Cadec: A corpus of adverse drug event annotations
[Display omitted] •Introduction of CADEC an annotated corpus of consumer reviews in pharmacovigilance.•A review and comparison of available relevant resources.•Challenges and lessons from the process of creating such resources. CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus o...
Saved in:
| Published in: | Journal of biomedical informatics Vol. 55; pp. 73 - 81 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
01.06.2015
|
| Subjects: | |
| ISSN: | 1532-0464, 1532-0480 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•Introduction of CADEC an annotated corpus of consumer reviews in pharmacovigilance.•A review and comparison of available relevant resources.•Challenges and lessons from the process of creating such resources.
CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus of medical forum posts on patient-reported Adverse Drug Events (ADEs). The corpus is sourced from posts on social media, and contains text that is largely written in colloquial language and often deviates from formal English grammar and punctuation rules. Annotations contain mentions of concepts such as drugs, adverse effects, symptoms, and diseases linked to their corresponding concepts in controlled vocabularies, i.e., SNOMED Clinical Terms and MedDRA. The quality of the annotations is ensured by annotation guidelines, multi-stage annotations, measuring inter-annotator agreement, and final review of the annotations by a clinical terminologist. This corpus is useful for studies in the area of information extraction, or more generally text mining, from social media to detect possible adverse drug reactions from direct patient reports. The corpus is publicly available at https://data.csiro.au.1The data can be used for research purposes only, under the CSIRO data licence.1 |
|---|---|
| AbstractList | CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus of medical forum posts on patient-reported Adverse Drug Events (ADEs). The corpus is sourced from posts on social media, and contains text that is largely written in colloquial language and often deviates from formal English grammar and punctuation rules. Annotations contain mentions of concepts such as drugs, adverse effects, symptoms, and diseases linked to their corresponding concepts in controlled vocabularies, i.e., SNOMED Clinical Terms and MedDRA. The quality of the annotations is ensured by annotation guidelines, multi-stage annotations, measuring inter-annotator agreement, and final review of the annotations by a clinical terminologist. This corpus is useful for studies in the area of information extraction, or more generally text mining, from social media to detect possible adverse drug reactions from direct patient reports. The corpus is publicly available at https://data.csiro.au. 1 CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus of medical forum posts on patient-reported Adverse Drug Events (ADEs). The corpus is sourced from posts on social media, and contains text that is largely written in colloquial language and often deviates from formal English grammar and punctuation rules. Annotations contain mentions of concepts such as drugs, adverse effects, symptoms, and diseases linked to their corresponding concepts in controlled vocabularies, i.e., SNOMED Clinical Terms and MedDRA. The quality of the annotations is ensured by annotation guidelines, multi-stage annotations, measuring inter-annotator agreement, and final review of the annotations by a clinical terminologist. This corpus is useful for studies in the area of information extraction, or more generally text mining, from social media to detect possible adverse drug reactions from direct patient reports. The corpus is publicly available at https://data.csiro.au.(1). [Display omitted] •Introduction of CADEC an annotated corpus of consumer reviews in pharmacovigilance.•A review and comparison of available relevant resources.•Challenges and lessons from the process of creating such resources. CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus of medical forum posts on patient-reported Adverse Drug Events (ADEs). The corpus is sourced from posts on social media, and contains text that is largely written in colloquial language and often deviates from formal English grammar and punctuation rules. Annotations contain mentions of concepts such as drugs, adverse effects, symptoms, and diseases linked to their corresponding concepts in controlled vocabularies, i.e., SNOMED Clinical Terms and MedDRA. The quality of the annotations is ensured by annotation guidelines, multi-stage annotations, measuring inter-annotator agreement, and final review of the annotations by a clinical terminologist. This corpus is useful for studies in the area of information extraction, or more generally text mining, from social media to detect possible adverse drug reactions from direct patient reports. The corpus is publicly available at https://data.csiro.au.1The data can be used for research purposes only, under the CSIRO data licence.1 |
| Author | Karimi, Sarvnaz Wang, Chen Metke-Jimenez, Alejandro Kemp, Madonna |
| Author_xml | – sequence: 1 givenname: Sarvnaz surname: Karimi fullname: Karimi, Sarvnaz email: sarvnaz.karimi@csiro.au – sequence: 2 givenname: Alejandro surname: Metke-Jimenez fullname: Metke-Jimenez, Alejandro – sequence: 3 givenname: Madonna surname: Kemp fullname: Kemp, Madonna – sequence: 4 givenname: Chen surname: Wang fullname: Wang, Chen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25817970$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkTtvFDEUha0oKO8fQIOmpNnhXr8HqmgFCVIkGqgtj30HebU7XuyZlfj3mWgTCopAdW_xfac455Kdjnkkxt4itAioP2zaTZ9aDqhaEC0gnLALVIKvQFo4_fNrec4ua90AICqlz9g5VxZNZ-CC4dpHCh-b2ybksp9rk4fGxwOVSk0s88-GDjROjR_HPPkp5bFeszeD31a6eb5X7MeXz9_X96uHb3df17cPqyCxm1akBgxisFpHRKmjxV4aRQP03GDwfZCGC7TBS8UjV0HZoIdoCJTuoxVCXLH3x9x9yb9mqpPbpRpou_Uj5bk6NNAZCYbr_0FR2q7j8t-otkZIIyxf0HfP6NzvKLp9STtffruX8hbAHIFQcq2FBhfSsaSp-LR1CO5pJrdxy0zuaSYHwi0zLSb-Zb6Ev-Z8Ojq0lH5IVFwNicZAMRUKk4s5vWI_AlZTpsM |
| CitedBy_id | crossref_primary_10_1016_j_jbi_2021_103982 crossref_primary_10_1016_j_jbi_2018_06_006 crossref_primary_10_1016_j_jbi_2021_103983 crossref_primary_10_1038_s41598_022_13894_8 crossref_primary_10_3390_bdcc6040145 crossref_primary_10_1007_s00521_024_09646_6 crossref_primary_10_1007_s40264_023_01322_3 crossref_primary_10_1155_2018_2379208 crossref_primary_10_1109_JBHI_2018_2861213 crossref_primary_10_1007_s10579_022_09596_2 crossref_primary_10_1177_1747016117738559 crossref_primary_10_1080_14740338_2018_1531847 crossref_primary_10_3390_math11020354 crossref_primary_10_1109_TASLP_2024_3458796 crossref_primary_10_1007_s11063_018_9873_x crossref_primary_10_1007_s11704_024_40555_y crossref_primary_10_1007_s10462_025_11321_8 crossref_primary_10_1016_j_rineng_2025_107362 crossref_primary_10_1093_jamia_ocaa106 crossref_primary_10_1136_annrheumdis_2019_216791 crossref_primary_10_1016_j_neucom_2025_130856 crossref_primary_10_1007_s11227_025_07442_0 crossref_primary_10_1007_s00521_022_07287_1 crossref_primary_10_1016_j_asoc_2021_107358 crossref_primary_10_1016_j_jbi_2024_104744 crossref_primary_10_1016_j_ijmedinf_2018_06_008 crossref_primary_10_1016_j_jbi_2022_104228 crossref_primary_10_2196_13914 crossref_primary_10_1016_j_neucom_2024_127938 crossref_primary_10_1109_JBHI_2020_3042549 crossref_primary_10_3390_electronics13020261 crossref_primary_10_1111_bcp_12746 crossref_primary_10_2196_45289 crossref_primary_10_1162_tacl_a_00602 crossref_primary_10_1177_15353702221128577 crossref_primary_10_1177_1178222617713018 crossref_primary_10_1007_s11227_023_05224_0 crossref_primary_10_1371_journal_pdig_0000468 crossref_primary_10_2196_62924 crossref_primary_10_3390_electronics13071407 crossref_primary_10_1007_s00521_024_09454_y crossref_primary_10_1016_j_jbi_2025_104812 crossref_primary_10_1016_j_jbi_2020_103522 crossref_primary_10_1007_s40264_023_01323_2 crossref_primary_10_1016_j_jbi_2020_103568 crossref_primary_10_1007_s40264_016_0491_0 crossref_primary_10_1007_s40264_020_00912_9 crossref_primary_10_1002_jrsm_1692 crossref_primary_10_3390_ai6020031 crossref_primary_10_1134_S036176882307006X crossref_primary_10_1016_j_jbi_2022_104252 crossref_primary_10_1007_s40264_020_00942_3 crossref_primary_10_1016_j_artmed_2021_102008 crossref_primary_10_1016_j_jbi_2015_11_001 crossref_primary_10_1016_j_jbi_2018_11_007 crossref_primary_10_2174_0115748936278299231213045441 crossref_primary_10_1016_j_jbi_2020_103437 crossref_primary_10_1016_j_artmed_2016_05_004 crossref_primary_10_3390_app12010491 crossref_primary_10_1016_j_ipm_2025_104129 crossref_primary_10_1016_j_jksuci_2023_01_014 crossref_primary_10_1093_jamia_ocae029 crossref_primary_10_1038_s41467_022_29763_x crossref_primary_10_1109_TNNLS_2020_3015912 crossref_primary_10_1016_j_jbi_2020_103431 crossref_primary_10_1016_j_jbi_2018_12_005 crossref_primary_10_1016_j_jbi_2021_103896 crossref_primary_10_1016_j_procs_2021_06_082 crossref_primary_10_3390_mti3030060 crossref_primary_10_1016_j_jbi_2025_104783 crossref_primary_10_1134_S0361768819080024 crossref_primary_10_2196_68291 crossref_primary_10_1016_j_nexres_2024_100044 crossref_primary_10_1007_s41060_019_00175_3 crossref_primary_10_1038_s41597_019_0342_9 crossref_primary_10_1016_j_jbi_2022_104080 crossref_primary_10_1093_jamia_ocz100 crossref_primary_10_2196_resprot_5621 crossref_primary_10_1109_TASLP_2022_3221009 crossref_primary_10_1155_2017_9451342 crossref_primary_10_1016_j_knosys_2023_110675 crossref_primary_10_1016_j_therap_2015_09_001 crossref_primary_10_1016_j_therap_2015_09_002 crossref_primary_10_2196_38140 crossref_primary_10_1016_j_procs_2020_04_145 crossref_primary_10_1186_s12859_023_05350_9 |
| Cites_doi | 10.1093/nar/gkj067 10.1016/j.jbi.2013.07.011 10.3115/1641484.1641490 10.1145/2632188.2632200 10.1093/nar/gkt441 10.1093/llc/8.4.275 10.1016/j.jbi.2012.04.008 10.1016/j.jbi.2013.12.006 10.1186/1743-8462-6-18 10.1007/978-3-642-39844-5_16 10.1177/183335831003900206 10.3115/v1/S14-2007 10.1016/j.jbi.2008.12.013 10.1016/j.jbi.2011.07.005 10.1016/j.sbspro.2013.10.641 10.1145/2719920 10.1126/science.307.5707.196 10.1007/s40264-013-0018-x 10.1016/j.jbi.2012.04.004 10.1016/S1553-7250(12)38016-1 10.2105/AJPH.2007.124537 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U8 7X8 C1K JXQ 7QO 8FD FR3 P64 7SC JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.jbi.2015.03.010 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed TOXLINE MEDLINE - Academic Environmental Sciences and Pollution Management Toxline Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) TOXLINE MEDLINE - Academic Environmental Sciences and Pollution Management Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Civil Engineering Abstracts Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Engineering Research Database TOXLINE MEDLINE Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Public Health |
| EISSN | 1532-0480 |
| EndPage | 81 |
| ExternalDocumentID | 25817970 10_1016_j_jbi_2015_03_010 S1532046415000532 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXUO AAYFN ABBOA ABBQC ABFRF ABJNI ABLVK ABMAC ABMZM ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BAWUL BKOJK BLXMC BNPGV CAG COF CS3 DIK DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LCYCR LG5 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSV SSZ T5K UAP UHS UNMZH XPP ZGI ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7U8 7X8 C1K JXQ 7QO 8FD FR3 P64 7SC JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c419t-e5f1c3f866d1146d81b475ef0b271cabc472318ca452d25c58c6fd7e056bd8333 |
| ISICitedReferencesCount | 151 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356564700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0464 |
| IngestDate | Sun Nov 09 12:55:31 EST 2025 Tue Oct 07 09:36:01 EDT 2025 Sun Sep 28 06:54:24 EDT 2025 Thu Apr 03 07:00:33 EDT 2025 Sat Nov 29 06:23:12 EST 2025 Tue Nov 18 21:38:04 EST 2025 Fri Feb 23 02:33:47 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | SNOMED CT Consumer reviews MedDRA Social media Medical forum Annotated corpus Information extraction Adverse drug reaction Drug safety |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2015 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c419t-e5f1c3f866d1146d81b475ef0b271cabc472318ca452d25c58c6fd7e056bd8333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jbi.2015.03.010 |
| PMID | 25817970 |
| PQID | 1687347382 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1709740726 proquest_miscellaneous_1701489924 proquest_miscellaneous_1687347382 pubmed_primary_25817970 crossref_citationtrail_10_1016_j_jbi_2015_03_010 crossref_primary_10_1016_j_jbi_2015_03_010 elsevier_sciencedirect_doi_10_1016_j_jbi_2015_03_010 |
| PublicationCentury | 2000 |
| PublicationDate | June 2015 2015-06-00 2015-Jun 20150601 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: June 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of biomedical informatics |
| PublicationTitleAlternate | J Biomed Inform |
| PublicationYear | 2015 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Herrero-Zazo, Segura-Bedmar, Martinez (b0060) 2013; 95 I. Lewin, S. Kafkas, D. Rebholz-Schuhmann, Centroids: gold standards with distributional variations, in: The Eighth International Conference on Language Resources and Evaluation, Istanbul, Turkey, 2012, pp. 3894–3900. R. Leaman, L. Wojtulewicz, R. Sullivan, A. Skariah, J. Yang, G. Gonzalez, Towards Internet-age pharmacovigilance: Extracting adverse drug reactions from user posts to health-related social networks, in: Workshop On Biomedical Natural Language Processing, Uppsala, Sweden, 2010, pp. 117–125. R. Leaman, C. Miller, G. Gonzalez, Enabling recognition of diseases in biomedical text with machine learning: corpus and benchmark, in: The 3rd International Symposium on Languages in Biology and Medicine, Jeju Island, South Korea, 2009, pp. 82–89. Gurulingappa, Rajput, Roberts, Fluck, Hofmann-Apitius, Toldo (b0055) 2012; 45 X. Liu, H. Chen, AZDrugminer: an information extraction system for mining patient-reported adverse drug events in online patient forums, in: The 2013 International Conference On Smart Health, Beijing, China, 2013, pp. 134–150. Michel, Lawley, Chu, Barned (b0115) 2010; 168 Leech (b0095) 1993; 8 L. Deleger, Q. Li, T. Lingren, M. Kaiser, K. Molnar, L. Stoutenborough, M. Kouril, K. Marsolo, I. Solti, Building gold standard corpora for medical natural language processing tasks, in: AMIA Annual Symposium, Washington, DC, 2012, pp. 144–153. Coloma, Trifiró, Patadia, Sturkenboom (b0030) 2013; 36 NEHTA, Australian Medicines Terminology v3 model–common v1.4, Tech. rep. EP-1825:2014, National E-Health Transition Authority, 2014. H. Gurulingappa, R. Klinger, M. Hofmann-Apitius, J. Fluck, An empirical evaluation of resources for the identification of diseases and adverse effects in biomedical literature, in: The 2nd Workshop on Building and Evaluating Resources for Biomedical Text Mining (7th edition of the Language Resources and Evaluation Conference), 2010, pp. 15–22. S. Karimi, S. Kim, L. Cavedon, Drug side-effects: What do patient forums reveal? in: The 2nd International Workshop On Web Science and Information Exchange in the Medical Web, Glasgow, UK, 2011, pp. 14–15. A. Metke-Jimenez, S. Karimi, C. Paris, Evaluation of text processing algorithms for adverse drug event extraction from social media, in: The First International Workshop on Social Media Retrieval and Analysis, Gold Coast, Australia, 2014, pp. 15–20. K. Cohen, P. Ogren, L. Fox, L. Hunter, Corpus design for biomedical natural language processing, in: The ACL-ISMB Workshop on Linking Biological Literature, Ontologies and Databases: Mining Biological Semantics, Detroit, Michigan, 2005, pp. 38–45. Dogan, Leaman, Lu (b0045) 2014; 47 Karimi, Wang, Metke-Jimenez, Gaire, Paris (b0080) 2015 Wishart, Knox, Guo, Shrivastava, Hassanali, Stothard, Chang, Woolsey (b0160) 2006; 34 Couzin (b0035) 2005; 307 Herrero-Zazo, Segura-Bedmar, Martínez, Declerck (b0065) 2013; 46 Roughead, Semple (b0135) 2009; 6 Wei, Kao, Lu (b0155) 2013; 41 Hug, Keohane, Seger, Yoon, Bates (b0070) 2012; 38 S. Pradhan, N. Elhadad, W. Chapman, S. Manandhar, G. Savova, Semeval 2014 task 7: analysis of clinical text, in: The 8th International Workshop on Semantic Evaluation, Dublin, Ireland, 2014, pp. 54–62. P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, J. Tsujii, Brat: a web-based tool for NLP-assisted text annotation, in: The Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France, 2012, pp. 102–107. Truran, Saad, Zhang, Innes (b0145) 2010; 39 B. Chee, R. Berlin, B. Schatz, Predicting adverse drug events from personal health messages, in: AMIA Annual Symposium Proceedings, Washington, DC, 2011, pp. 217–226. Roberts, Gaizauskas, Hepple, Demetriou, Guo, Roberts, Setzer (b0130) 2009; 42 C. Yang, L. Jiang, H. Yang, X. Tang, Detecting signals of adverse drug reactions from health consumer contributed content in social media, in: ACM SIGKDD Workshop On Health Informatics, Beijing, China, 2012. Benton, Ungar, Hill, Hennessy, Mao, Chung, Leonard, Holmes (b0010) 2011; 44 ACSQHC, National safety and quality health service standards, 2012. Berlin, Glasser, Ellenberg (b0015) 2008; 98 Van Mulligen, Fourrier-Reglat, Gurwitz, Molokhia, Nieto, Trifiro, Kors, Furlong (b0150) 2012; 45 Coloma (10.1016/j.jbi.2015.03.010_b0030) 2013; 36 10.1016/j.jbi.2015.03.010_b0090 10.1016/j.jbi.2015.03.010_b0050 10.1016/j.jbi.2015.03.010_b0110 10.1016/j.jbi.2015.03.010_b0075 Roughead (10.1016/j.jbi.2015.03.010_b0135) 2009; 6 Couzin (10.1016/j.jbi.2015.03.010_b0035) 2005; 307 Berlin (10.1016/j.jbi.2015.03.010_b0015) 2008; 98 Hug (10.1016/j.jbi.2015.03.010_b0070) 2012; 38 Wishart (10.1016/j.jbi.2015.03.010_b0160) 2006; 34 Van Mulligen (10.1016/j.jbi.2015.03.010_b0150) 2012; 45 Wei (10.1016/j.jbi.2015.03.010_b0155) 2013; 41 Karimi (10.1016/j.jbi.2015.03.010_b0080) 2015 Herrero-Zazo (10.1016/j.jbi.2015.03.010_b0065) 2013; 46 Roberts (10.1016/j.jbi.2015.03.010_b0130) 2009; 42 Herrero-Zazo (10.1016/j.jbi.2015.03.010_b0060) 2013; 95 Michel (10.1016/j.jbi.2015.03.010_b0115) 2010; 168 10.1016/j.jbi.2015.03.010_b0085 10.1016/j.jbi.2015.03.010_b0140 10.1016/j.jbi.2015.03.010_b0040 Truran (10.1016/j.jbi.2015.03.010_b0145) 2010; 39 Gurulingappa (10.1016/j.jbi.2015.03.010_b0055) 2012; 45 10.1016/j.jbi.2015.03.010_b0100 10.1016/j.jbi.2015.03.010_b0165 10.1016/j.jbi.2015.03.010_b0120 10.1016/j.jbi.2015.03.010_b0020 10.1016/j.jbi.2015.03.010_b0005 10.1016/j.jbi.2015.03.010_b0125 10.1016/j.jbi.2015.03.010_b0025 Leech (10.1016/j.jbi.2015.03.010_b0095) 1993; 8 Dogan (10.1016/j.jbi.2015.03.010_b0045) 2014; 47 Benton (10.1016/j.jbi.2015.03.010_b0010) 2011; 44 10.1016/j.jbi.2015.03.010_b0105 |
| References_xml | – volume: 44 start-page: 989 year: 2011 end-page: 996 ident: b0010 article-title: Identifying potential adverse effects using the web: a new approach to medical hypothesis generation publication-title: J. Biomed. Inform. – reference: K. Cohen, P. Ogren, L. Fox, L. Hunter, Corpus design for biomedical natural language processing, in: The ACL-ISMB Workshop on Linking Biological Literature, Ontologies and Databases: Mining Biological Semantics, Detroit, Michigan, 2005, pp. 38–45. – year: 2015 ident: b0080 article-title: Text and data mining techniques in adverse drug reaction detection publication-title: ACM Comput. Surveys – reference: H. Gurulingappa, R. Klinger, M. Hofmann-Apitius, J. Fluck, An empirical evaluation of resources for the identification of diseases and adverse effects in biomedical literature, in: The 2nd Workshop on Building and Evaluating Resources for Biomedical Text Mining (7th edition of the Language Resources and Evaluation Conference), 2010, pp. 15–22. – volume: 39 start-page: 37 year: 2010 end-page: 39 ident: b0145 article-title: SNOMED CT and its place in health information management practice publication-title: Health Inform. Manage. – volume: 46 start-page: 914 year: 2013 end-page: 920 ident: b0065 article-title: The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions publication-title: Biomed. Inform. – reference: L. Deleger, Q. Li, T. Lingren, M. Kaiser, K. Molnar, L. Stoutenborough, M. Kouril, K. Marsolo, I. Solti, Building gold standard corpora for medical natural language processing tasks, in: AMIA Annual Symposium, Washington, DC, 2012, pp. 144–153. – reference: I. Lewin, S. Kafkas, D. Rebholz-Schuhmann, Centroids: gold standards with distributional variations, in: The Eighth International Conference on Language Resources and Evaluation, Istanbul, Turkey, 2012, pp. 3894–3900. – volume: 45 start-page: 879 year: 2012 end-page: 884 ident: b0150 article-title: The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships publication-title: Biomed. Inform. – reference: ACSQHC, National safety and quality health service standards, 2012. – reference: R. Leaman, C. Miller, G. Gonzalez, Enabling recognition of diseases in biomedical text with machine learning: corpus and benchmark, in: The 3rd International Symposium on Languages in Biology and Medicine, Jeju Island, South Korea, 2009, pp. 82–89. – reference: R. Leaman, L. Wojtulewicz, R. Sullivan, A. Skariah, J. Yang, G. Gonzalez, Towards Internet-age pharmacovigilance: Extracting adverse drug reactions from user posts to health-related social networks, in: Workshop On Biomedical Natural Language Processing, Uppsala, Sweden, 2010, pp. 117–125. – reference: A. Metke-Jimenez, S. Karimi, C. Paris, Evaluation of text processing algorithms for adverse drug event extraction from social media, in: The First International Workshop on Social Media Retrieval and Analysis, Gold Coast, Australia, 2014, pp. 15–20. – reference: S. Karimi, S. Kim, L. Cavedon, Drug side-effects: What do patient forums reveal? in: The 2nd International Workshop On Web Science and Information Exchange in the Medical Web, Glasgow, UK, 2011, pp. 14–15. – volume: 8 start-page: 275 year: 1993 end-page: 281 ident: b0095 article-title: Corpus annotation schemes publication-title: Literary Linguist. Comput. – reference: C. Yang, L. Jiang, H. Yang, X. Tang, Detecting signals of adverse drug reactions from health consumer contributed content in social media, in: ACM SIGKDD Workshop On Health Informatics, Beijing, China, 2012. – volume: 168 start-page: 104 year: 2010 end-page: 116 ident: b0115 article-title: Mapping the Queensland health iPharmacy medication file to the Australian medicines terminology using Snapper publication-title: Stud. Health Technol. Inform. – reference: X. Liu, H. Chen, AZDrugminer: an information extraction system for mining patient-reported adverse drug events in online patient forums, in: The 2013 International Conference On Smart Health, Beijing, China, 2013, pp. 134–150. – volume: 36 start-page: 183 year: 2013 end-page: 197 ident: b0030 article-title: Postmarketing safety surveillance publication-title: Drug Safety – volume: 42 start-page: 950 year: 2009 end-page: 966 ident: b0130 article-title: Building a semantically annotated corpus of clinical texts publication-title: Biomed. Inform. – volume: 41 start-page: 518 year: 2013 end-page: 522 ident: b0155 article-title: PubTator: a web-based text mining tool for assisting biocuration publication-title: Nucl. Acids Res. – volume: 98 start-page: 1366 year: 2008 end-page: 1371 ident: b0015 article-title: Adverse event detection in drug development: recommendations and obligations beyond phase 3 publication-title: Am. J. Public Health – reference: NEHTA, Australian Medicines Terminology v3 model–common v1.4, Tech. rep. EP-1825:2014, National E-Health Transition Authority, 2014. – volume: 95 start-page: 211 year: 2013 end-page: 219 ident: b0060 article-title: Annotation issues in pharmacological texts publication-title: Proc. – Social Behav. Sci. – volume: 307 start-page: 196 year: 2005 end-page: 198 ident: b0035 article-title: Drug safety: gaps in the safety net publication-title: Science – reference: P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, J. Tsujii, Brat: a web-based tool for NLP-assisted text annotation, in: The Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France, 2012, pp. 102–107. – reference: B. Chee, R. Berlin, B. Schatz, Predicting adverse drug events from personal health messages, in: AMIA Annual Symposium Proceedings, Washington, DC, 2011, pp. 217–226. – volume: 47 start-page: 1 year: 2014 end-page: 10 ident: b0045 article-title: NCBI disease corpus: a resource for disease name recognition and concept normalization publication-title: J. Biomed. Inform. – reference: S. Pradhan, N. Elhadad, W. Chapman, S. Manandhar, G. Savova, Semeval 2014 task 7: analysis of clinical text, in: The 8th International Workshop on Semantic Evaluation, Dublin, Ireland, 2014, pp. 54–62. – volume: 38 start-page: 120 year: 2012 end-page: 126 ident: b0070 article-title: The costs of adverse drug events in community hospitals publication-title: Joint Commission J. Quality Patient Safety – volume: 6 start-page: 18 year: 2009 ident: b0135 article-title: Medication safety in acute care in Australia: where are we now? Part 1: A review of the extent and causes of medication problems 2002–2008 publication-title: Australia New Zealand Health Policy – volume: 45 start-page: 885 year: 2012 end-page: 892 ident: b0055 article-title: Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports publication-title: Biomed. Inform. – volume: 34 start-page: 668 year: 2006 end-page: 672 ident: b0160 article-title: Drug Bank: a comprehensive resource for in silico drug discovery and exploration publication-title: Nucl. Acids Res. – volume: 34 start-page: 668 year: 2006 ident: 10.1016/j.jbi.2015.03.010_b0160 article-title: Drug Bank: a comprehensive resource for in silico drug discovery and exploration publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkj067 – volume: 46 start-page: 914 issue: 5 year: 2013 ident: 10.1016/j.jbi.2015.03.010_b0065 article-title: The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions publication-title: Biomed. Inform. doi: 10.1016/j.jbi.2013.07.011 – ident: 10.1016/j.jbi.2015.03.010_b0025 doi: 10.3115/1641484.1641490 – ident: 10.1016/j.jbi.2015.03.010_b0110 doi: 10.1145/2632188.2632200 – volume: 41 start-page: 518 issue: W1 year: 2013 ident: 10.1016/j.jbi.2015.03.010_b0155 article-title: PubTator: a web-based text mining tool for assisting biocuration publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkt441 – volume: 8 start-page: 275 issue: 4 year: 1993 ident: 10.1016/j.jbi.2015.03.010_b0095 article-title: Corpus annotation schemes publication-title: Literary Linguist. Comput. doi: 10.1093/llc/8.4.275 – ident: 10.1016/j.jbi.2015.03.010_b0100 – volume: 45 start-page: 885 issue: 5 year: 2012 ident: 10.1016/j.jbi.2015.03.010_b0055 article-title: Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports publication-title: Biomed. Inform. doi: 10.1016/j.jbi.2012.04.008 – ident: 10.1016/j.jbi.2015.03.010_b0120 – volume: 47 start-page: 1 year: 2014 ident: 10.1016/j.jbi.2015.03.010_b0045 article-title: NCBI disease corpus: a resource for disease name recognition and concept normalization publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2013.12.006 – ident: 10.1016/j.jbi.2015.03.010_b0165 – volume: 6 start-page: 18 issue: 1 year: 2009 ident: 10.1016/j.jbi.2015.03.010_b0135 article-title: Medication safety in acute care in Australia: where are we now? Part 1: A review of the extent and causes of medication problems 2002–2008 publication-title: Australia New Zealand Health Policy doi: 10.1186/1743-8462-6-18 – ident: 10.1016/j.jbi.2015.03.010_b0090 – ident: 10.1016/j.jbi.2015.03.010_b0105 doi: 10.1007/978-3-642-39844-5_16 – volume: 39 start-page: 37 issue: 2 year: 2010 ident: 10.1016/j.jbi.2015.03.010_b0145 article-title: SNOMED CT and its place in health information management practice publication-title: Health Inform. Manage. doi: 10.1177/183335831003900206 – ident: 10.1016/j.jbi.2015.03.010_b0040 – ident: 10.1016/j.jbi.2015.03.010_b0125 doi: 10.3115/v1/S14-2007 – volume: 42 start-page: 950 issue: 5 year: 2009 ident: 10.1016/j.jbi.2015.03.010_b0130 article-title: Building a semantically annotated corpus of clinical texts publication-title: Biomed. Inform. doi: 10.1016/j.jbi.2008.12.013 – volume: 44 start-page: 989 issue: 6 year: 2011 ident: 10.1016/j.jbi.2015.03.010_b0010 article-title: Identifying potential adverse effects using the web: a new approach to medical hypothesis generation publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2011.07.005 – ident: 10.1016/j.jbi.2015.03.010_b0050 – volume: 95 start-page: 211 year: 2013 ident: 10.1016/j.jbi.2015.03.010_b0060 article-title: Annotation issues in pharmacological texts publication-title: Proc. – Social Behav. Sci. doi: 10.1016/j.sbspro.2013.10.641 – ident: 10.1016/j.jbi.2015.03.010_b0075 – year: 2015 ident: 10.1016/j.jbi.2015.03.010_b0080 article-title: Text and data mining techniques in adverse drug reaction detection publication-title: ACM Comput. Surveys doi: 10.1145/2719920 – volume: 307 start-page: 196 issue: 5707 year: 2005 ident: 10.1016/j.jbi.2015.03.010_b0035 article-title: Drug safety: gaps in the safety net publication-title: Science doi: 10.1126/science.307.5707.196 – volume: 36 start-page: 183 issue: 3 year: 2013 ident: 10.1016/j.jbi.2015.03.010_b0030 article-title: Postmarketing safety surveillance publication-title: Drug Safety doi: 10.1007/s40264-013-0018-x – ident: 10.1016/j.jbi.2015.03.010_b0140 – ident: 10.1016/j.jbi.2015.03.010_b0085 – volume: 168 start-page: 104 year: 2010 ident: 10.1016/j.jbi.2015.03.010_b0115 article-title: Mapping the Queensland health iPharmacy medication file to the Australian medicines terminology using Snapper publication-title: Stud. Health Technol. Inform. – ident: 10.1016/j.jbi.2015.03.010_b0005 – ident: 10.1016/j.jbi.2015.03.010_b0020 – volume: 45 start-page: 879 issue: 5 year: 2012 ident: 10.1016/j.jbi.2015.03.010_b0150 article-title: The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships publication-title: Biomed. Inform. doi: 10.1016/j.jbi.2012.04.004 – volume: 38 start-page: 120 issue: 3 year: 2012 ident: 10.1016/j.jbi.2015.03.010_b0070 article-title: The costs of adverse drug events in community hospitals publication-title: Joint Commission J. Quality Patient Safety doi: 10.1016/S1553-7250(12)38016-1 – volume: 98 start-page: 1366 issue: 8 year: 2008 ident: 10.1016/j.jbi.2015.03.010_b0015 article-title: Adverse event detection in drug development: recommendations and obligations beyond phase 3 publication-title: Am. J. Public Health doi: 10.2105/AJPH.2007.124537 |
| SSID | ssj0011556 |
| Score | 2.5504086 |
| Snippet | [Display omitted]
•Introduction of CADEC an annotated corpus of consumer reviews in pharmacovigilance.•A review and comparison of available relevant... CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus of medical forum posts on patient-reported Adverse Drug Events (ADEs). The corpus is... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 73 |
| SubjectTerms | Adverse drug reaction Adverse Drug Reaction Reporting Systems - organization & administration Annotated corpus Annotations Consumer Health Information - organization & administration Consumer reviews Data Mining - methods Datasets as Topic - statistics & numerical data Digital media Drug safety Drug-Related Side Effects and Adverse Reactions - classification Drug-Related Side Effects and Adverse Reactions - epidemiology Drugs Grammars Guidelines Guidelines as Topic Humans Information extraction Information retrieval Machine Learning MedDRA Medical forum Natural Language Processing SNOMED CT Social media Social Media - classification Social Media - organization & administration Social networks Terminology as Topic Texts Vocabulary, Controlled |
| Title | Cadec: A corpus of adverse drug event annotations |
| URI | https://dx.doi.org/10.1016/j.jbi.2015.03.010 https://www.ncbi.nlm.nih.gov/pubmed/25817970 https://www.proquest.com/docview/1687347382 https://www.proquest.com/docview/1701489924 https://www.proquest.com/docview/1709740726 |
| Volume | 55 |
| WOSCitedRecordID | wos000356564700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1532-0480 dateEnd: 20210131 omitProxy: false ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: AIEXJ dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYhtAQQlAYlMsUJMQDVVAudmzzVlWdYJTCQ4f6ZiWxAyvDLW06Tfx6jmMnDZdV44GXqIqcXvx9Pf58fC4IPQde0CyNAz9ThPg4y7jPCcW-lAlPijgqWFWB79OIjsdsOuUfXcb1qmonQLVmFxd88V-hhnsAtkmd_Qe4mzeFG_AaQIcrwA7XKwE_SKXKbcI57CwX65U76gedp3pyuf7cq4o29VKt52XLX_enQrWp-RWKrr5q2YqNf5eajmDOq3yu0x8Ndqr8qvxj0zbAuqf7Z2qWmsIIG-v-bWETheRc683C4HzXgy8uP815I0KyiZpqDGhkwkVx28IS0jKRtnNJvdiGfzXj1qMwezXLTk30Hanq0Lrw119KZo8_iKOT0UhMhtPJi8V333QTM6furrXKDtqLKOFg7fb6b4fT4-Z8CVRUYivp2m9bn3dXkX-_fepliuWyHUmlTCZ30G0HmNe3VLiLrindQTdbhSY76MZ7F0LRQbeso9az-Wf3UFjx5bXX9yxbvHnhObZ4hi1exRavxZb76ORoOBm88V0fDT_HIS99RYowjwuWJNLkoEvYqWBKVBFkEQ3zNMsxBZXP8hSTSEYkJyxPCkkVaONMsjiOD9Cunmv1EHkMBDlsMkMuTedkHmZMYSphiYxZCsq26KKgniuRuyLzptfJmaijCWcCpleY6RVBLGB6u-hl88jCVljZNhjXAAgnEa30E0CdbY89q8ESYD7NmViq1Xy9EmHCaIxpzKItY6hxu3Me4a1jYGce0CjpogeWDc2viQiDZY8Gj67w9GO0v_lbPUG75XKtnqLr-Xl5uloeoh06ZYeOzD8BDLqvNg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cadec%3A+A+corpus+of+adverse+drug+event+annotations&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Karimi%2C+Sarvnaz&rft.au=Metke-Jimenez%2C+Alejandro&rft.au=Kemp%2C+Madonna&rft.au=Wang%2C+Chen&rft.date=2015-06-01&rft.issn=1532-0464&rft.volume=55&rft.spage=73&rft.epage=81&rft_id=info:doi/10.1016%2Fj.jbi.2015.03.010&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon |