Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks

This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical engineering Jg. 45; H. 3; S. 277 - 286
Hauptverfasser: Anderson, C.W., Stolz, E.A., Shamsunder, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.03.1998
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:0018-9294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loeve transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals.
AbstractList This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loeve transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals
This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loeve transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals.
This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loève transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals.This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loève transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals.
This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loève transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals.
Author Anderson, C.W.
Shamsunder, S.
Stolz, E.A.
Author_xml – sequence: 1
  givenname: C.W.
  surname: Anderson
  fullname: Anderson, C.W.
  email: son@cs.colostate.edu
  organization: Dept. of Comput. Sci., Colorado State Univ., Fort Collins, CO, USA
– sequence: 2
  givenname: E.A.
  surname: Stolz
  fullname: Stolz, E.A.
– sequence: 3
  givenname: S.
  surname: Shamsunder
  fullname: Shamsunder, S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2164890$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/9509744$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFTEUxbOo1H64cCsIWYjg4rXJS2YmWUqpVWjpRtfDfcmd12gmGZNM0f_etDN2IUJXl-T8zuFyzzE5CDEgIa85O-Oc6fM625bzRhyQI8a42uitli_Jcc7f61Mq2R6SQ90w3Ul5RH7dzL64e0gOClKYS0y4T5izu0c6Ros-0yEmajzUv8EZKC4GGgeapxgKBIxzpujRlBQxGJzuwMd9gunOGZrdPkBNsHNyYU9HrA5PC-Qf-ZS8GKqEr9Z5Qr59uvx68XlzfXv15eLj9cZIrssGpeq0UoNqdkYoaKW21nZtw4URllncthyUQtBqx_QAqu1EZ7XolNDQtFaJE_J-yZ1S_DljLv3oskHvl9X7TldHo_Wz4FZJxjvGnwe5aJq6QgXfruC8G9H2U3IjpN_9evyqv1t1yAb8kCAYl5-wLW-l0qxi5wtmUsw54dAbVx5rKAmc7znrH4p_mEvx1fHhH8ffzP-xbxbWIeITt4p_AFvLuW4
CODEN IEBEAX
CitedBy_id crossref_primary_10_3390_en13092244
crossref_primary_10_1016_j_jneumeth_2011_10_015
crossref_primary_10_1016_j_patcog_2004_01_018
crossref_primary_10_1016_j_sigpro_2006_04_006
crossref_primary_10_1088_1741_2560_1_1_001
crossref_primary_10_1016_j_proenv_2011_09_213
crossref_primary_10_1155_2015_703768
crossref_primary_10_1016_j_neuroimage_2005_07_058
crossref_primary_10_1016_S0010_4825_01_00017_8
crossref_primary_10_1134_S0005117912100049
crossref_primary_10_1007_s10916_014_0131_0
crossref_primary_10_1109_JTEHM_2015_2485261
crossref_primary_10_1016_S0167_8655_01_00075_7
crossref_primary_10_1088_1741_2560_1_3_003
crossref_primary_10_1162_NECO_a_00838
crossref_primary_10_1088_1742_6596_1402_6_066027
crossref_primary_10_4028_www_scientific_net_AMM_519_520_816
crossref_primary_10_1109_TSP_2007_907912
crossref_primary_10_1007_s00521_010_0472_7
crossref_primary_10_1007_s12293_015_0155_0
crossref_primary_10_1016_j_asoc_2019_105519
crossref_primary_10_1155_2020_1496973
crossref_primary_10_1016_j_neunet_2021_06_022
crossref_primary_10_1088_1741_2560_4_2_R01
crossref_primary_10_1109_TSP_2019_2912131
crossref_primary_10_1088_1741_2560_4_2_R03
crossref_primary_10_1007_s11055_011_9527_1
crossref_primary_10_1109_TSP_2020_2993145
crossref_primary_10_1016_j_jneumeth_2019_108447
crossref_primary_10_1080_00207450802325561
crossref_primary_10_1109_TBME_2015_2503400
crossref_primary_10_1016_j_eswa_2010_07_115
crossref_primary_10_1109_TII_2016_2638322
crossref_primary_10_1007_s40708_017_0073_7
crossref_primary_10_1007_s40708_016_0056_0
crossref_primary_10_3389_fninf_2018_00059
crossref_primary_10_1007_s10877_020_00553_4
crossref_primary_10_3390_bioengineering10070801
crossref_primary_10_1007_s00521_012_1244_3
crossref_primary_10_1016_j_neucom_2016_08_007
crossref_primary_10_1016_j_bspc_2015_11_008
crossref_primary_10_1016_j_jneumeth_2019_108434
crossref_primary_10_1109_TBME_2005_856272
crossref_primary_10_1016_j_medengphy_2006_01_009
crossref_primary_10_1109_JSSC_2013_2297406
crossref_primary_10_1109_TSMCA_2007_897919
crossref_primary_10_1007_s00500_013_1036_4
crossref_primary_10_3390_math9233051
crossref_primary_10_1109_TCSVT_2020_2967419
crossref_primary_10_1109_TSP_2023_3322813
crossref_primary_10_1016_S1388_2457_02_00387_5
crossref_primary_10_1016_j_neuroimage_2011_02_074
crossref_primary_10_1109_TSMC_2019_2917599
crossref_primary_10_1016_j_ins_2007_11_012
crossref_primary_10_4028_www_scientific_net_AMM_263_266_3374
crossref_primary_10_1007_s11517_011_0828_x
crossref_primary_10_1016_j_jneumeth_2014_01_024
crossref_primary_10_1016_j_medengphy_2009_04_005
crossref_primary_10_1198_004017008000000154
crossref_primary_10_1016_j_neuroimage_2023_119958
crossref_primary_10_1007_s11063_017_9731_2
crossref_primary_10_1016_S0165_0270_00_00350_2
crossref_primary_10_1023_A_1021424708810
crossref_primary_10_1016_j_bspc_2023_105179
crossref_primary_10_1016_S1388_2457_02_00057_3
crossref_primary_10_1080_2326263X_2020_1783170
crossref_primary_10_1016_j_chb_2003_09_001
crossref_primary_10_1186_s12984_021_00843_1
crossref_primary_10_1007_s00500_014_1443_1
crossref_primary_10_1007_s10916_012_9893_4
crossref_primary_10_1109_TNSRE_2002_802854
crossref_primary_10_1177_1550059414560397
crossref_primary_10_1016_j_dsp_2021_103153
crossref_primary_10_1109_5326_983937
crossref_primary_10_1016_j_dsp_2013_06_011
crossref_primary_10_1016_j_eswa_2014_02_043
crossref_primary_10_1109_7333_948456
crossref_primary_10_1109_TBME_2019_2903012
crossref_primary_10_1109_TBME_2008_2006985
crossref_primary_10_1016_j_eswa_2022_119032
crossref_primary_10_1155_2017_3720589
crossref_primary_10_1088_1757_899X_674_1_012055
crossref_primary_10_1109_TNSRE_2006_881539
crossref_primary_10_1016_j_eswa_2022_118901
crossref_primary_10_1016_j_neucom_2015_03_041
crossref_primary_10_1016_S0893_6080_01_00111_3
crossref_primary_10_1109_TAES_2018_2811122
crossref_primary_10_1109_TBME_2009_2038990
crossref_primary_10_3390_app5041756
crossref_primary_10_1088_0967_3334_31_7_003
crossref_primary_10_1088_1741_2560_4_2_012
crossref_primary_10_1016_j_cmpb_2014_01_016
crossref_primary_10_1007_s13534_015_0208_9
crossref_primary_10_1016_j_measurement_2007_07_007
crossref_primary_10_1109_10_972837
crossref_primary_10_1007_s10916_008_9215_z
crossref_primary_10_4028_www_scientific_net_AMM_20_23_605
crossref_primary_10_1016_j_bspc_2022_104519
crossref_primary_10_1109_ACCESS_2019_2944938
crossref_primary_10_1109_TNSRE_2006_875637
crossref_primary_10_1037_0033_2909_127_3_358
crossref_primary_10_1007_s11063_016_9530_1
crossref_primary_10_35784_jcsi_2906
crossref_primary_10_1016_j_neunet_2019_07_021
crossref_primary_10_1145_3230632
crossref_primary_10_1016_j_chaos_2021_111450
crossref_primary_10_1016_j_cmpb_2009_05_005
crossref_primary_10_3389_fnhum_2021_727139
crossref_primary_10_1007_s00521_016_2236_5
crossref_primary_10_1155_2018_5238028
crossref_primary_10_1111_j_1094_7159_2004_04212_x
crossref_primary_10_1016_j_bspc_2020_102033
crossref_primary_10_1016_j_clinph_2006_10_019
crossref_primary_10_1186_1475_925X_1_5
crossref_primary_10_1016_j_dsp_2006_06_006
crossref_primary_10_1016_j_jneumeth_2012_05_017
crossref_primary_10_1016_j_neucom_2011_10_010
crossref_primary_10_3390_en12010164
crossref_primary_10_1016_j_jmva_2017_02_006
crossref_primary_10_1016_j_neuroimage_2006_04_224
crossref_primary_10_1145_3368854
crossref_primary_10_1109_MSP_2003_1166626
crossref_primary_10_1109_TNSRE_2003_814484
crossref_primary_10_1016_j_ins_2014_06_028
crossref_primary_10_3389_fnhum_2022_858873
crossref_primary_10_1186_1471_2202_14_101
crossref_primary_10_1016_j_clinph_2005_12_009
crossref_primary_10_1371_journal_pone_0192069
crossref_primary_10_1007_s00422_024_00984_1
crossref_primary_10_1098_rsos_220621
crossref_primary_10_1016_j_jneumeth_2009_03_011
crossref_primary_10_3389_fnhum_2020_613254
crossref_primary_10_1016_S0167_8760_98_00052_X
crossref_primary_10_1088_1361_6579_acd51b
crossref_primary_10_1016_j_jneumeth_2013_02_001
crossref_primary_10_1177_1687814015573607
crossref_primary_10_1088_1741_2560_3_4_001
crossref_primary_10_1016_j_patcog_2008_06_009
crossref_primary_10_1016_S0169_2607_99_00013_9
crossref_primary_10_1016_j_jneumeth_2011_04_032
Cites_doi 10.1007/BF00337149
10.1109/TAC.1977.1101545
10.3758/BF03327130
10.1109/IEMBS.1991.684513
10.1109/78.285653
10.1109/10.64464
10.1007/s004220050128
10.1109/NEBC.1991.154576
10.1111/j.1469-8986.1984.tb02325.x
10.1007/978-94-011-2560-4_26
10.1016/0010-4809(77)90044-1
10.1016/0013-4694(88)90149-6
10.2307/2333753
10.2307/1913438
10.1016/0010-4809(77)90029-5
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright_xml – notice: 1998 INIST-CNRS
DBID RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7U5
8FD
L7M
7X8
DOI 10.1109/10.661153
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EndPage 286
ExternalDocumentID 324646
9509744
2164890
10_1109_10_661153
661153
Genre orig-research
Clinical Trial
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7U5
8FD
L7M
7X8
ID FETCH-LOGICAL-c419t-e487988f85bc38a649ddd76513c3d0de261a88ea98b09fa86737d937839a56d83
IEDL.DBID RIE
ISICitedReferencesCount 280
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000072160700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
IngestDate Wed Oct 01 14:42:49 EDT 2025
Sat Sep 27 21:57:36 EDT 2025
Thu Oct 02 06:59:45 EDT 2025
Wed Feb 19 01:13:00 EST 2025
Mon Jul 21 09:17:04 EDT 2025
Tue Nov 18 20:57:00 EST 2025
Sat Nov 29 03:34:23 EST 2025
Wed Aug 27 02:52:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Human
Central nervous system
Electroencephalography
Autoregressive model
Neural network
Multivariate analysis
Mental activity
Electrodiagnosis
Biomedical data processing
Multichannel circuit
Classification
Signal analysis
Pattern extraction
Brain (vertebrata)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-e487988f85bc38a649ddd76513c3d0de261a88ea98b09fa86737d937839a56d83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 9509744
PQID 21355937
PQPubID 23462
PageCount 10
ParticipantIDs ieee_primary_661153
crossref_citationtrail_10_1109_10_661153
crossref_primary_10_1109_10_661153
proquest_miscellaneous_28401701
pascalfrancis_primary_2164890
pubmed_primary_9509744
proquest_miscellaneous_79737599
proquest_miscellaneous_21355937
PublicationCentury 1900
PublicationDate 1998-03-01
PublicationDateYYYYMMDD 1998-03-01
PublicationDate_xml – month: 03
  year: 1998
  text: 1998-03-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 1998
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
robinson (ref18) 1967
haykin (ref25) 1994
ref15
ref14
priestley (ref19) 1981
ref11
ref1
ref17
roberts (ref5) 1991
mcfarland (ref2) 1993; 21
jasper (ref21) 1958; 10
keirn (ref22) 1988
anderson (ref26) 1996
kay (ref20) 1988
ref23
ref8
ref7
hannan (ref16) 1976; 44
ref9
ref3
ref6
rappelsberger (ref10) 1975
rumelhart (ref24) 1986; 1
tsoi (ref4) 1994
References_xml – ident: ref9
  doi: 10.1007/BF00337149
– ident: ref17
  doi: 10.1109/TAC.1977.1101545
– start-page: 1151
  year: 1994
  ident: ref4
  article-title: classification of electroencephalogram using artificial neural networks
  publication-title: Advances in Neural Information Processing Systems 6
– year: 1981
  ident: ref19
  publication-title: Spectral Analysis and Time Series Volume I and II
– volume: 21
  start-page: 77
  year: 1993
  ident: ref2
  article-title: an eeg-based method for graded cursor control
  publication-title: Psychobiol
  doi: 10.3758/BF03327130
– year: 1988
  ident: ref20
  publication-title: Modern Spectral Estimation Theory and Application
– ident: ref6
  doi: 10.1109/IEMBS.1991.684513
– ident: ref15
  doi: 10.1109/78.285653
– start-page: 210
  year: 1991
  ident: ref5
  article-title: eeg analysis using self-organisation
  publication-title: Artificial Neural Networks 1991 Second International Conference on
– ident: ref3
  doi: 10.1109/10.64464
– year: 1994
  ident: ref25
  publication-title: Neural Networks A Comprehensive Foundation
– ident: ref11
  doi: 10.1007/s004220050128
– start-page: 407
  year: 1996
  ident: ref26
  article-title: classification of eeg signals from four subjects during five mental tasks
  publication-title: Solving Engineering Problems with Neural Networks Proc Conf Engineering Applications in Neural Networks (EANN 96)
– ident: ref8
  doi: 10.1109/NEBC.1991.154576
– ident: ref23
  doi: 10.1111/j.1469-8986.1984.tb02325.x
– ident: ref7
  doi: 10.1007/978-94-011-2560-4_26
– volume: 10
  start-page: 371
  year: 1958
  ident: ref21
  article-title: the ten twenty electrode system of the international federation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 1
  year: 1986
  ident: ref24
  article-title: learning internal representations by error propagation
  publication-title: Parallel Distributed Processing Explorations in the Microstructure of Cognition
– ident: ref13
  doi: 10.1016/0010-4809(77)90044-1
– start-page: 27
  year: 1975
  ident: ref10
  article-title: spectral analysis of the eeg by means of autoregression
  publication-title: CEAN Computerized EEG Analysis
– year: 1967
  ident: ref18
  publication-title: Multichannel Time Series Analysis With Digital Computer Programs
– ident: ref1
  doi: 10.1016/0013-4694(88)90149-6
– ident: ref14
  doi: 10.2307/2333753
– volume: 44
  start-page: 713
  year: 1976
  ident: ref16
  article-title: the identification and parameterization of armax and state space forms
  publication-title: Econometrica
  doi: 10.2307/1913438
– year: 1988
  ident: ref22
  publication-title: Alternative modes of communication between man and machine
– ident: ref12
  doi: 10.1016/0010-4809(77)90029-5
SSID ssj0014846
Score 2.0948458
Snippet This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 277
SubjectTerms Backpropagation
Backpropagation algorithms
Biological and medical sciences
Brain modeling
Correlation methods
Eigenvalues and eigenfunctions
Electrodiagnosis. Electric activity recording
Electroencephalography
Feasibility Studies
Feature extraction
Feedforward neural networks
Humans
Investigative techniques, diagnostic techniques (general aspects)
Karhunen-Loeve transforms
Mathematical models
Mathematical transformations
Matrix algebra
Medical sciences
Mental Processes - physiology
Models, Statistical
Multivariate Analysis
Nervous system
Neural networks
Neural Networks (Computer)
Regression Analysis
Vectors
Wheelchairs
Title Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks
URI https://ieeexplore.ieee.org/document/661153
https://www.ncbi.nlm.nih.gov/pubmed/9509744
https://www.proquest.com/docview/21355937
https://www.proquest.com/docview/28401701
https://www.proquest.com/docview/79737599
Volume 45
WOSCitedRecordID wos000072160700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014846
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB0V1CJ6KBCKmrZQC_XQy7be7HrXc6yqIi4gDkXKLfL6Q0VFCWIT1J_fGdtZFQmQOGWVnSgbe8Z-E8-8B_BZl8rJzqiiMVYWtcJQYGPqgsBIpQI2SjkTxSba83M9neJF5tmOvTDe-1h85r_yZTzLdwu74r_KvtFeQgG6ARtt26RWreHAoNapJ0eWFL8TrDOJUCmR14X0wW14hbQ_tnV9bxOKqipcE2l6GpaQ9CweB5xx4znZedYj78KbjC_F9-QQe_DCz0fw-j_WwRFsneXz9H34G_tv7yhfJsgpDPMZ-JiA0xoookhOLwjVCssYm4uK4jyKRRBcWUu40i9WvchSOrxG3Pw2mQT7ygquDSHvFqkVUiQZAbE0_Z_-LVye_Pz147TIWgyFrUtcFp4SG9Q6aNXZSpumRudc26iyspWTzlMiZrT2BnUnMRjN8jeOoA_hL6Map6sD2Jwv5v4dd4lXZfDaTBhbVLozTLkluyCxCqhMM4Yv68mZ2UxUznoZ17OYsEjk1zSuYzgeTG8SO8dDRiOel8Fg_e7hvQkfbk8ogdQox_Bp7QAzijg-RkmDSgaE0einPWFBWTPz3D9u0SKNj0Icw0HyreHrs4e-f_ChP8D2uidSlh9hc3m78ofw0t4tr_rbI4qLqT6KcfEPzdEL7A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BeZUDj0BFgFILceCy4M3aG88RIaoi2ohDkXqLvH6oFSipuknFz2fGdlZUapE47Wp3ojj22P4mnvk-gHem1l52VletdbJSGmOFrVUVgZFGR2y19jaJTUxnM3Nygt8Lz3aqhQkhpOSz8IFv01m-X7o1_1X2kfYSmqC34Y5WaiJzsdZwZKBMrsqRNc3gCapCI1RL5JUhf3Qb7iHtkFOlrmxDSVeFsyJtTx0Ts6LFzZAzbT37j_-r0U_gUUGY4lN2iadwKyxG8PAv3sER3D8qJ-rP4HeqwL2kiJlAp7DMaBBSCE6roEgyOb0gXCsco2xOK0ojKZZRcG4tIcuwXPeiiOnwKnF-agsN9pkTnB1C_i1yMaTIQgJiZfuf_XP4sf_l-PNBVdQYKqdqXFWBQhs0JhrducbYVqH3ftrqunGNlz5QKGaNCRZNJzFawwI4nsAPITCrW2-aHdhaLBfhBdeJN3UMxk4YXTSms0y6JbsosYmobTuG95vBmbtCVc6KGb_mKWSRyNfcr2N4O5ieZ36O64xGPC6Dwebp7pUBH15PKIQ0KMewt3GAOc05PkjJnUoGhNLop_3DguJmZrq_2WKK1D8acQw72beGry8e-vLaRu_Bg4Pjo8P54dfZt1ewvamQlPVr2FpdrMMu3HWXq7P-4k2aHX8AhCYOSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+autoregressive+models+for+classification+of+spontaneous+electroencephalographic+signals+during+mental+tasks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Anderson%2C+C+W&rft.au=Stolz%2C+E+A&rft.au=Shamsunder%2C+S&rft.date=1998-03-01&rft.issn=0018-9294&rft.volume=45&rft.issue=3&rft.spage=277&rft_id=info:doi/10.1109%2F10.661153&rft_id=info%3Apmid%2F9509744&rft.externalDocID=9509744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon