Stable human regulatory T cells switch to glycolysis following TNF receptor 2 costimulation

Following activation, conventional T (T conv ) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T reg ) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived T reg (tT reg ) cells can become glycolytic in response to tumou...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature metabolism Ročník 2; číslo 10; s. 1046 - 1061
Hlavní autoři: de Kivit, Sander, Mensink, Mark, Hoekstra, Anna T., Berlin, Ilana, Derks, Rico J. E., Both, Demi, Aslam, Muhammad A., Amsen, Derk, Berkers, Celia R., Borst, Jannie
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.10.2020
Nature Publishing Group
Témata:
ISSN:2522-5812, 2522-5812
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Following activation, conventional T (T conv ) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T reg ) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived T reg (tT reg ) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tT reg cells, but not in T conv cells. Glycolysis in CD3–TNFR2-activated tT reg cells is driven by PI3-kinase–mTOR signalling and supports tT reg cell identity and suppressive function. In contrast to glycolytic T conv cells, glycolytic tT reg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2 hi CD4 + CD25 hi CD127 lo effector T cells, which were FOXP3 + IKZF2 + , revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tT reg cells. Our study links TNFR2 costimulation in human tT reg cells to metabolic remodelling, providing an additional avenue for drug targeting. After activation, conventional T cells undergo metabolic reprogramming. de Kivit et al. show that in human thymic regulatory T cells, TNFR2 stimulation promotes a glycolytic switch with a preferential glucose-derived carbon flux into the TCA cycle to support suppressive functions.
AbstractList Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3-TNFR2-activated tTreg cells is driven by PI3-kinase-mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting.Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3-TNFR2-activated tTreg cells is driven by PI3-kinase-mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting.
Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3–TNFR2-activated tTreg cells is driven by PI3-kinase–mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting.After activation, conventional T cells undergo metabolic reprogramming. de Kivit et al. show that in human thymic regulatory T cells, TNFR2 stimulation promotes a glycolytic switch with a preferential glucose-derived carbon flux into the TCA cycle to support suppressive functions.
Following activation, conventional T (T ) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T ) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived T (tT ) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tT cells, but not in T cells. Glycolysis in CD3-TNFR2-activated tT cells is driven by PI3-kinase-mTOR signalling and supports tT cell identity and suppressive function. In contrast to glycolytic T cells, glycolytic tT cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2 CD4 CD25 CD127 effector T cells, which were FOXP3 IKZF2 , revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tT cells. Our study links TNFR2 costimulation in human tT cells to metabolic remodelling, providing an additional avenue for drug targeting.
Following activation, conventional T (T conv ) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T reg ) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived T reg (tT reg ) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tT reg cells, but not in T conv cells. Glycolysis in CD3–TNFR2-activated tT reg cells is driven by PI3-kinase–mTOR signalling and supports tT reg cell identity and suppressive function. In contrast to glycolytic T conv cells, glycolytic tT reg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2 hi CD4 + CD25 hi CD127 lo effector T cells, which were FOXP3 + IKZF2 + , revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tT reg cells. Our study links TNFR2 costimulation in human tT reg cells to metabolic remodelling, providing an additional avenue for drug targeting. After activation, conventional T cells undergo metabolic reprogramming. de Kivit et al. show that in human thymic regulatory T cells, TNFR2 stimulation promotes a glycolytic switch with a preferential glucose-derived carbon flux into the TCA cycle to support suppressive functions.
Author de Kivit, Sander
Berkers, Celia R.
Berlin, Ilana
Hoekstra, Anna T.
Derks, Rico J. E.
Mensink, Mark
Both, Demi
Aslam, Muhammad A.
Amsen, Derk
Borst, Jannie
Author_xml – sequence: 1
  givenname: Sander
  orcidid: 0000-0003-0148-7802
  surname: de Kivit
  fullname: de Kivit, Sander
  organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Oncode Institute, Leiden University Medical Center, Division of Tumor Biology & Immunology, The Netherlands Cancer Institute
– sequence: 2
  givenname: Mark
  orcidid: 0000-0002-2470-6919
  surname: Mensink
  fullname: Mensink, Mark
  organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Oncode Institute, Leiden University Medical Center, Division of Tumor Biology & Immunology, The Netherlands Cancer Institute
– sequence: 3
  givenname: Anna T.
  surname: Hoekstra
  fullname: Hoekstra, Anna T.
  organization: Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University
– sequence: 4
  givenname: Ilana
  surname: Berlin
  fullname: Berlin, Ilana
  organization: Oncode Institute, Leiden University Medical Center, Department of Cell and Chemical Biology, Leiden University Medical Center
– sequence: 5
  givenname: Rico J. E.
  orcidid: 0000-0002-8920-7133
  surname: Derks
  fullname: Derks, Rico J. E.
  organization: Center for Proteomics and Metabolomics, Leiden University Medical Center
– sequence: 6
  givenname: Demi
  orcidid: 0000-0003-3850-9913
  surname: Both
  fullname: Both, Demi
  organization: Division of Tumor Biology & Immunology, The Netherlands Cancer Institute
– sequence: 7
  givenname: Muhammad A.
  surname: Aslam
  fullname: Aslam, Muhammad A.
  organization: Division of Tumor Biology & Immunology, The Netherlands Cancer Institute
– sequence: 8
  givenname: Derk
  surname: Amsen
  fullname: Amsen, Derk
  organization: Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory
– sequence: 9
  givenname: Celia R.
  orcidid: 0000-0003-0746-8565
  surname: Berkers
  fullname: Berkers, Celia R.
  email: c.r.berkers@uu.nl
  organization: Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University
– sequence: 10
  givenname: Jannie
  orcidid: 0000-0002-8043-5009
  surname: Borst
  fullname: Borst, Jannie
  email: j.g.borst@lumc.nl
  organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Oncode Institute, Leiden University Medical Center, Division of Tumor Biology & Immunology, The Netherlands Cancer Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32958937$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1uHCEURlFkK3Ycv0CKCClNmonhMgxMGVn-iWQlRTZVCgQMs8Zihg0wWu3bh_XaSuTCFbc459Plfu_Q0Rxnh9AHSr5QwuRFbgE4bwiQhhAQtNm-QafAARouKRz9N5-g85wfSKUobSn0b9EJg57LnolT9Ptn0SY4fL9MesbJrZegS0w7vMLWhZBx3vpi73GJeB12NoZd9hmPMYS49fMar75fV8u6TZUwYBtz8dM-w8f5PToedcju_Ok9Q7-ur1aXt83dj5tvl1_vGtvSvjSDYYYIosEaDoOGmiaN6HnHOzFIyk1HDOkMc8bQ3sjRMGnFqB3hDDomB3aGPh9yNyn-WVwuavJ5v72eXVyygrZtpaSC84p-eoE-xCXNdTvFADoi6r1EpT4-UYuZ3KA2yU867dTz2SogD4BNMefkRmV9efxzSdoHRYnal6QOJalaknosSW2rCi_U5_RXJXaQcoXntUv_1n7F-gtZ3aRJ
CitedBy_id crossref_primary_10_20900_immunometab20210031
crossref_primary_10_1016_j_it_2025_06_007
crossref_primary_10_1038_s42003_021_02721_x
crossref_primary_10_1016_j_berh_2024_101941
crossref_primary_10_1172_JCI169365
crossref_primary_10_1007_s13402_022_00742_0
crossref_primary_10_1016_j_phymed_2022_154482
crossref_primary_10_3390_metabo10110426
crossref_primary_10_1007_s10330_022_0558_8
crossref_primary_10_1016_j_immuni_2022_10_006
crossref_primary_10_1186_s13046_024_03218_1
crossref_primary_10_1002_eji_70062
crossref_primary_10_3390_cancers14112603
crossref_primary_10_1038_s41423_024_01148_8
crossref_primary_10_1016_j_intimp_2022_108823
crossref_primary_10_1016_j_mam_2020_100936
crossref_primary_10_1038_s41423_023_01071_4
crossref_primary_10_1002_1878_0261_13588
crossref_primary_10_1146_annurev_immunol_082423_040557
crossref_primary_10_1038_s41584_023_01002_7
crossref_primary_10_1186_s12967_024_05620_x
crossref_primary_10_3389_fonc_2022_862154
crossref_primary_10_3389_fimmu_2021_783282
crossref_primary_10_3389_fimmu_2023_1209188
crossref_primary_10_1016_j_cytogfr_2022_11_001
crossref_primary_10_1016_j_jri_2024_104387
crossref_primary_10_3389_fimmu_2022_881166
crossref_primary_10_1053_j_gastro_2023_10_022
crossref_primary_10_1002_eji_202250002
crossref_primary_10_1093_bbb_zbab226
crossref_primary_10_1093_cei_uxae071
crossref_primary_10_3389_fimmu_2022_888274
crossref_primary_10_1007_s13577_024_01083_w
crossref_primary_10_1038_s41598_022_23515_z
crossref_primary_10_1016_j_isci_2022_104435
crossref_primary_10_1002_advs_202306515
crossref_primary_10_1109_TCBB_2021_3090586
crossref_primary_10_1093_jimmun_vkaf075
crossref_primary_10_1136_jitc_2022_005241
crossref_primary_10_1038_s41584_021_00639_6
crossref_primary_10_1002_eji_70059
crossref_primary_10_1016_j_imlet_2024_106839
crossref_primary_10_3389_fimmu_2021_692004
Cites_doi 10.1172/JCI76012
10.1016/j.cmet.2016.12.018
10.1038/nature24057
10.1038/s41467-017-02672-0
10.1038/ni904
10.1182/blood-2017-11-785865
10.3389/fimmu.2018.00784
10.1038/nri1248
10.1016/j.cels.2018.06.003
10.1126/scisignal.2005970
10.3389/fimmu.2019.00038
10.1172/jci.insight.89160
10.1073/pnas.1807499115
10.1371/journal.pbio.0050038
10.3389/fimmu.2018.01849
10.4049/jimmunol.1003613
10.1080/14728222.2019.1586886
10.1038/ni.3269
10.1016/j.celrep.2019.05.020
10.1016/j.celrep.2018.01.040
10.1016/j.immuni.2019.01.020
10.4049/jimmunol.181.4.2855
10.1016/j.tibs.2016.02.003
10.1371/journal.pone.0156311
10.1073/pnas.1715363114
10.1073/pnas.0800928105
10.3389/fimmu.2018.00444
10.1126/science.1160809
10.2967/jnumed.113.132761
10.1038/s41467-018-04392-5
10.1038/nature12297
10.1016/j.cels.2015.12.004
10.1182/blood-2007-06-094482
10.1038/nature05563
10.1016/j.immuni.2018.04.008
10.1016/S1074-7613(02)00323-0
10.1038/ni.3077
10.1096/fj.14-268409
10.1016/j.immuni.2009.04.006
10.1111/imr.12160
10.1016/0092-8674(95)90192-2
10.1084/jem.20151563
10.1016/j.immuni.2016.02.022
10.1016/j.cmet.2014.05.004
10.3389/fimmu.2018.00573
10.1126/science.1079490
10.1186/1476-4598-13-153
10.1084/jem.20110278
10.1021/ac9004698
10.1038/s41586-019-1678-1
10.1038/ni.3577
10.1093/bioinformatics/btp616
10.1021/acs.analchem.7b04424
10.1189/jlb.2AB0514-273RR
10.1182/blood-2008-01-133967
10.1016/j.it.2014.12.001
10.1093/nar/gks042
10.1097/01.ftd.0000179845.53213.39
10.1038/ni.3365
10.1038/ni.2005
10.1002/0471142735.im0316bs113
10.4049/jimmunol.1000560
10.1093/nar/gkv007
10.3389/fimmu.2018.00141
10.12688/f1000research.8987.2
10.4049/jimmunol.1901250
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
Copyright Nature Publishing Group Oct 2020
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: Copyright Nature Publishing Group Oct 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1038/s42255-020-00271-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
ProQuest Biological Science
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database (ProQuest)
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2522-5812
EndPage 1061
ExternalDocumentID 32958937
10_1038_s42255_020_00271_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ZonMW-TOP (40-00812-98-13071)
– fundername: Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
– fundername: Institute for Chemical Immunology (ICI-00014, 25)
– fundername: Oncode ZonMW-TOP (40-00812-98-13071) Institute for Chemical Immunology (ICI-00014, 25)
GroupedDBID 0R~
53G
AAEEF
AARCD
AAYZH
ABJNI
ACBWK
ADBBV
AFSHS
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
FSGXE
NNMJJ
ODYON
RNT
SIXXV
SNYQT
SOJ
TBHMF
7RV
7X7
8FI
8FJ
AAYXX
ABUWG
AFANA
AFFHD
AFKRA
AGSTI
ATHPR
BBNVY
BENPR
BHPHI
CCPQU
CITATION
FYUFA
HCIFZ
HMCUK
M7P
NAPCQ
PHGZM
PHGZT
PPXIY
PQGLB
UKHRP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
3V.
7XB
8FE
8FH
8FK
AZQEC
DWQXO
GNUQQ
K9.
LK8
PJZUB
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c419t-db3b070a2cb52da2ece8b7956567d815b60b06b3ebb19b8fb38c7fae0532638d3
IEDL.DBID M7P
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581831300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2522-5812
IngestDate Thu Oct 02 12:28:02 EDT 2025
Tue Oct 07 07:26:12 EDT 2025
Mon Jul 21 04:15:26 EDT 2025
Tue Nov 18 22:04:22 EST 2025
Sat Nov 29 06:12:57 EST 2025
Fri Feb 21 02:38:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-db3b070a2cb52da2ece8b7956567d815b60b06b3ebb19b8fb38c7fae0532638d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8920-7133
0000-0002-2470-6919
0000-0003-0746-8565
0000-0003-3850-9913
0000-0002-8043-5009
0000-0003-0148-7802
OpenAccessLink https://www.nature.com/articles/s42255-020-00271-w.pdf
PMID 32958937
PQID 3226078127
PQPubID 7343587
PageCount 16
ParticipantIDs proquest_miscellaneous_2444881755
proquest_journals_3226078127
pubmed_primary_32958937
crossref_citationtrail_10_1038_s42255_020_00271_w
crossref_primary_10_1038_s42255_020_00271_w
springer_journals_10_1038_s42255_020_00271_w
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
PublicationTitle Nature metabolism
PublicationTitleAbbrev Nat Metab
PublicationTitleAlternate Nat Metab
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Angelin (CR22) 2017; 25
Zhuo (CR66) 2014; 13
Hori, Nomura, Sakaguchi (CR4) 2003; 299
Cuadrado (CR14) 2018; 48
Shevach, Thornton (CR2) 2014; 259
Thurnher, Gruenbacher (CR53) 2015; 8
Smith (CR63) 2005; 27
CR33
Herbertson (CR50) 2014; 55
Brightbill (CR56) 2018; 9
Liberzon (CR61) 2015; 1
He (CR39) 2016; 11
Zhang (CR51) 2019; 574
Yang, Wang, Brand, Zheng (CR30) 2018; 9
Howie (CR24) 2017; 2
Ross, Dalluge (CR62) 2009; 81
Wing, Tanaka, Sakaguchi (CR1) 2019; 50
Procaccini (CR28) 2016; 44
Basu, Hubbard, Shevach (CR17) 2015; 97
Salomon (CR10) 2018; 9
Shi (CR19) 2011; 208
Koenen (CR8) 2008; 112
Floess (CR5) 2007; 5
Riley, June, Blazar (CR7) 2009; 30
CR48
Grell (CR46) 1995; 83
Zeiser (CR12) 2008; 111
Gerriets (CR37) 2015; 125
Beier (CR21) 2015; 29
De Rosa (CR29) 2015; 16
Zheng (CR34) 2007; 445
Haas (CR43) 2016; 41
Atretkhany (CR31) 2018; 115
Urbano, Koenen, Joosten, He (CR47) 2018; 9
Timilshina (CR54) 2019; 27
CR59
Fontenot, Gavin, Rudensky (CR3) 2003; 4
Medler, Wajant (CR9) 2019; 23
Michalek (CR18) 2011; 186
CR52
Shi, Sun (CR38) 2018; 9
Guijas (CR64) 2018; 90
Frauwirth (CR16) 2002; 16
Wei (CR26) 2016; 17
Golovina (CR35) 2008; 181
Ritchie (CR60) 2015; 43
Delgoffe (CR25) 2011; 12
Robinson, McCarthy, Smyth (CR58) 2010; 26
Chapman (CR27) 2018; 9
Vander Heiden, Cantley, Thompson (CR42) 2009; 324
Zeng (CR55) 2013; 499
van der Windt, Chang, Pearce (CR65) 2016; 113
Gerriets (CR23) 2016; 17
Menk (CR15) 2018; 22
Marin Morales (CR32) 2019; 10
Chopra (CR49) 2016; 213
McCarthy, Chen, Smyth (CR57) 2012; 40
Walker, Sansom (CR45) 2015; 36
Hui (CR41) 2017; 551
Acuto, Michel (CR44) 2003; 3
Blazar, MacDonald, Hill (CR6) 2018; 131
Macintyre (CR40) 2014; 20
Sauer (CR13) 2008; 105
Huynh (CR11) 2015; 16
He (CR20) 2017; 114
Tanner (CR36) 2018; 7
PCM Urbano (271_CR47) 2018; 9
D Zhang (271_CR51) 2019; 574
271_CR33
C Zhuo (271_CR66) 2014; 13
AV Menk (271_CR15) 2018; 22
S Yang (271_CR30) 2018; 9
J Wei (271_CR26) 2016; 17
GM Delgoffe (271_CR25) 2011; 12
D Howie (271_CR24) 2017; 2
Y Zheng (271_CR34) 2007; 445
R Haas (271_CR43) 2016; 41
JD Fontenot (271_CR3) 2003; 4
RD Michalek (271_CR18) 2011; 186
MD Robinson (271_CR58) 2010; 26
VA Gerriets (271_CR37) 2015; 125
X He (271_CR39) 2016; 11
M Grell (271_CR46) 1995; 83
RA Herbertson (271_CR50) 2014; 55
S Hui (271_CR41) 2017; 551
CA Smith (271_CR63) 2005; 27
VA Gerriets (271_CR23) 2016; 17
N He (271_CR20) 2017; 114
BL Salomon (271_CR10) 2018; 9
KA Frauwirth (271_CR16) 2002; 16
KN Atretkhany (271_CR31) 2018; 115
HJ Koenen (271_CR8) 2008; 112
GJ van der Windt (271_CR65) 2016; 113
TN Golovina (271_CR35) 2008; 181
J Medler (271_CR9) 2019; 23
JM Marin Morales (271_CR32) 2019; 10
A Angelin (271_CR22) 2017; 25
ME Ritchie (271_CR60) 2015; 43
LB Tanner (271_CR36) 2018; 7
V De Rosa (271_CR29) 2015; 16
271_CR59
O Acuto (271_CR44) 2003; 3
H Zeng (271_CR55) 2013; 499
R Zeiser (271_CR12) 2008; 111
A Liberzon (271_CR61) 2015; 1
M Thurnher (271_CR53) 2015; 8
C Guijas (271_CR64) 2018; 90
M Timilshina (271_CR54) 2019; 27
S Hori (271_CR4) 2003; 299
NM Chapman (271_CR27) 2018; 9
AN Macintyre (271_CR40) 2014; 20
HD Brightbill (271_CR56) 2018; 9
S Floess (271_CR5) 2007; 5
S Basu (271_CR17) 2015; 97
LZ Shi (271_CR19) 2011; 208
JB Wing (271_CR1) 2019; 50
S Sauer (271_CR13) 2008; 105
E Cuadrado (271_CR14) 2018; 48
JH Shi (271_CR38) 2018; 9
MG Vander Heiden (271_CR42) 2009; 324
EM Shevach (271_CR2) 2014; 259
271_CR48
JL Riley (271_CR7) 2009; 30
KL Ross (271_CR62) 2009; 81
271_CR52
UH Beier (271_CR21) 2015; 29
M Chopra (271_CR49) 2016; 213
C Procaccini (271_CR28) 2016; 44
BR Blazar (271_CR6) 2018; 131
LS Walker (271_CR45) 2015; 36
DJ McCarthy (271_CR57) 2012; 40
A Huynh (271_CR11) 2015; 16
References_xml – volume: 125
  start-page: 194
  year: 2015
  end-page: 207
  ident: CR37
  article-title: Metabolic programming and PDHK1 control CD4 T cell subsets and inflammation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI76012
– volume: 25
  start-page: 1282
  year: 2017
  end-page: 1293 e1287
  ident: CR22
  article-title: Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.12.018
– volume: 551
  start-page: 115
  year: 2017
  end-page: 118
  ident: CR41
  article-title: Glucose feeds the TCA cycle via circulating lactate
  publication-title: Nature
  doi: 10.1038/nature24057
– volume: 9
  year: 2018
  ident: CR56
  article-title: NF-κB inducing kinase is a therapeutic target for systemic lupus erythematosus
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02672-0
– volume: 4
  start-page: 330
  year: 2003
  end-page: 336
  ident: CR3
  article-title: Foxp3 programs the development and function of CD4 CD25 regulatory T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni904
– volume: 131
  start-page: 2651
  year: 2018
  end-page: 2660
  ident: CR6
  article-title: Immune regulatory cell infusion for graft-versus-host disease prevention and therapy
  publication-title: Blood
  doi: 10.1182/blood-2017-11-785865
– volume: 9
  start-page: 784
  year: 2018
  ident: CR30
  article-title: Role of TNF–TNF receptor 2 Signal in regulatory T cells and Its therapeutic implications
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00784
– volume: 3
  start-page: 939
  year: 2003
  end-page: 951
  ident: CR44
  article-title: CD28-mediated co-stimulation: a quantitative support for TCR signalling
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1248
– volume: 7
  start-page: 49
  year: 2018
  end-page: 62 e48
  ident: CR36
  article-title: Four key steps control glycolytic flux in mammalian cells
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.06.003
– volume: 8
  start-page: re4
  year: 2015
  ident: CR53
  article-title: T lymphocyte regulation by mevalonate metabolism
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.2005970
– volume: 10
  start-page: 38
  year: 2019
  ident: CR32
  article-title: Automated clinical grade expansion of regulatory T cells in a fully closed system
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00038
– volume: 2
  start-page: e89160
  year: 2017
  ident: CR24
  article-title: Foxp3 drives oxidative phosphorylation and protection from lipotoxicity
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.89160
– volume: 115
  start-page: 13051
  year: 2018
  end-page: 13056
  ident: CR31
  article-title: Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1807499115
– volume: 5
  start-page: e38
  year: 2007
  ident: CR5
  article-title: Epigenetic control of the foxp3 locus in regulatory T cells
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050038
– volume: 9
  start-page: 1849
  year: 2018
  ident: CR38
  article-title: Tumor necrosis factor receptor-associated factor regulation of nuclear factor κB and mitogen-activated protein kinase pathways
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01849
– volume: 186
  start-page: 3299
  year: 2011
  end-page: 3303
  ident: CR18
  article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 T cell subsets
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1003613
– volume: 23
  start-page: 295
  year: 2019
  end-page: 307
  ident: CR9
  article-title: Tumor necrosis factor receptor-2 (TNFR2): an overview of an emerging drug target
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1080/14728222.2019.1586886
– volume: 16
  start-page: 1174
  year: 2015
  end-page: 1184
  ident: CR29
  article-title: Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3269
– volume: 27
  start-page: 2948
  year: 2019
  end-page: 2961 e2947
  ident: CR54
  article-title: Activation of mevalonate pathway via LKB1 is essential for stability of treg cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.05.020
– volume: 22
  start-page: 1509
  year: 2018
  end-page: 1521
  ident: CR15
  article-title: Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.01.040
– volume: 50
  start-page: 302
  year: 2019
  end-page: 316
  ident: CR1
  article-title: Human FOXP3 regulatory T cell heterogeneity and function in autoimmunity and cancer
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.01.020
– volume: 181
  start-page: 2855
  year: 2008
  end-page: 2868
  ident: CR35
  article-title: CD28 costimulation is essential for human T regulatory expansion and function
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.4.2855
– volume: 43
  start-page: e47
  year: 2015
  ident: CR60
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
– volume: 41
  start-page: 460
  year: 2016
  end-page: 471
  ident: CR43
  article-title: Intermediates of metabolism: from bystanders to signalling molecules
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2016.02.003
– volume: 11
  start-page: e0156311
  year: 2016
  ident: CR39
  article-title: A TNFR2-agonist facilitates high purity expansion of human low purity treg cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0156311
– volume: 114
  start-page: 12542
  year: 2017
  end-page: 12547
  ident: CR20
  article-title: Metabolic control of regulatory T cell (T ) survival and function by Lkb1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1715363114
– volume: 105
  start-page: 7797
  year: 2008
  end-page: 7802
  ident: CR13
  article-title: T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0800928105
– volume: 9
  start-page: 444
  year: 2018
  ident: CR10
  article-title: Tumor necrosis factor alpha and regulatory T cells in oncoimmunology
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00444
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  ident: CR42
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 55
  start-page: 534
  year: 2014
  end-page: 539
  ident: CR50
  article-title: Targeted chemoradiation in metastatic colorectal cancer: a phase I trial of 131I-huA33 with concurrent capecitabine
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.113.132761
– volume: 9
  year: 2018
  ident: CR27
  article-title: mTOR coordinates transcriptional programs and mitochondrial metabolism of activated T subsets to protect tissue homeostasis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04392-5
– volume: 499
  start-page: 485
  year: 2013
  end-page: 490
  ident: CR55
  article-title: mTORC1 couples immune signals and metabolic programming to establish T -cell function
  publication-title: Nature
  doi: 10.1038/nature12297
– volume: 1
  start-page: 417
  year: 2015
  end-page: 425
  ident: CR61
  article-title: The molecular signatures database hallmark gene set collection
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.12.004
– volume: 111
  start-page: 453
  year: 2008
  end-page: 462
  ident: CR12
  article-title: Differential impact of mammalian target of rapamycin inhibition on CD4 CD25 Foxp3 regulatory T cells compared with conventional CD4 T cells
  publication-title: Blood
  doi: 10.1182/blood-2007-06-094482
– volume: 445
  start-page: 936
  year: 2007
  end-page: 940
  ident: CR34
  article-title: Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells
  publication-title: Nature
  doi: 10.1038/nature05563
– volume: 48
  start-page: 1046
  year: 2018
  end-page: 1059
  ident: CR14
  article-title: Proteomic analyses of human regulatory T cells reveal adaptations in signaling pathways that protect cellular identity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.04.008
– volume: 16
  start-page: 769
  year: 2002
  end-page: 777
  ident: CR16
  article-title: The CD28 signaling pathway regulates glucose metabolism
  publication-title: Immunity
  doi: 10.1016/S1074-7613(02)00323-0
– volume: 16
  start-page: 188
  year: 2015
  end-page: 196
  ident: CR11
  article-title: Control of PI(3) kinase in T cells maintains homeostasis and lineage stability
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3077
– volume: 29
  start-page: 2315
  year: 2015
  end-page: 2326
  ident: CR21
  article-title: Essential role of mitochondrial energy metabolism in Foxp3 T-regulatory cell function and allograft survival
  publication-title: FASEB J.
  doi: 10.1096/fj.14-268409
– volume: 30
  start-page: 656
  year: 2009
  end-page: 665
  ident: CR7
  article-title: Human T regulatory cell therapy: take a billion or so and call me in the morning
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.04.006
– ident: CR33
– volume: 259
  start-page: 88
  year: 2014
  end-page: 102
  ident: CR2
  article-title: tT s, pT s, and iT s: similarities and differences
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12160
– volume: 83
  start-page: 793
  year: 1995
  end-page: 802
  ident: CR46
  article-title: The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90192-2
– volume: 213
  start-page: 1881
  year: 2016
  end-page: 1900
  ident: CR49
  article-title: Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151563
– volume: 44
  start-page: 712
  year: 2016
  ident: CR28
  article-title: The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.02.022
– volume: 20
  start-page: 61
  year: 2014
  end-page: 72
  ident: CR40
  article-title: The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.05.004
– volume: 9
  start-page: 573
  year: 2018
  ident: CR47
  article-title: An autocrine TNFα-tumor necrosis factor receptor 2 loop promotes epigenetic effects inducing human treg stability in vitro
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00573
– volume: 299
  start-page: 1057
  year: 2003
  end-page: 1061
  ident: CR4
  article-title: Control of regulatory T cell development by the transcription factor Foxp3
  publication-title: Science
  doi: 10.1126/science.1079490
– volume: 13
  year: 2014
  ident: CR66
  article-title: Higher FOXP3–TSDR demethylation rates in adjacent normal tissues in patients with colon cancer were associated with worse survival
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-13-153
– volume: 208
  start-page: 1367
  year: 2011
  end-page: 1376
  ident: CR19
  article-title: HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T 17 and T cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20110278
– volume: 81
  start-page: 4021
  year: 2009
  end-page: 4026
  ident: CR62
  article-title: Liquid chromatography/tandem mass spectrometry of glycolytic intermediates: deconvolution of coeluting structural isomers based on unique product ion ratios
  publication-title: Anal. Chem.
  doi: 10.1021/ac9004698
– volume: 574
  start-page: 575
  year: 2019
  end-page: 580
  ident: CR51
  article-title: Metabolic regulation of gene expression by histone lactylation
  publication-title: Nature
  doi: 10.1038/s41586-019-1678-1
– volume: 17
  start-page: 1459
  year: 2016
  end-page: 1466
  ident: CR23
  article-title: Foxp3 and Toll-like receptor signaling balance T cell anabolic metabolism for suppression
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3577
– ident: CR48
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: CR58
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 90
  start-page: 3156
  year: 2018
  end-page: 3164
  ident: CR64
  article-title: METLIN: a technology platform for identifying knowns and unknowns
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b04424
– volume: 97
  start-page: 279
  year: 2015
  end-page: 283
  ident: CR17
  article-title: Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.2AB0514-273RR
– ident: CR52
– volume: 113
  start-page: 3.16B.11
  year: 2016
  end-page: 13.16B.14
  ident: CR65
  article-title: Measuring bioenergetics in T cells using a seahorse extracellular flux analyzer
  publication-title: Curr. Protoc. Immunol.
– volume: 112
  start-page: 2340
  year: 2008
  end-page: 2352
  ident: CR8
  article-title: Human CD25 Foxp3 regulatory T cells differentiate into IL-17-producing cells
  publication-title: Blood
  doi: 10.1182/blood-2008-01-133967
– volume: 36
  start-page: 63
  year: 2015
  end-page: 70
  ident: CR45
  article-title: Confusing signals: recent progress in CTLA-4 biology
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2014.12.001
– volume: 40
  start-page: 4288
  year: 2012
  end-page: 4297
  ident: CR57
  article-title: Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks042
– volume: 27
  start-page: 747
  year: 2005
  end-page: 751
  ident: CR63
  article-title: METLIN: a metabolite mass spectral database
  publication-title: Ther. Drug Monit.
  doi: 10.1097/01.ftd.0000179845.53213.39
– volume: 17
  start-page: 277
  year: 2016
  end-page: 285
  ident: CR26
  article-title: Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3365
– ident: CR59
– volume: 12
  start-page: 295
  year: 2011
  end-page: 303
  ident: CR25
  article-title: The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2005
– volume: 16
  start-page: 769
  year: 2002
  ident: 271_CR16
  publication-title: Immunity
  doi: 10.1016/S1074-7613(02)00323-0
– volume: 113
  start-page: 3.16B.11
  year: 2016
  ident: 271_CR65
  publication-title: Curr. Protoc. Immunol.
  doi: 10.1002/0471142735.im0316bs113
– volume: 208
  start-page: 1367
  year: 2011
  ident: 271_CR19
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20110278
– volume: 30
  start-page: 656
  year: 2009
  ident: 271_CR7
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.04.006
– volume: 17
  start-page: 1459
  year: 2016
  ident: 271_CR23
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3577
– ident: 271_CR48
  doi: 10.4049/jimmunol.1000560
– volume: 43
  start-page: e47
  year: 2015
  ident: 271_CR60
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 83
  start-page: 793
  year: 1995
  ident: 271_CR46
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90192-2
– volume: 9
  year: 2018
  ident: 271_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04392-5
– volume: 97
  start-page: 279
  year: 2015
  ident: 271_CR17
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.2AB0514-273RR
– volume: 7
  start-page: 49
  year: 2018
  ident: 271_CR36
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.06.003
– volume: 17
  start-page: 277
  year: 2016
  ident: 271_CR26
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3365
– volume: 574
  start-page: 575
  year: 2019
  ident: 271_CR51
  publication-title: Nature
  doi: 10.1038/s41586-019-1678-1
– volume: 213
  start-page: 1881
  year: 2016
  ident: 271_CR49
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151563
– volume: 22
  start-page: 1509
  year: 2018
  ident: 271_CR15
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.01.040
– volume: 41
  start-page: 460
  year: 2016
  ident: 271_CR43
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2016.02.003
– volume: 3
  start-page: 939
  year: 2003
  ident: 271_CR44
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1248
– volume: 36
  start-page: 63
  year: 2015
  ident: 271_CR45
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2014.12.001
– volume: 131
  start-page: 2651
  year: 2018
  ident: 271_CR6
  publication-title: Blood
  doi: 10.1182/blood-2017-11-785865
– volume: 8
  start-page: re4
  year: 2015
  ident: 271_CR53
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.2005970
– volume: 9
  start-page: 573
  year: 2018
  ident: 271_CR47
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00573
– volume: 4
  start-page: 330
  year: 2003
  ident: 271_CR3
  publication-title: Nat. Immunol.
  doi: 10.1038/ni904
– volume: 9
  start-page: 1849
  year: 2018
  ident: 271_CR38
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01849
– volume: 16
  start-page: 188
  year: 2015
  ident: 271_CR11
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3077
– volume: 114
  start-page: 12542
  year: 2017
  ident: 271_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1715363114
– volume: 9
  start-page: 784
  year: 2018
  ident: 271_CR30
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00784
– volume: 16
  start-page: 1174
  year: 2015
  ident: 271_CR29
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3269
– volume: 55
  start-page: 534
  year: 2014
  ident: 271_CR50
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.113.132761
– volume: 499
  start-page: 485
  year: 2013
  ident: 271_CR55
  publication-title: Nature
  doi: 10.1038/nature12297
– volume: 27
  start-page: 2948
  year: 2019
  ident: 271_CR54
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.05.020
– volume: 81
  start-page: 4021
  year: 2009
  ident: 271_CR62
  publication-title: Anal. Chem.
  doi: 10.1021/ac9004698
– volume: 5
  start-page: e38
  year: 2007
  ident: 271_CR5
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050038
– volume: 12
  start-page: 295
  year: 2011
  ident: 271_CR25
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2005
– volume: 20
  start-page: 61
  year: 2014
  ident: 271_CR40
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.05.004
– volume: 27
  start-page: 747
  year: 2005
  ident: 271_CR63
  publication-title: Ther. Drug Monit.
  doi: 10.1097/01.ftd.0000179845.53213.39
– volume: 111
  start-page: 453
  year: 2008
  ident: 271_CR12
  publication-title: Blood
  doi: 10.1182/blood-2007-06-094482
– volume: 2
  start-page: e89160
  year: 2017
  ident: 271_CR24
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.89160
– volume: 186
  start-page: 3299
  year: 2011
  ident: 271_CR18
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1003613
– volume: 11
  start-page: e0156311
  year: 2016
  ident: 271_CR39
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0156311
– volume: 551
  start-page: 115
  year: 2017
  ident: 271_CR41
  publication-title: Nature
  doi: 10.1038/nature24057
– volume: 9
  year: 2018
  ident: 271_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02672-0
– volume: 115
  start-page: 13051
  year: 2018
  ident: 271_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1807499115
– volume: 48
  start-page: 1046
  year: 2018
  ident: 271_CR14
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.04.008
– ident: 271_CR52
  doi: 10.3389/fimmu.2018.00141
– volume: 324
  start-page: 1029
  year: 2009
  ident: 271_CR42
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 445
  start-page: 936
  year: 2007
  ident: 271_CR34
  publication-title: Nature
  doi: 10.1038/nature05563
– ident: 271_CR59
  doi: 10.12688/f1000research.8987.2
– volume: 23
  start-page: 295
  year: 2019
  ident: 271_CR9
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1080/14728222.2019.1586886
– volume: 40
  start-page: 4288
  year: 2012
  ident: 271_CR57
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks042
– volume: 25
  start-page: 1282
  year: 2017
  ident: 271_CR22
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.12.018
– volume: 105
  start-page: 7797
  year: 2008
  ident: 271_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0800928105
– volume: 9
  start-page: 444
  year: 2018
  ident: 271_CR10
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00444
– volume: 10
  start-page: 38
  year: 2019
  ident: 271_CR32
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00038
– volume: 50
  start-page: 302
  year: 2019
  ident: 271_CR1
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.01.020
– volume: 181
  start-page: 2855
  year: 2008
  ident: 271_CR35
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.4.2855
– volume: 1
  start-page: 417
  year: 2015
  ident: 271_CR61
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.12.004
– volume: 112
  start-page: 2340
  year: 2008
  ident: 271_CR8
  publication-title: Blood
  doi: 10.1182/blood-2008-01-133967
– volume: 44
  start-page: 712
  year: 2016
  ident: 271_CR28
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.02.022
– volume: 125
  start-page: 194
  year: 2015
  ident: 271_CR37
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI76012
– volume: 13
  year: 2014
  ident: 271_CR66
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-13-153
– volume: 259
  start-page: 88
  year: 2014
  ident: 271_CR2
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12160
– volume: 299
  start-page: 1057
  year: 2003
  ident: 271_CR4
  publication-title: Science
  doi: 10.1126/science.1079490
– volume: 90
  start-page: 3156
  year: 2018
  ident: 271_CR64
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b04424
– volume: 26
  start-page: 139
  year: 2010
  ident: 271_CR58
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 29
  start-page: 2315
  year: 2015
  ident: 271_CR21
  publication-title: FASEB J.
  doi: 10.1096/fj.14-268409
– ident: 271_CR33
  doi: 10.4049/jimmunol.1901250
SSID ssj0002114129
Score 2.3584204
Snippet Following activation, conventional T (T conv ) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T reg ) cells reportedly repress the mTOR pathway...
Following activation, conventional T (T ) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T ) cells reportedly repress the mTOR pathway and avoid...
Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1046
SubjectTerms 1-Phosphatidylinositol 3-kinase
631/250/1619/554
631/250/2152
631/443/319
631/45/320
Antigens
Biomedical and Life Sciences
Blood
Carbon
CD25 antigen
CD3 antigen
CD3 Complex - metabolism
Cell activation
Cell proliferation
Citric Acid Cycle - drug effects
Effector cells
Flow cytometry
Foxp3 protein
Glucose
Glucose - metabolism
Glucose - pharmacology
Glycolysis
Glycolysis - drug effects
Humans
Immunoregulation
Kinases
Lactic acid
Lactic Acid - blood
Lactic Acid - metabolism
Life Sciences
Lymphocytes
Lymphocytes T
Metabolism
Metabolites
Metabolome
Monoclonal antibodies
Phosphatidylinositol 3-Kinases - metabolism
Proteins
Protocol
Receptors, Tumor Necrosis Factor, Type II - drug effects
Receptors, Tumor Necrosis Factor, Type II - metabolism
RNA - chemistry
Sequence Analysis, RNA
Signal Transduction
Statistical analysis
T-Lymphocytes, Regulatory - metabolism
Thymus
TOR protein
TOR Serine-Threonine Kinases - metabolism
Tricarboxylic acid cycle
Tumor necrosis factor receptors
Tumor necrosis factor-TNF
Variance analysis
Title Stable human regulatory T cells switch to glycolysis following TNF receptor 2 costimulation
URI https://link.springer.com/article/10.1038/s42255-020-00271-w
https://www.ncbi.nlm.nih.gov/pubmed/32958937
https://www.proquest.com/docview/3226078127
https://www.proquest.com/docview/2444881755
Volume 2
WOSCitedRecordID wos000581831300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2522-5812
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0002114129
  issn: 2522-5812
  databaseCode: M7P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2522-5812
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0002114129
  issn: 2522-5812
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database (ProQuest)
  customDbUrl:
  eissn: 2522-5812
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0002114129
  issn: 2522-5812
  databaseCode: 7RV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2522-5812
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0002114129
  issn: 2522-5812
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-CwmGXfQi2ZesqI-0GFo2d1M5pGohqp6pCHarEwbIdZ0IqDUvKKv77PTtuEULjsosvyUue_D78_Pz8fgBfGQbxIrec6lwUNHOlo5JrTfWwcloayV1mA9iEmEzkfF5MY8KtjWWVG58YHHVZW58jP0XFG_nGNEx8u_tNPWqUP12NEBq7sOe7JPBQujfd5lhwc5Phehbvygy5PG0z1F9_Jdlfp2Yipeun69GzIPPZAWlYd8Zv_pfjt_A6Rpzke6ci72DHLQ_gGoNMs3AkQPSRpgOkr5sHMiM-ld-Sdn2D8iSrmvxaPKCy-MYlpEKlqdfIJplNxkjlS2LqhjBia_QUtxEJ7BB-ji9m5z9oxFmgNkuLFS0NN2j5mlmTs1IzpJZGFD7UE6VMczMamuHIcGdMWhhZGS6tqHQAlUDzLfl76C3rpfsIpKgEkjqbOpFmuBMyI5lrW9kK3UKVGptAupltZWMTco-FsVDhMJxL1UlIoYRUkJBaJ3C8pbnrWnC8-HZ_Iw0VzbFVj6JI4Gj7GA3JT6leuvq-VRjnoDPDaCpP4EMn_O3vOCtyH9glcLLRhseP_5uXTy_z8hleMa-JoTSwD71Vc---wL79s7ppmwHsissrP85FGOUA9s4uJtPLQVDyv06CAB0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXHuIVKGAkOIHVtZ2snQNCCFi1alkhtKBKHFzbcapKy6YkW6L9U_xGxk6yFarorQfOiR3H8814bM_MB_CCoxMvMyeoyWROU194qoQx1IxKb5RVwqcukk3I6VQdHOSfN-D3kAsTwioHmxgNdVG5cEa-jcAbh8I0XL49-UkDa1S4XR0oNDpY7PlVi1u25s3uB5TvS84nH2fvd2jPKkBdyvIlLaywiHPDnc14Ybh3XlmZB8dGFopldjyyo7EV3lqWW1VaoZwsTaRQQLAWAvu9AlfRjrMQQia_fFuf6eBmKsX1s8_NGQm13aSoLyEFOqRvc8lo-_f6d86pPXchG9e5ya3_bYZuw83eoybvOhW4Axt-cRe-oxNt555ECkJS-6PAUlbVKzIj4aqiIU17jHgly4oczVeoDKEwCylRKaoWp4XMphNsFUJ-qppw4iq0hD96prN78PVS_uc-bC6qhX8IJC8lNvWOeclS3OnZscqMK12JZq9k1iXABulq1xdZD1wfcx0v-4XSHSI0IkJHROg2gVfrNiddiZEL394apK97c9PoM9En8Hz9GA1FmFKz8NVpo9GPQ2ON3mKWwIMObOvPCZ5nwXFN4PWAvrPO_z2WRxeP5Rlc35l92tf7u9O9x3CDBy2IYZBbsLmsT_0TuOZ-LY-b-mlUIwKHl43KPw4HWf4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+human+regulatory+T+cells+switch+to+glycolysis+following+TNF+receptor+2+costimulation&rft.jtitle=Nature+metabolism&rft.au=de+Kivit%2C+Sander&rft.au=Mensink%2C+Mark&rft.au=Hoekstra%2C+Anna+T.&rft.au=Berlin%2C+Ilana&rft.date=2020-10-01&rft.issn=2522-5812&rft.eissn=2522-5812&rft.volume=2&rft.issue=10&rft.spage=1046&rft.epage=1061&rft_id=info:doi/10.1038%2Fs42255-020-00271-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s42255_020_00271_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5812&client=summon