Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks
This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to c...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on biomedical engineering Jg. 45; H. 3; S. 277 - 286 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.03.1998
Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 0018-9294 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loeve transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals. |
|---|---|
| AbstractList | This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loeve transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loeve transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals. This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loève transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals.This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loève transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals. This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which mental tasks can be discriminated. This is part of a larger project to investigate the feasibility of using EEG to allow paralyzed persons to control a device such as a wheelchair. EEG signals from four subjects were recorded while they performed two mental tasks. Quarter-second windows of six-channel EEG were transformed into four different representations: scalar AR model coefficients, multivariate AR coefficients, eigenvalues of a correlation matrix, and the Karhunen-Loève transform of the multivariate AR coefficients. Feature vectors defined by these representations were classified with a standard, feedforward neural network trained via the error backpropagation algorithm. The four representations produced similar results, with the multivariate AR coefficients performing slightly better and more consistently with an average classification accuracy of 91.4% on novel, untrained, EEG signals. |
| Author | Anderson, C.W. Shamsunder, S. Stolz, E.A. |
| Author_xml | – sequence: 1 givenname: C.W. surname: Anderson fullname: Anderson, C.W. email: son@cs.colostate.edu organization: Dept. of Comput. Sci., Colorado State Univ., Fort Collins, CO, USA – sequence: 2 givenname: E.A. surname: Stolz fullname: Stolz, E.A. – sequence: 3 givenname: S. surname: Shamsunder fullname: Shamsunder, S. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2164890$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/9509744$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1rFTEUxbOo1H64cCsIWYjg4rXJS2YmWUqpVWjpRtfDfcmd12gmGZNM0f_etDN2IUJXl-T8zuFyzzE5CDEgIa85O-Oc6fM625bzRhyQI8a42uitli_Jcc7f61Mq2R6SQ90w3Ul5RH7dzL64e0gOClKYS0y4T5izu0c6Ros-0yEmajzUv8EZKC4GGgeapxgKBIxzpujRlBQxGJzuwMd9gunOGZrdPkBNsHNyYU9HrA5PC-Qf-ZS8GKqEr9Z5Qr59uvx68XlzfXv15eLj9cZIrssGpeq0UoNqdkYoaKW21nZtw4URllncthyUQtBqx_QAqu1EZ7XolNDQtFaJE_J-yZ1S_DljLv3oskHvl9X7TldHo_Wz4FZJxjvGnwe5aJq6QgXfruC8G9H2U3IjpN_9evyqv1t1yAb8kCAYl5-wLW-l0qxi5wtmUsw54dAbVx5rKAmc7znrH4p_mEvx1fHhH8ffzP-xbxbWIeITt4p_AFvLuW4 |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_3390_en13092244 crossref_primary_10_1016_j_jneumeth_2011_10_015 crossref_primary_10_1016_j_patcog_2004_01_018 crossref_primary_10_1016_j_sigpro_2006_04_006 crossref_primary_10_1088_1741_2560_1_1_001 crossref_primary_10_1016_j_proenv_2011_09_213 crossref_primary_10_1155_2015_703768 crossref_primary_10_1016_j_neuroimage_2005_07_058 crossref_primary_10_1016_S0010_4825_01_00017_8 crossref_primary_10_1134_S0005117912100049 crossref_primary_10_1007_s10916_014_0131_0 crossref_primary_10_1109_JTEHM_2015_2485261 crossref_primary_10_1016_S0167_8655_01_00075_7 crossref_primary_10_1088_1741_2560_1_3_003 crossref_primary_10_1162_NECO_a_00838 crossref_primary_10_1088_1742_6596_1402_6_066027 crossref_primary_10_4028_www_scientific_net_AMM_519_520_816 crossref_primary_10_1109_TSP_2007_907912 crossref_primary_10_1007_s00521_010_0472_7 crossref_primary_10_1007_s12293_015_0155_0 crossref_primary_10_1016_j_asoc_2019_105519 crossref_primary_10_1155_2020_1496973 crossref_primary_10_1016_j_neunet_2021_06_022 crossref_primary_10_1088_1741_2560_4_2_R01 crossref_primary_10_1109_TSP_2019_2912131 crossref_primary_10_1088_1741_2560_4_2_R03 crossref_primary_10_1007_s11055_011_9527_1 crossref_primary_10_1109_TSP_2020_2993145 crossref_primary_10_1016_j_jneumeth_2019_108447 crossref_primary_10_1080_00207450802325561 crossref_primary_10_1109_TBME_2015_2503400 crossref_primary_10_1016_j_eswa_2010_07_115 crossref_primary_10_1109_TII_2016_2638322 crossref_primary_10_1007_s40708_017_0073_7 crossref_primary_10_1007_s40708_016_0056_0 crossref_primary_10_3389_fninf_2018_00059 crossref_primary_10_1007_s10877_020_00553_4 crossref_primary_10_3390_bioengineering10070801 crossref_primary_10_1007_s00521_012_1244_3 crossref_primary_10_1016_j_neucom_2016_08_007 crossref_primary_10_1016_j_bspc_2015_11_008 crossref_primary_10_1016_j_jneumeth_2019_108434 crossref_primary_10_1109_TBME_2005_856272 crossref_primary_10_1016_j_medengphy_2006_01_009 crossref_primary_10_1109_JSSC_2013_2297406 crossref_primary_10_1109_TSMCA_2007_897919 crossref_primary_10_1007_s00500_013_1036_4 crossref_primary_10_3390_math9233051 crossref_primary_10_1109_TCSVT_2020_2967419 crossref_primary_10_1109_TSP_2023_3322813 crossref_primary_10_1016_S1388_2457_02_00387_5 crossref_primary_10_1016_j_neuroimage_2011_02_074 crossref_primary_10_1109_TSMC_2019_2917599 crossref_primary_10_1016_j_ins_2007_11_012 crossref_primary_10_4028_www_scientific_net_AMM_263_266_3374 crossref_primary_10_1007_s11517_011_0828_x crossref_primary_10_1016_j_jneumeth_2014_01_024 crossref_primary_10_1016_j_medengphy_2009_04_005 crossref_primary_10_1198_004017008000000154 crossref_primary_10_1016_j_neuroimage_2023_119958 crossref_primary_10_1007_s11063_017_9731_2 crossref_primary_10_1016_S0165_0270_00_00350_2 crossref_primary_10_1023_A_1021424708810 crossref_primary_10_1016_j_bspc_2023_105179 crossref_primary_10_1016_S1388_2457_02_00057_3 crossref_primary_10_1080_2326263X_2020_1783170 crossref_primary_10_1016_j_chb_2003_09_001 crossref_primary_10_1186_s12984_021_00843_1 crossref_primary_10_1007_s00500_014_1443_1 crossref_primary_10_1007_s10916_012_9893_4 crossref_primary_10_1109_TNSRE_2002_802854 crossref_primary_10_1177_1550059414560397 crossref_primary_10_1016_j_dsp_2021_103153 crossref_primary_10_1109_5326_983937 crossref_primary_10_1016_j_dsp_2013_06_011 crossref_primary_10_1016_j_eswa_2014_02_043 crossref_primary_10_1109_7333_948456 crossref_primary_10_1109_TBME_2019_2903012 crossref_primary_10_1109_TBME_2008_2006985 crossref_primary_10_1016_j_eswa_2022_119032 crossref_primary_10_1155_2017_3720589 crossref_primary_10_1088_1757_899X_674_1_012055 crossref_primary_10_1109_TNSRE_2006_881539 crossref_primary_10_1016_j_eswa_2022_118901 crossref_primary_10_1016_j_neucom_2015_03_041 crossref_primary_10_1016_S0893_6080_01_00111_3 crossref_primary_10_1109_TAES_2018_2811122 crossref_primary_10_1109_TBME_2009_2038990 crossref_primary_10_3390_app5041756 crossref_primary_10_1088_0967_3334_31_7_003 crossref_primary_10_1088_1741_2560_4_2_012 crossref_primary_10_1016_j_cmpb_2014_01_016 crossref_primary_10_1007_s13534_015_0208_9 crossref_primary_10_1016_j_measurement_2007_07_007 crossref_primary_10_1109_10_972837 crossref_primary_10_1007_s10916_008_9215_z crossref_primary_10_4028_www_scientific_net_AMM_20_23_605 crossref_primary_10_1016_j_bspc_2022_104519 crossref_primary_10_1109_ACCESS_2019_2944938 crossref_primary_10_1109_TNSRE_2006_875637 crossref_primary_10_1037_0033_2909_127_3_358 crossref_primary_10_1007_s11063_016_9530_1 crossref_primary_10_35784_jcsi_2906 crossref_primary_10_1016_j_neunet_2019_07_021 crossref_primary_10_1145_3230632 crossref_primary_10_1016_j_chaos_2021_111450 crossref_primary_10_1016_j_cmpb_2009_05_005 crossref_primary_10_3389_fnhum_2021_727139 crossref_primary_10_1007_s00521_016_2236_5 crossref_primary_10_1155_2018_5238028 crossref_primary_10_1111_j_1094_7159_2004_04212_x crossref_primary_10_1016_j_bspc_2020_102033 crossref_primary_10_1016_j_clinph_2006_10_019 crossref_primary_10_1186_1475_925X_1_5 crossref_primary_10_1016_j_dsp_2006_06_006 crossref_primary_10_1016_j_jneumeth_2012_05_017 crossref_primary_10_1016_j_neucom_2011_10_010 crossref_primary_10_3390_en12010164 crossref_primary_10_1016_j_jmva_2017_02_006 crossref_primary_10_1016_j_neuroimage_2006_04_224 crossref_primary_10_1145_3368854 crossref_primary_10_1109_MSP_2003_1166626 crossref_primary_10_1109_TNSRE_2003_814484 crossref_primary_10_1016_j_ins_2014_06_028 crossref_primary_10_3389_fnhum_2022_858873 crossref_primary_10_1186_1471_2202_14_101 crossref_primary_10_1016_j_clinph_2005_12_009 crossref_primary_10_1371_journal_pone_0192069 crossref_primary_10_1007_s00422_024_00984_1 crossref_primary_10_1098_rsos_220621 crossref_primary_10_1016_j_jneumeth_2009_03_011 crossref_primary_10_3389_fnhum_2020_613254 crossref_primary_10_1016_S0167_8760_98_00052_X crossref_primary_10_1088_1361_6579_acd51b crossref_primary_10_1016_j_jneumeth_2013_02_001 crossref_primary_10_1177_1687814015573607 crossref_primary_10_1088_1741_2560_3_4_001 crossref_primary_10_1016_j_patcog_2008_06_009 crossref_primary_10_1016_S0169_2607_99_00013_9 crossref_primary_10_1016_j_jneumeth_2011_04_032 |
| Cites_doi | 10.1007/BF00337149 10.1109/TAC.1977.1101545 10.3758/BF03327130 10.1109/IEMBS.1991.684513 10.1109/78.285653 10.1109/10.64464 10.1007/s004220050128 10.1109/NEBC.1991.154576 10.1111/j.1469-8986.1984.tb02325.x 10.1007/978-94-011-2560-4_26 10.1016/0010-4809(77)90044-1 10.1016/0013-4694(88)90149-6 10.2307/2333753 10.2307/1913438 10.1016/0010-4809(77)90029-5 |
| ContentType | Journal Article |
| Copyright | 1998 INIST-CNRS |
| Copyright_xml | – notice: 1998 INIST-CNRS |
| DBID | RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7U5 8FD L7M 7X8 |
| DOI | 10.1109/10.661153 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EndPage | 286 |
| ExternalDocumentID | 324646 9509744 2164890 10_1109_10_661153 661153 |
| Genre | orig-research Clinical Trial Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM PKN 7U5 8FD L7M 7X8 |
| ID | FETCH-LOGICAL-c419t-e487988f85bc38a649ddd76513c3d0de261a88ea98b09fa86737d937839a56d83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 280 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000072160700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9294 |
| IngestDate | Wed Oct 01 14:42:49 EDT 2025 Sat Sep 27 21:57:36 EDT 2025 Thu Oct 02 06:59:45 EDT 2025 Wed Feb 19 01:13:00 EST 2025 Mon Jul 21 09:17:04 EDT 2025 Tue Nov 18 20:57:00 EST 2025 Sat Nov 29 03:34:23 EST 2025 Wed Aug 27 02:52:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Human Central nervous system Electroencephalography Autoregressive model Neural network Multivariate analysis Mental activity Electrodiagnosis Biomedical data processing Multichannel circuit Classification Signal analysis Pattern extraction Brain (vertebrata) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-e487988f85bc38a649ddd76513c3d0de261a88ea98b09fa86737d937839a56d83 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PMID | 9509744 |
| PQID | 21355937 |
| PQPubID | 23462 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_661153 crossref_citationtrail_10_1109_10_661153 crossref_primary_10_1109_10_661153 proquest_miscellaneous_28401701 pascalfrancis_primary_2164890 pubmed_primary_9509744 proquest_miscellaneous_79737599 proquest_miscellaneous_21355937 |
| PublicationCentury | 1900 |
| PublicationDate | 1998-03-01 |
| PublicationDateYYYYMMDD | 1998-03-01 |
| PublicationDate_xml | – month: 03 year: 1998 text: 1998-03-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 1998 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 robinson (ref18) 1967 haykin (ref25) 1994 ref15 ref14 priestley (ref19) 1981 ref11 ref1 ref17 roberts (ref5) 1991 mcfarland (ref2) 1993; 21 jasper (ref21) 1958; 10 keirn (ref22) 1988 anderson (ref26) 1996 kay (ref20) 1988 ref23 ref8 ref7 hannan (ref16) 1976; 44 ref9 ref3 ref6 rappelsberger (ref10) 1975 rumelhart (ref24) 1986; 1 tsoi (ref4) 1994 |
| References_xml | – ident: ref9 doi: 10.1007/BF00337149 – ident: ref17 doi: 10.1109/TAC.1977.1101545 – start-page: 1151 year: 1994 ident: ref4 article-title: classification of electroencephalogram using artificial neural networks publication-title: Advances in Neural Information Processing Systems 6 – year: 1981 ident: ref19 publication-title: Spectral Analysis and Time Series Volume I and II – volume: 21 start-page: 77 year: 1993 ident: ref2 article-title: an eeg-based method for graded cursor control publication-title: Psychobiol doi: 10.3758/BF03327130 – year: 1988 ident: ref20 publication-title: Modern Spectral Estimation Theory and Application – ident: ref6 doi: 10.1109/IEMBS.1991.684513 – ident: ref15 doi: 10.1109/78.285653 – start-page: 210 year: 1991 ident: ref5 article-title: eeg analysis using self-organisation publication-title: Artificial Neural Networks 1991 Second International Conference on – ident: ref3 doi: 10.1109/10.64464 – year: 1994 ident: ref25 publication-title: Neural Networks A Comprehensive Foundation – ident: ref11 doi: 10.1007/s004220050128 – start-page: 407 year: 1996 ident: ref26 article-title: classification of eeg signals from four subjects during five mental tasks publication-title: Solving Engineering Problems with Neural Networks Proc Conf Engineering Applications in Neural Networks (EANN 96) – ident: ref8 doi: 10.1109/NEBC.1991.154576 – ident: ref23 doi: 10.1111/j.1469-8986.1984.tb02325.x – ident: ref7 doi: 10.1007/978-94-011-2560-4_26 – volume: 10 start-page: 371 year: 1958 ident: ref21 article-title: the ten twenty electrode system of the international federation publication-title: Electroencephalogr Clin Neurophysiol – volume: 1 year: 1986 ident: ref24 article-title: learning internal representations by error propagation publication-title: Parallel Distributed Processing Explorations in the Microstructure of Cognition – ident: ref13 doi: 10.1016/0010-4809(77)90044-1 – start-page: 27 year: 1975 ident: ref10 article-title: spectral analysis of the eeg by means of autoregression publication-title: CEAN Computerized EEG Analysis – year: 1967 ident: ref18 publication-title: Multichannel Time Series Analysis With Digital Computer Programs – ident: ref1 doi: 10.1016/0013-4694(88)90149-6 – ident: ref14 doi: 10.2307/2333753 – volume: 44 start-page: 713 year: 1976 ident: ref16 article-title: the identification and parameterization of armax and state space forms publication-title: Econometrica doi: 10.2307/1913438 – year: 1988 ident: ref22 publication-title: Alternative modes of communication between man and machine – ident: ref12 doi: 10.1016/0010-4809(77)90029-5 |
| SSID | ssj0014846 |
| Score | 2.0948458 |
| Snippet | This article explores the use of scalar and multivariate autoregressive (AR) models to extract features from the human electroencephalogram (EEG) with which... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 277 |
| SubjectTerms | Backpropagation Backpropagation algorithms Biological and medical sciences Brain modeling Correlation methods Eigenvalues and eigenfunctions Electrodiagnosis. Electric activity recording Electroencephalography Feasibility Studies Feature extraction Feedforward neural networks Humans Investigative techniques, diagnostic techniques (general aspects) Karhunen-Loeve transforms Mathematical models Mathematical transformations Matrix algebra Medical sciences Mental Processes - physiology Models, Statistical Multivariate Analysis Nervous system Neural networks Neural Networks (Computer) Regression Analysis Vectors Wheelchairs |
| Title | Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks |
| URI | https://ieeexplore.ieee.org/document/661153 https://www.ncbi.nlm.nih.gov/pubmed/9509744 https://www.proquest.com/docview/21355937 https://www.proquest.com/docview/28401701 https://www.proquest.com/docview/79737599 |
| Volume | 45 |
| WOSCitedRecordID | wos000072160700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 0018-9294 databaseCode: RIE dateStart: 19640101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014846 providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB0V1CJ6KBCKmrZQC_XQy7be7HrXc6yqIi4gDkXKLfL6Q0VFCWIT1J_fGdtZFQmQOGWVnSgbe8Z-E8-8B_BZl8rJzqiiMVYWtcJQYGPqgsBIpQI2SjkTxSba83M9neJF5tmOvTDe-1h85r_yZTzLdwu74r_KvtFeQgG6ARtt26RWreHAoNapJ0eWFL8TrDOJUCmR14X0wW14hbQ_tnV9bxOKqipcE2l6GpaQ9CweB5xx4znZedYj78KbjC_F9-QQe_DCz0fw-j_WwRFsneXz9H34G_tv7yhfJsgpDPMZ-JiA0xoookhOLwjVCssYm4uK4jyKRRBcWUu40i9WvchSOrxG3Pw2mQT7ygquDSHvFqkVUiQZAbE0_Z_-LVye_Pz147TIWgyFrUtcFp4SG9Q6aNXZSpumRudc26iyspWTzlMiZrT2BnUnMRjN8jeOoA_hL6Map6sD2Jwv5v4dd4lXZfDaTBhbVLozTLkluyCxCqhMM4Yv68mZ2UxUznoZ17OYsEjk1zSuYzgeTG8SO8dDRiOel8Fg_e7hvQkfbk8ogdQox_Bp7QAzijg-RkmDSgaE0einPWFBWTPz3D9u0SKNj0Icw0HyreHrs4e-f_ChP8D2uidSlh9hc3m78ofw0t4tr_rbI4qLqT6KcfEPzdEL7A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BeZUDj0BFgFILceCy4M3aG88RIaoi2ohDkXqLvH6oFSipuknFz2fGdlZUapE47Wp3ojj22P4mnvk-gHem1l52VletdbJSGmOFrVUVgZFGR2y19jaJTUxnM3Nygt8Lz3aqhQkhpOSz8IFv01m-X7o1_1X2kfYSmqC34Y5WaiJzsdZwZKBMrsqRNc3gCapCI1RL5JUhf3Qb7iHtkFOlrmxDSVeFsyJtTx0Ts6LFzZAzbT37j_-r0U_gUUGY4lN2iadwKyxG8PAv3sER3D8qJ-rP4HeqwL2kiJlAp7DMaBBSCE6roEgyOb0gXCsco2xOK0ojKZZRcG4tIcuwXPeiiOnwKnF-agsN9pkTnB1C_i1yMaTIQgJiZfuf_XP4sf_l-PNBVdQYKqdqXFWBQhs0JhrducbYVqH3ftrqunGNlz5QKGaNCRZNJzFawwI4nsAPITCrW2-aHdhaLBfhBdeJN3UMxk4YXTSms0y6JbsosYmobTuG95vBmbtCVc6KGb_mKWSRyNfcr2N4O5ieZ36O64xGPC6Dwebp7pUBH15PKIQ0KMewt3GAOc05PkjJnUoGhNLop_3DguJmZrq_2WKK1D8acQw72beGry8e-vLaRu_Bg4Pjo8P54dfZt1ewvamQlPVr2FpdrMMu3HWXq7P-4k2aHX8AhCYOSw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+autoregressive+models+for+classification+of+spontaneous+electroencephalographic+signals+during+mental+tasks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Anderson%2C+C+W&rft.au=Stolz%2C+E+A&rft.au=Shamsunder%2C+S&rft.date=1998-03-01&rft.issn=0018-9294&rft.volume=45&rft.issue=3&rft.spage=277&rft_id=info:doi/10.1109%2F10.661153&rft_id=info%3Apmid%2F9509744&rft.externalDocID=9509744 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |