Consumer Health Information - organization & administration
Consumer reviews
Data Mining - methods
Datasets as Topic - statistics & numerical data
Digital media
Drug safety
Drug-Related Side Effects and Adverse Reactions - classification
Drug-Related Side Effects and Adverse Reactions - epidemiology
Drugs
Grammars
Guidelines
Guidelines as Topic
Humans
Information extraction
Information retrieval
Machine Learning
MedDRA
Medical forum
Natural Language Processing
SNOMED CT
Social media
Social Media - classification
Social Media - organization & administration
Social networks
Terminology as Topic
Texts
Vocabulary, Controlled
Title Cadec: A corpus of adverse drug event annotations
URI https://dx.doi.org/10.1016/j.jbi.2015.03.010
https://www.ncbi.nlm.nih.gov/pubmed/25817970
https://www.proquest.com/docview/1687347382
https://www.proquest.com/docview/1701489924
https://www.proquest.com/docview/1709740726
Volume 55
WOSCitedRecordID wos000356564700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20210131
  omitProxy: false
  ssIdentifier: ssj0011556
  issn: 1532-0464
  databaseCode: AIEXJ
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYhtAQQlAYlMsUJMQDVVAudmzzVlWdYJTCQ4f6ZiWxAyvDLW06Tfx6jmMnDZdV44GXqIqcXvx9Pf58fC4IPQde0CyNAz9ThPg4y7jPCcW-lAlPijgqWFWB79OIjsdsOuUfXcb1qmonQLVmFxd88V-hhnsAtkmd_Qe4mzeFG_AaQIcrwA7XKwE_SKXKbcI57CwX65U76gedp3pyuf7cq4o29VKt52XLX_enQrWp-RWKrr5q2YqNf5eajmDOq3yu0x8Ndqr8qvxj0zbAuqf7Z2qWmsIIG-v-bWETheRc683C4HzXgy8uP815I0KyiZpqDGhkwkVx28IS0jKRtnNJvdiGfzXj1qMwezXLTk30Hanq0Lrw119KZo8_iKOT0UhMhtPJi8V333QTM6furrXKDtqLKOFg7fb6b4fT4-Z8CVRUYivp2m9bn3dXkX-_fepliuWyHUmlTCZ30G0HmNe3VLiLrindQTdbhSY76MZ7F0LRQbeso9az-Wf3UFjx5bXX9yxbvHnhObZ4hi1exRavxZb76ORoOBm88V0fDT_HIS99RYowjwuWJNLkoEvYqWBKVBFkEQ3zNMsxBZXP8hSTSEYkJyxPCkkVaONMsjiOD9Cunmv1EHkMBDlsMkMuTedkHmZMYSphiYxZCsq26KKgniuRuyLzptfJmaijCWcCpleY6RVBLGB6u-hl88jCVljZNhjXAAgnEa30E0CdbY89q8ESYD7NmViq1Xy9EmHCaIxpzKItY6hxu3Me4a1jYGce0CjpogeWDc2viQiDZY8Gj67w9GO0v_lbPUG75XKtnqLr-Xl5uloeoh06ZYeOzD8BDLqvNg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cadec%3A+A+corpus+of+adverse+drug+event+annotations&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Karimi%2C+Sarvnaz&rft.au=Metke-Jimenez%2C+Alejandro&rft.au=Kemp%2C+Madonna&rft.au=Wang%2C+Chen&rft.date=2015-06-01&rft.issn=1532-0464&rft.volume=55&rft.spage=73&rft.epage=81&rft_id=info:doi/10.1016%2Fj.jbi.2015.03.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon