Artificial intelligence in glomerular diseases

In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language pr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pediatric nephrology (Berlin, West) Ročník 37; číslo 11; s. 2533 - 2545
Hlavní autori: Schena, Francesco P., Magistroni, Riccardo, Narducci, Fedelucio, Abbrescia, Daniela I., Anelli, Vito W., Di Noia, Tommaso
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2022
Springer Nature B.V
Predmet:
ISSN:0931-041X, 1432-198X, 1432-198X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts.
AbstractList In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts.In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts.
In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts.
Author Abbrescia, Daniela I.
Di Noia, Tommaso
Narducci, Fedelucio
Schena, Francesco P.
Magistroni, Riccardo
Anelli, Vito W.
Author_xml – sequence: 1
  givenname: Francesco P.
  surname: Schena
  fullname: Schena, Francesco P.
  email: paolo.schena@uniba.it
  organization: Department of Emergency and Organ Transplantation, University of Bari
– sequence: 2
  givenname: Riccardo
  surname: Magistroni
  fullname: Magistroni, Riccardo
  organization: Department of Nephrology, University of Modena
– sequence: 3
  givenname: Fedelucio
  surname: Narducci
  fullname: Narducci, Fedelucio
  organization: Department of Electrical and Information Engineering, Polytechnic of Bari
– sequence: 4
  givenname: Daniela I.
  surname: Abbrescia
  fullname: Abbrescia, Daniela I.
  organization: Schena Foundation
– sequence: 5
  givenname: Vito W.
  surname: Anelli
  fullname: Anelli, Vito W.
  organization: Department of Electrical and Information Engineering, Polytechnic of Bari
– sequence: 6
  givenname: Tommaso
  surname: Di Noia
  fullname: Di Noia, Tommaso
  organization: Department of Electrical and Information Engineering, Polytechnic of Bari
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35266037$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtqwzAQRUVpaR7tD3RRAt1043QkWQ8vQ-gLAt20kJ2QnXFQcOxUshf9-yp1QiGLrIZhzh0uZ0Qu66ZGQu4oTCmAegoAqVQJMJqASGmW6AsypClnCc308pIMIePxlNLlgIxC2ACAFlpekwEXTErgakimM9-60hXOVhNXt1hVbo11gXGZrKtmi76rrJ-sXEAbMNyQq9JWAW8Pc0y-Xp4_52_J4uP1fT5bJEXs0SYriVRDrkEUGeVlJjKBeckQS87SVFuLJQqVlrmQoFguJeM5UGG1LfIcWMbH5LH_u_PNd4ehNVsXitjO1th0wTDJNdAU1B59OEE3Tefr2M4wRUUGQgkWqfsD1eVbXJmdd1vrf8zRRAR0DxS-CcFjaQrX2tY1deutqwwFs5dueukmSjd_0o2OUXYSPX4_G-J9KES4XqP_r30m9QsjfJH-
CitedBy_id crossref_primary_10_1186_s12882_025_04253_6
crossref_primary_10_3390_jcm11195919
crossref_primary_10_1007_s00467_024_06510_6
crossref_primary_10_1007_s11560_022_00609_3
crossref_primary_10_1093_ckj_sfad182
crossref_primary_10_1007_s00292_024_01300_1
crossref_primary_10_1053_j_akdh_2022_11_001
crossref_primary_10_1093_clinchem_hvad136
crossref_primary_10_1109_ACCESS_2024_3413595
Cites_doi 10.1016/j.artmed.2020.101808
10.1136/jamia.2009.002733
10.1053/j.ajkd.2019.02.016
10.3390/diagnostics11050864
10.1159/000495818
10.3233/978-1-61499-852-5-106
10.1159/000513566
10.1002/path.5491
10.1681/ASN.2010010010
10.1001/jama.2017.18391
10.1016/j.bj.2021.08.011
10.1016/j.biopha.2010.06.003
10.1016/j.kint.2020.07.046
10.1016/j.amjmed.2020.03.033
10.1186/s12880-021-00647-8
10.1001/10.1016/j.jfma.2021.08.011
10.1038/s41598-019-48263-5
10.1159/000518187
10.1016/j.ekir.2017.11.002
10.1016/j.cmpb.2019.105273
10.1016/j.eswa.2016.10.053
10.1186/1471-2369-14-162
10.1191/0961203302lu226oa
10.1186/s12882-020-02016-z
10.1136/jamia.2009.000893
10.1038/ki.2014.63
10.3390/fi12120230
10.1001/jamanetworkopen.2021.11176
10.1109/ACCESS.2020.3000815
10.1681/ASN.2018121259
10.1016/j.kint.2020.07.044
10.1038/ki.2009.168
10.1007/s10916-007-9109-5
10.1038/s41746-019-0104-2
10.1080/17517575.2019.1597386
10.1016/j.eswa.2013.01.046
10.1093/ndt/gfv232
10.1007/s11548-018-1898-0
10.1136/jamia.2009.001560
10.1371/journal.pone.0174200
10.1038/s41467-021-25221-2
10.1038/ki.2009.243
10.1109/TPAMI.2017.2656884
10.1016/j.compbiomed.2015.09.003
10.1002/art.39623
10.1056/NEJMp1606181
10.1038/s41598-019-45989-0
10.1093/jamia/ocy165
10.2215/CJN.03210320
10.1007/s10729-014-9281-3
10.1016/j.ajpath.2019.05.019
10.1093/jamia/ocy173
10.1136/lupus-2021-000489
10.34067/KID.0002892021
10.1109/DICTA.2018.8615769
ContentType Journal Article
Copyright The Author(s), under exclusive licence to International Pediatric Nephrology Association 2022
2022. The Author(s), under exclusive licence to International Pediatric Nephrology Association.
The Author(s), under exclusive licence to International Pediatric Nephrology Association 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to International Pediatric Nephrology Association 2022
– notice: 2022. The Author(s), under exclusive licence to International Pediatric Nephrology Association.
– notice: The Author(s), under exclusive licence to International Pediatric Nephrology Association 2022.
DBID AAYXX
CITATION
NPM
3V.
7QP
7RV
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
FYUFA
GHDGH
K9-
K9.
KB0
M0R
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00467-021-05419-8
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Consumer Health Database
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest One Academic Middle East (New)

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-198X
EndPage 2545
ExternalDocumentID 35266037
10_1007_s00467_021_05419_8
Genre Journal Article
Review
GrantInformation_xml – fundername: Ministero dell’Istruzione, dell’Università e della Ricerca
  grantid: PON RI ARS01_00876
  funderid: http://dx.doi.org/10.13039/501100003407
– fundername: Ministero dell'Istruzione, dell'Università e della Ricerca
  grantid: PON RI ARS01_00876
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHVE
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BKNYI
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBB
EBC
EBD
EBLON
EBS
EBX
EHN
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EN4
ENC
EPL
EPT
ESBYG
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEA
IHE
IHR
IHW
IJ-
IKXTQ
IMOTQ
INH
INR
IOF
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K9-
KDC
KOV
KOW
KPH
L7B
LAS
LLZTM
M0R
M1P
M4Y
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
Q~Q
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z82
Z83
Z87
Z8O
Z8V
Z8W
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
NPM
7QP
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c419t-d6e180b805c913f9595ebf2eef32448aaefe574fb56072b6623b015a8acbb0293
IEDL.DBID BENPR
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766449800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0931-041X
1432-198X
IngestDate Sun Nov 09 14:07:28 EST 2025
Wed Nov 05 04:12:24 EST 2025
Wed Feb 19 02:27:09 EST 2025
Tue Nov 18 21:27:16 EST 2025
Sat Nov 29 06:32:30 EST 2025
Fri Feb 21 02:45:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Glomerulonephritis
Machine Learning Algorithm
Clinical Outcome
Deep Learning Algorithm
Artificial Intelligence
Natural Language Processing
Language English
License 2022. The Author(s), under exclusive licence to International Pediatric Nephrology Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-d6e180b805c913f9595ebf2eef32448aaefe574fb56072b6623b015a8acbb0293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://hdl.handle.net/11380/1286813
PMID 35266037
PQID 2715905752
PQPubID 30509
PageCount 13
ParticipantIDs proquest_miscellaneous_2638014079
proquest_journals_2715905752
pubmed_primary_35266037
crossref_citationtrail_10_1007_s00467_021_05419_8
crossref_primary_10_1007_s00467_021_05419_8
springer_journals_10_1007_s00467_021_05419_8
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Berlin
PublicationSubtitle Journal of the International Pediatric Nephrology Association
PublicationTitle Pediatric nephrology (Berlin, West)
PublicationTitleAbbrev Pediatr Nephrol
PublicationTitleAlternate Pediatr Nephrol
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Diciolla, Binetti, Di Noia, Pesce (CR36) 2015; 66
Savova, Masanz, Ogren, Zheng (CR3) 2010; 17
Beam, Kohane (CR1) 2018; 319
Ginley, Lutnick, Jen, Fogo (CR11) 2019; 30
Roberts, Cook, Troyanov, Alpers (CR16) 2009; 76
Schena, Anelli, Trotta, Di Noia (CR38) 2021; 99
Pesce, Diciolla, Binetti, Naso (CR37) 2016; 31
Chagas, Souza, Araújo, Aldeman (CR13) 2020; 103
Rajimehr, Farsiu, Montaser Kouhsari, Bidari (CR45) 2002; 11
Obermeyer, Emanuel (CR33) 2016; 375
Liu, Zhang, Liu, Tan (CR40) 2018; 43
Song, Waitman, Hu, Yu (CR51) 2019; 26
Helget, Dillon, Wolf, Parks (CR48) 2021; 8
Chang, Han, Zhong, Snijders (CR56) 2018; 40
CR5
Aronson, Lang (CR4) 2010; 17
CR9
Wells, Chagin, Li, Hu (CR32) 2015; 18
de Haan, Zhang, Zuckerman, Liu (CR20) 2021; 12
Koleck, Theresa, Bourne, Bakken (CR2) 2019; 26
Bommanna, Madheswaran, Thyagarajah (CR25) 2008; 32
Coppo, Troyanov, Bellur, Cattran (CR39) 2014; 86
Zhang, Chen, Feng, Guo (CR29) 2021; 21
Zeng, Nan, Xu, Lei (CR12) 2020; 252
Wolf, Spainhour, Arthur (CR47) 2016; 68
Ellahham (CR49) 2020; 133
Katsuki, Ono, Koseki, Kudo (CR55) 2018; 247
Tervaert, Mooyaart, Amann, Cohen (CR18) 2010; 21
Kuo, Chang, Liu, Lin (CR26) 2019; 2
Sheehan, Mawe, Cianciolo, Korstanje, Mahoney (CR19) 2019; 189
Cattran, Coppo, Cook, Fehally (CR17) 2009; 76
Naumovic, Furuncic, Jovanovic, Stosovic (CR34) 2010; 64
Zhang, Wang, Shi (CR42) 2020; 12
Polignano, Narducci, Iovine, Musto (CR6) 2020; 8
Eikstadt, Desmond, Lindner, Chen (CR7) 2021; 1
Makino, Yoshimoto, Ono, Itoko (CR54) 2019; 9
Chen, Li, Li, Xia (CR41) 2019; 20
Leung, Wang, Ma, Luk (CR52) 2013; 14
Murphy, Weber, Mendis, Gainer (CR50) 2010; 17
Ligabue, Pollastri, Fontana, Leonelli (CR24) 2020; 15
Zhu, Ma, Yang, Tang (CR31) 2021
Ceccarelli, Sciandrone, Perricone, Galvan (CR44) 2017; 12
Bueno, Fernandez-Carrobles, Gonzalez-Lopez, Deniz (CR14) 2020; 184
Yang, Leea, Wangb, Shun-Chen (CR22) 2021; S2319–4170
Chen, Pai, Hsu, Lee (CR27) 2019; 14
Kolachalama, Singh, Lin, Mun (CR10) 2018; 3
CR23
Chen, Huang, Chen, Liang (CR46) 2021; 52
CR21
Meza-Palacios, Aguilar-Lasserre, Ureña-Bogarín, Vázquez-Rodríguez (CR53) 2017; 72
Athavale, Hart, Itteera, Cimbaluk (CR30) 2021; 4
Kang, Kim, Kim, Kim (CR8) 2020; 21
Uzunova, Schultz, Handels, Ehrhardt (CR57) 2019; 14
Kim, Ye (CR28) 2021; 11
Jayapandian, Chen, Janowczyk, Palmer (CR15) 2021; 99
Kegerreis, Catalina, Bachali, Geraci (CR43) 2018; 9
Di Noia, Ostuni, Pesce, Binetti (CR35) 2013; 40
G Bueno (5419_CR14) 2020; 184
S Sheehan (5419_CR19) 2019; 189
K Yang (5419_CR22) 2021; S2319–4170
M Polignano (5419_CR6) 2020; 8
IS Roberts (5419_CR16) 2009; 76
T Di Noia (5419_CR35) 2013; 40
M Diciolla (5419_CR36) 2015; 66
F Ceccarelli (5419_CR44) 2017; 12
TA Koleck (5419_CR2) 2019; 26
AM Athavale (5419_CR30) 2021; 4
B Kegerreis (5419_CR43) 2018; 9
K de Haan (5419_CR20) 2021; 12
VB Kolachalama (5419_CR10) 2018; 3
Z Obermeyer (5419_CR33) 2016; 375
RKK Leung (5419_CR52) 2013; 14
H Uzunova (5419_CR57) 2019; 14
CP Jayapandian (5419_CR15) 2021; 99
CJ Chen (5419_CR27) 2019; 14
5419_CR5
C Zeng (5419_CR12) 2020; 252
AR Aronson (5419_CR4) 2010; 17
B Ginley (5419_CR11) 2019; 30
5419_CR23
RN Eikstadt (5419_CR7) 2021; 1
GK Savova (5419_CR3) 2010; 17
BJ Wells (5419_CR32) 2015; 18
S Ellahham (5419_CR49) 2020; 133
G Ligabue (5419_CR24) 2020; 15
5419_CR9
RK Bommanna (5419_CR25) 2008; 32
5419_CR21
X Song (5419_CR51) 2019; 26
AL Beam (5419_CR1) 2018; 319
F Pesce (5419_CR37) 2016; 31
R Meza-Palacios (5419_CR53) 2017; 72
R Naumovic (5419_CR34) 2010; 64
L Zhang (5419_CR29) 2021; 21
FP Schena (5419_CR38) 2021; 99
T Chen (5419_CR41) 2019; 20
CC Kuo (5419_CR26) 2019; 2
TW Tervaert (5419_CR18) 2010; 21
T Katsuki (5419_CR55) 2018; 247
H Chang (5419_CR56) 2018; 40
D-H Kim (5419_CR28) 2021; 11
M Makino (5419_CR54) 2019; 9
R Coppo (5419_CR39) 2014; 86
P Zhang (5419_CR42) 2020; 12
Y Chen (5419_CR46) 2021; 52
SN Murphy (5419_CR50) 2010; 17
R Rajimehr (5419_CR45) 2002; 11
BJ Wolf (5419_CR47) 2016; 68
P Chagas (5419_CR13) 2020; 103
LN Helget (5419_CR48) 2021; 8
Y Liu (5419_CR40) 2018; 43
E Kang (5419_CR8) 2020; 21
DC Cattran (5419_CR17) 2009; 76
M Zhu (5419_CR31) 2021
References_xml – volume: 103
  start-page: 101808
  year: 2020
  ident: CR13
  article-title: Classification of glomerular hypercellularity using convolutional features and support vector machine
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101808
– volume: 17
  start-page: 229
  year: 2010
  end-page: 236
  ident: CR4
  article-title: An overview of MetaMap: historical perspective and recent advances
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2009.002733
– volume: 20
  start-page: 300
  year: 2019
  end-page: 309
  ident: CR41
  article-title: Prediction and Risk Stratification of Kidney Outcomes in IgA Nephropathy
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2019.02.016
– volume: 11
  start-page: 864
  year: 2021
  ident: CR28
  article-title: Classification of Chronic Kidney Disease in Sonography Using the GLCM and Artificial Neural Network
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11050864
– volume: 43
  start-page: 1852
  year: 2018
  end-page: 1864
  ident: CR40
  article-title: Prediction of ESRD in IgA Nephropathy Patients from an Asian Cohort: A Random Forest Model
  publication-title: Kidney Blood Press Res
  doi: 10.1159/000495818
– volume: 247
  start-page: 106
  year: 2018
  end-page: 110
  ident: CR55
  article-title: Risk Prediction of Diabetic Nephropathy via Interpretable Feature Extraction from EHR Using Convolutional Autoencoder
  publication-title: Stud Health Technol Inform
  doi: 10.3233/978-1-61499-852-5-106
– volume: 52
  start-page: 152
  year: 2021
  end-page: 160
  ident: CR46
  article-title: Machine Learning for Prediction and Risk Stratification of Lupus Nephritis Renal Flare
  publication-title: Am J Nephrol
  doi: 10.1159/000513566
– volume: 252
  start-page: 53
  year: 2020
  end-page: 64
  ident: CR12
  article-title: Identification of glomerular lesions and intrinsic glomerular cell types in kidney diseases via deep learning
  publication-title: J Pathology
  doi: 10.1002/path.5491
– volume: 21
  start-page: 556
  year: 2010
  end-page: 563
  ident: CR18
  article-title: Pathologic classification of diabetic nephropathy
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2010010010
– volume: 319
  start-page: 1317
  year: 2018
  end-page: 1318
  ident: CR1
  article-title: Big Data and Machine Learning in Health Care
  publication-title: JAMA
  doi: 10.1001/jama.2017.18391
– volume: S2319–4170
  start-page: 00111
  issue: 21
  year: 2021
  end-page: 116
  ident: CR22
  article-title: Glomerular disease classification and lesion identification by machine learning
  publication-title: Biomed J
  doi: 10.1016/j.bj.2021.08.011
– volume: 64
  start-page: 633
  year: 2010
  end-page: 638
  ident: CR34
  article-title: Application of artificial neural networks in estimating predictive factors and therapeutic efficacy in idiopathic membranous nephropathy
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2010.06.003
– volume: 99
  start-page: 1179
  year: 2021
  end-page: 1188
  ident: CR38
  article-title: Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobin A nephropathy
  publication-title: Kidney Int
  doi: 10.1016/j.kint.2020.07.046
– volume: 133
  start-page: 895
  year: 2020
  end-page: 900
  ident: CR49
  article-title: Artificial Intelligence: The Future for Diabetes Care
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2020.03.033
– volume: 21
  start-page: 115
  year: 2021
  ident: CR29
  article-title: Preliminary study on the application of renal ultrasonography radiomics in the classification of glomerulopathy
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-021-00647-8
– year: 2021
  ident: CR31
  article-title: Elastography ultrasound with machine learning improves the diagnostic performance of traditional ultrasound in predicting kidney fibrosis
  publication-title: J Formosan Med Ass
  doi: 10.1001/10.1016/j.jfma.2021.08.011
– ident: CR21
– volume: 9
  start-page: 11862
  year: 2019
  ident: CR54
  article-title: Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48263-5
– volume: 1
  start-page: 173
  year: 2021
  end-page: 179
  ident: CR7
  article-title: The Development and Use of an EHR-Linked Database for Glomerular Disease Research and Quality Initiatives
  publication-title: Glomerular Dis
  doi: 10.1159/000518187
– volume: 3
  start-page: 464
  year: 2018
  end-page: 475
  ident: CR10
  article-title: Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks
  publication-title: Kidney Int Rep
  doi: 10.1016/j.ekir.2017.11.002
– volume: 184
  start-page: 105273
  year: 2020
  ident: CR14
  article-title: Glomerulosclerosis identification in whole slide images using semantic segmentation
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105273
– volume: 72
  start-page: 335
  year: 2017
  end-page: 343
  ident: CR53
  article-title: Development of a fuzzy expert system for the nephropathy control assessment in patients with type 2 diabetes mellitus
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.10.053
– volume: 14
  start-page: 162
  year: 2013
  ident: CR52
  article-title: Using a multi-staged strategy based on machine learning and mathematical modeling to predict genotype-phenotype risk patterns in diabetic kidney disease: a prospective case–control cohort analysis
  publication-title: BMC Nephrol
  doi: 10.1186/1471-2369-14-162
– volume: 11
  start-page: 485
  year: 2002
  end-page: 492
  ident: CR45
  article-title: Prediction of lupus nephritis in patients with systemic lupus erythematosus using artificial neural networks
  publication-title: Lupus
  doi: 10.1191/0961203302lu226oa
– ident: CR9
– volume: 21
  start-page: 367
  year: 2020
  ident: CR8
  article-title: Biobanking for glomerular diseases: a study design and protocol for KOrea Renal biobank NEtwoRk System TOward NExt-generation analysis (KORNERSTONE)
  publication-title: BMC Nephrol
  doi: 10.1186/s12882-020-02016-z
– ident: CR5
– volume: 17
  start-page: 124
  year: 2010
  end-page: 130
  ident: CR50
  article-title: Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2)
  publication-title: JAMA
  doi: 10.1136/jamia.2009.000893
– volume: 86
  start-page: 828
  year: 2014
  end-page: 836
  ident: CR39
  article-title: Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments
  publication-title: Kidney Int
  doi: 10.1038/ki.2014.63
– volume: 12
  start-page: 230
  year: 2020
  ident: CR42
  article-title: IgA Nephropathy Prediction in Children with Machine Learning Algorithms
  publication-title: Future Internet
  doi: 10.3390/fi12120230
– volume: 4
  start-page: e2111176
  year: 2021
  ident: CR30
  article-title: Development and Validation of a Deep Learning Model to Quantify Interstitial Fibrosis and Tubular Atrophy From Kidney Ultrasonography Images
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2021.11176
– volume: 8
  start-page: 107479
  year: 2020
  end-page: 107497
  ident: CR6
  article-title: HealthAssistantBot: a personal health assistant for the Italian language
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000815
– volume: 30
  start-page: 1953
  year: 2019
  end-page: 1967
  ident: CR11
  article-title: Computational Segmentation and Classification of Diabetic Glomerulosclerosis
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2018121259
– volume: 99
  start-page: 86
  year: 2021
  end-page: 101
  ident: CR15
  article-title: Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains
  publication-title: Kidney Int
  doi: 10.1016/j.kint.2020.07.044
– volume: 76
  start-page: 546
  year: 2009
  end-page: 556
  ident: CR16
  article-title: The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility
  publication-title: Kidney Int
  doi: 10.1038/ki.2009.168
– volume: 32
  start-page: 65
  year: 2008
  end-page: 83
  ident: CR25
  article-title: A Hybrid Fuzzy-Neural System for Computer-Aided Diagnosis of Ultrasound Kidney Images Using Prominent Features
  publication-title: J Med Syst
  doi: 10.1007/s10916-007-9109-5
– volume: 2
  start-page: 29
  year: 2019
  ident: CR26
  article-title: Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0104-2
– volume: 14
  start-page: 1
  year: 2019
  end-page: 18
  ident: CR27
  article-title: Prediction of chronic kidney disease stages by renal ultrasound imaging
  publication-title: Enterp Inf Syst
  doi: 10.1080/17517575.2019.1597386
– volume: 40
  start-page: 4438
  year: 2013
  end-page: 4445
  ident: CR35
  article-title: An end stage kidney disease predictor based on an artificial neural networks ensemble
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.01.046
– volume: 31
  start-page: 80
  year: 2016
  end-page: 86
  ident: CR37
  article-title: Clinical decision support system for end-stage kidney disease risk estimation in IgA nephropathy patients
  publication-title: Nephrol Dial Transpl
  doi: 10.1093/ndt/gfv232
– volume: 14
  start-page: 451
  year: 2019
  end-page: 461
  ident: CR57
  article-title: Unsupervised pathology detection in medical images using conditional variational autoencoders
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-018-1898-0
– volume: 17
  start-page: 507
  year: 2010
  end-page: 513
  ident: CR3
  article-title: Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and application
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2009.001560
– volume: 12
  start-page: e0174200
  year: 2017
  ident: CR44
  article-title: Prediction of chronic damage in systemic lupus erythematosus by using machine-learning models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174200
– ident: CR23
– volume: 12
  start-page: 4884
  year: 2021
  ident: CR20
  article-title: Deep learning-based transformation of H&E stained tissues into special stains
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25221-2
– volume: 76
  start-page: 534
  year: 2009
  end-page: 545
  ident: CR17
  article-title: The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification
  publication-title: Kidney Int
  doi: 10.1038/ki.2009.243
– volume: 40
  start-page: 1182
  year: 2018
  end-page: 1194
  ident: CR56
  article-title: Unsupervised transfer learning via multiscale convolutional sparse coding for biomedical applications
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2656884
– volume: 66
  start-page: 278
  year: 2015
  end-page: 286
  ident: CR36
  article-title: Patient classification and outcome prediction in IgA nephropathy
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.09.003
– volume: 68
  start-page: 1955
  year: 2016
  end-page: 1963
  ident: CR47
  article-title: Development of Biomarker Models to Predict Outcomes in Lupus Nephritis
  publication-title: Arthr Rheum
  doi: 10.1002/art.39623
– volume: 375
  start-page: 1216
  year: 2016
  end-page: 1219
  ident: CR33
  article-title: Predicting the Future - Big Data, Machine Learning, and Clinical Medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1606181
– volume: 9
  start-page: 9617
  year: 2018
  ident: CR43
  article-title: Machine learning approaches to predict lupus disease activity from gene expression data
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45989-0
– volume: 26
  start-page: 242
  year: 2019
  end-page: 253
  ident: CR51
  article-title: Robust clinical marker identification for diabetic kidney disease with ensemble feature selection
  publication-title: J Am Med Informatics Ass
  doi: 10.1093/jamia/ocy165
– volume: 15
  start-page: 1445
  year: 2020
  end-page: 1454
  ident: CR24
  article-title: Evaluation of the Classification Accuracy of the Kidney Biopsy Direct Immunofluorescence through Convolutional Neural Networks
  publication-title: Clin J Am Soc Nephrol
  doi: 10.2215/CJN.03210320
– volume: 18
  start-page: 86
  year: 2015
  end-page: 92
  ident: CR32
  article-title: Using the landmark method for creating prediction models in large datasets derived from electronic health records
  publication-title: Health Care Manag Sci
  doi: 10.1007/s10729-014-9281-3
– volume: 189
  start-page: 1786
  year: 2019
  end-page: 1796
  ident: CR19
  article-title: Detection and Classification of Novel Renal Histologic Phenotypes Using Deep Neural Networks
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2019.05.019
– volume: 26
  start-page: 364
  year: 2019
  end-page: 379
  ident: CR2
  article-title: Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocy173
– volume: 8
  start-page: e000489
  year: 2021
  ident: CR48
  article-title: Development of a lupus nephritis suboptimal response prediction tool using renal histopathological and clinical laboratory variables at the time of diagnosis
  publication-title: Lupus Sci Med
  doi: 10.1136/lupus-2021-000489
– volume: 247
  start-page: 106
  year: 2018
  ident: 5419_CR55
  publication-title: Stud Health Technol Inform
  doi: 10.3233/978-1-61499-852-5-106
– volume: 76
  start-page: 534
  year: 2009
  ident: 5419_CR17
  publication-title: Kidney Int
  doi: 10.1038/ki.2009.243
– volume: 18
  start-page: 86
  year: 2015
  ident: 5419_CR32
  publication-title: Health Care Manag Sci
  doi: 10.1007/s10729-014-9281-3
– volume: 26
  start-page: 364
  year: 2019
  ident: 5419_CR2
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocy173
– volume: 103
  start-page: 101808
  year: 2020
  ident: 5419_CR13
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2020.101808
– volume: 52
  start-page: 152
  year: 2021
  ident: 5419_CR46
  publication-title: Am J Nephrol
  doi: 10.1159/000513566
– volume: 14
  start-page: 1
  year: 2019
  ident: 5419_CR27
  publication-title: Enterp Inf Syst
  doi: 10.1080/17517575.2019.1597386
– volume: 189
  start-page: 1786
  year: 2019
  ident: 5419_CR19
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2019.05.019
– volume: 76
  start-page: 546
  year: 2009
  ident: 5419_CR16
  publication-title: Kidney Int
  doi: 10.1038/ki.2009.168
– volume: 133
  start-page: 895
  year: 2020
  ident: 5419_CR49
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2020.03.033
– volume: 21
  start-page: 115
  year: 2021
  ident: 5419_CR29
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-021-00647-8
– volume: 17
  start-page: 229
  year: 2010
  ident: 5419_CR4
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2009.002733
– volume: 31
  start-page: 80
  year: 2016
  ident: 5419_CR37
  publication-title: Nephrol Dial Transpl
  doi: 10.1093/ndt/gfv232
– volume: S2319–4170
  start-page: 00111
  issue: 21
  year: 2021
  ident: 5419_CR22
  publication-title: Biomed J
  doi: 10.1016/j.bj.2021.08.011
– volume: 30
  start-page: 1953
  year: 2019
  ident: 5419_CR11
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2018121259
– volume: 319
  start-page: 1317
  year: 2018
  ident: 5419_CR1
  publication-title: JAMA
  doi: 10.1001/jama.2017.18391
– volume: 15
  start-page: 1445
  year: 2020
  ident: 5419_CR24
  publication-title: Clin J Am Soc Nephrol
  doi: 10.2215/CJN.03210320
– volume: 66
  start-page: 278
  year: 2015
  ident: 5419_CR36
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.09.003
– volume: 184
  start-page: 105273
  year: 2020
  ident: 5419_CR14
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105273
– volume: 12
  start-page: 4884
  year: 2021
  ident: 5419_CR20
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25221-2
– ident: 5419_CR21
– volume: 9
  start-page: 9617
  year: 2018
  ident: 5419_CR43
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45989-0
– volume: 68
  start-page: 1955
  year: 2016
  ident: 5419_CR47
  publication-title: Arthr Rheum
  doi: 10.1002/art.39623
– volume: 12
  start-page: e0174200
  year: 2017
  ident: 5419_CR44
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174200
– volume: 14
  start-page: 451
  year: 2019
  ident: 5419_CR57
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-018-1898-0
– volume: 14
  start-page: 162
  year: 2013
  ident: 5419_CR52
  publication-title: BMC Nephrol
  doi: 10.1186/1471-2369-14-162
– volume: 21
  start-page: 367
  year: 2020
  ident: 5419_CR8
  publication-title: BMC Nephrol
  doi: 10.1186/s12882-020-02016-z
– ident: 5419_CR9
  doi: 10.34067/KID.0002892021
– volume: 99
  start-page: 1179
  year: 2021
  ident: 5419_CR38
  publication-title: Kidney Int
  doi: 10.1016/j.kint.2020.07.046
– volume: 72
  start-page: 335
  year: 2017
  ident: 5419_CR53
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.10.053
– volume: 17
  start-page: 124
  year: 2010
  ident: 5419_CR50
  publication-title: JAMA
  doi: 10.1136/jamia.2009.000893
– volume: 17
  start-page: 507
  year: 2010
  ident: 5419_CR3
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2009.001560
– volume: 64
  start-page: 633
  year: 2010
  ident: 5419_CR34
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2010.06.003
– volume: 9
  start-page: 11862
  year: 2019
  ident: 5419_CR54
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48263-5
– ident: 5419_CR23
  doi: 10.1109/DICTA.2018.8615769
– volume: 2
  start-page: 29
  year: 2019
  ident: 5419_CR26
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0104-2
– volume: 86
  start-page: 828
  year: 2014
  ident: 5419_CR39
  publication-title: Kidney Int
  doi: 10.1038/ki.2014.63
– volume: 1
  start-page: 173
  year: 2021
  ident: 5419_CR7
  publication-title: Glomerular Dis
  doi: 10.1159/000518187
– volume: 11
  start-page: 485
  year: 2002
  ident: 5419_CR45
  publication-title: Lupus
  doi: 10.1191/0961203302lu226oa
– volume: 20
  start-page: 300
  year: 2019
  ident: 5419_CR41
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2019.02.016
– ident: 5419_CR5
– volume: 11
  start-page: 864
  year: 2021
  ident: 5419_CR28
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11050864
– volume: 8
  start-page: e000489
  year: 2021
  ident: 5419_CR48
  publication-title: Lupus Sci Med
  doi: 10.1136/lupus-2021-000489
– volume: 26
  start-page: 242
  year: 2019
  ident: 5419_CR51
  publication-title: J Am Med Informatics Ass
  doi: 10.1093/jamia/ocy165
– year: 2021
  ident: 5419_CR31
  publication-title: J Formosan Med Ass
  doi: 10.1001/10.1016/j.jfma.2021.08.011
– volume: 40
  start-page: 4438
  year: 2013
  ident: 5419_CR35
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.01.046
– volume: 40
  start-page: 1182
  year: 2018
  ident: 5419_CR56
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2656884
– volume: 43
  start-page: 1852
  year: 2018
  ident: 5419_CR40
  publication-title: Kidney Blood Press Res
  doi: 10.1159/000495818
– volume: 3
  start-page: 464
  year: 2018
  ident: 5419_CR10
  publication-title: Kidney Int Rep
  doi: 10.1016/j.ekir.2017.11.002
– volume: 32
  start-page: 65
  year: 2008
  ident: 5419_CR25
  publication-title: J Med Syst
  doi: 10.1007/s10916-007-9109-5
– volume: 4
  start-page: e2111176
  year: 2021
  ident: 5419_CR30
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2021.11176
– volume: 21
  start-page: 556
  year: 2010
  ident: 5419_CR18
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2010010010
– volume: 12
  start-page: 230
  year: 2020
  ident: 5419_CR42
  publication-title: Future Internet
  doi: 10.3390/fi12120230
– volume: 99
  start-page: 86
  year: 2021
  ident: 5419_CR15
  publication-title: Kidney Int
  doi: 10.1016/j.kint.2020.07.044
– volume: 252
  start-page: 53
  year: 2020
  ident: 5419_CR12
  publication-title: J Pathology
  doi: 10.1002/path.5491
– volume: 375
  start-page: 1216
  year: 2016
  ident: 5419_CR33
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1606181
– volume: 8
  start-page: 107479
  year: 2020
  ident: 5419_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000815
SSID ssj0008586
Score 2.425788
SecondaryResourceType review_article
Snippet In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2533
SubjectTerms Algorithms
Artificial intelligence
Biopsy
Cellular telephones
Clinical medicine
Computers
Deep learning
Glomerulonephritis
Kidney diseases
Learning algorithms
Medicine
Medicine & Public Health
Nephrology
Pathology
Patients
Pediatrics
Phenotypes
Review
Ultrasonic imaging
Urology
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50FfHi-1FdpYI3rbTpI-lRRPHiIr7YW0nSRBbWrmx3_f1O2rQqq4IeS6ZJmGQy32QyMwDH0qdS5iE1N_eRFxGNMseT0ENdoWUahCISvCo2QXs91u-ntzYorGxeuzcuyeqkboPdjClHPfOkAGFGkHpsHhZQ3TEjjnf3T-35y-KqviOa6kgZBX0bKvN9H1_V0QzGnPGPVmrnavV_E16DFQsz3fN6X6zDnCo2YOnGOtI34cy01Mkj3MGnrJz44T4PRy9qbJ6nutZ9U27B49Xlw8W1Z0sneBJHmnh5ogLmC-bHhuE6jdNYCU2U0gigIsa50iqmkRYIeCgRCYIggcCAMy6F8BECbEOnGBVqF1xBeUI0pbmM84iShHPt8zQhEg1JX-XUgaDhYCZtXnFT3mKYtRmRK0ZkyIisYkTGHDhp_3mts2r8St1tFiazElZmhCIQM2CTOHDUNqNsGIcHL9RoijR4uBgLkqYO7NQL2g5n6gIkfojTP21W76Pzn-ey9zfyfVgmJl6iCl7sQmcynqoDWJRvk0E5Pqz27Tu56-N6
  priority: 102
  providerName: Springer Nature
Title Artificial intelligence in glomerular diseases
URI https://link.springer.com/article/10.1007/s00467-021-05419-8
https://www.ncbi.nlm.nih.gov/pubmed/35266037
https://www.proquest.com/docview/2715905752
https://www.proquest.com/docview/2638014079
Volume 37
WOSCitedRecordID wos000766449800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1432-198X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008586
  issn: 0931-041X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIMSF92O8VCRuUGiztklPCNAmLkxoPLRblaQJQoINtsHvx86yAkJw4RIpStq6TuJ8jmMb4EBHXOuywenkPgkTZnHNyawR4l5hdR43VKKkSzbB223R7ebX_sBt6K9VTmSiE9RlX9MZ-QnjuPESuGCnL68hZY0i66pPoTENMxSpLKnBzHmzfd2pZLFIXa5HVNtRaU7irnebcc5zpBrykK4oIGyJ81B835p-4M0ftlK3BbUW_0v8Eix48BmcjWfLMkyZ3grMXXnz-iocU8s4pETw-CVWJ1aCh6f-sxnQpdXAG3WGa3DXat5eXIY-oUKo8QdHYZmZWERKRCkNg83TPDXKMmMswqpESGmsSXliFcIgzlSG0EghXJBCaqUiBAbrUOv1e2YTAsVlxiznpU7LhLNMShvJPGMa1cvIlLwO8YSXhfbRxinpxVNRxUl2_C-Q_4XjfyHqcFg98zKOtfFn750Jrwu_7obFJ6PrsF8144ohM4jsmf4b9kGRQ3olz-uwMR7a6nOULSCLGkj-0WSsP1_-Oy1bf9OyDfOMvCacC-MO1EaDN7MLs_p99Dgc7ME079xT2eWuFHt-FmPtKqKyc3P_AWhK86M
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqEovUAq0y6tBghMEEufh-FBVqAWBgBVCgPYWbMdGSLBLdxeq_il-IzPOAxCCG4ceI-cxyoy_mfG8AFZ0wLUuIk4n97EfM4t7TqaRj7rCahFGKlbSDZvg7XbW6YijEbiva2EorbLGRAfURU_TGfkm46h4ybhgP2_--DQ1iqKr9QiNUiz2zb-_6LINfuz9Rv6uMrazffJr16-mCvg6DsXQL1ITZoHKgoRosSIRiVGWGWPRtogzKY01CY-tQluAM5WifaBQZ8pMaqUCRs2XEPLHEMdDSiHjx2cN8meJmywZiAhd9DjsVEU6rlSPHFHuU0IEGkmh8LPnivCFdfsiMusU3s7k__arPsNEZVp7W-VemIIR0_0CHw-r5IFp2KCVsmGGd_mkEyleeBdXvWvTp5RcrwpZDWbg9F2onYXRbq9rvoGnuEyZ5bzQSRFzlkppAylSptF5DkzBWxDWvMt11UudRnpc5U0XaMfvHPmdO37nWQvWmmduyk4ib969UPM2r1BlkD8ytgXLzTLiAQV5ZNf0bvEeBFTymrlowddSlJrP0SyENIiQ_PVath5f_jotc2_T8h3Gd08OD_KDvfb-PHxiVB_iijUXYHTYvzWL8EHfDS8H_SW3Wzw4f2-ZewDRkUrQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZT9wwEB4hQKgvUOjBcjVI7VOb4jiH44cKIWAFgq5Q1Ur7ltqOjZBgF3YXEH-tv64zzgEIlTce-hg5xygznsNzfAAfDRPGlLGgk_skTLjDPaeyOERb4YyMYp1o5cEmRK-X9_vyZAr-NL0wVFbZ6ESvqMuhoTPyLS7Q8JJzwbdcXRZxstfdvrwKCUGKMq0NnEYlIkf27hbDt_G3wz3k9SfOu_s_dw_CGmEgNEkkJ2GZ2ShnOmcp0eVkKlOrHbfWoZ-R5EpZZ1OROI1-geA6Q19Bo_1UuTJaM06DmFD9zwhKDlLZIPvRWoE89SiTTMYYridRv27Y8W17FJSKkIoj0GGKZJg_NopPPN0nWVpv_LoL__Nvew3ztcsd7FR7ZBGm7GAJ5r7XRQVv4CutVIM0grMHE0rxIjg9H17YEZXqBnUqa_wWfr0Ite9gejAc2GUItFAZd0KUJi0TwTOlHFMy4waDamZL0YGo4WNh6hnrBPVxXrTToT3vC-R94Xlf5B343D5zWU0YefbutYbPRa1txsU9kzuw2S6jnqDkjxrY4TXeg4qWomkhO_C-Eqv2c4SRkLEYyf_SyNn9y_9Ny8rztHyAORS14viwd7QKrzi1jfgezjWYnoyu7TrMmpvJ2Xi04TdOAL9fWuT-AlGjU20
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+glomerular+diseases&rft.jtitle=Pediatric+nephrology+%28Berlin%2C+West%29&rft.au=Schena%2C+Francesco+P&rft.au=Magistroni%2C+Riccardo&rft.au=Narducci%2C+Fedelucio&rft.au=Abbrescia%2C+Daniela+I&rft.date=2022-11-01&rft.issn=1432-198X&rft.eissn=1432-198X&rft.volume=37&rft.issue=11&rft.spage=2533&rft_id=info:doi/10.1007%2Fs00467-021-05419-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0931-041X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0931-041X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0931-041X&client=summon