Artificial intelligence in glomerular diseases
In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language pr...
Uložené v:
| Vydané v: | Pediatric nephrology (Berlin, West) Ročník 37; číslo 11; s. 2533 - 2545 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0931-041X, 1432-198X, 1432-198X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts. |
|---|---|
| AbstractList | In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts.In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts. In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts. |
| Author | Abbrescia, Daniela I. Di Noia, Tommaso Narducci, Fedelucio Schena, Francesco P. Magistroni, Riccardo Anelli, Vito W. |
| Author_xml | – sequence: 1 givenname: Francesco P. surname: Schena fullname: Schena, Francesco P. email: paolo.schena@uniba.it organization: Department of Emergency and Organ Transplantation, University of Bari – sequence: 2 givenname: Riccardo surname: Magistroni fullname: Magistroni, Riccardo organization: Department of Nephrology, University of Modena – sequence: 3 givenname: Fedelucio surname: Narducci fullname: Narducci, Fedelucio organization: Department of Electrical and Information Engineering, Polytechnic of Bari – sequence: 4 givenname: Daniela I. surname: Abbrescia fullname: Abbrescia, Daniela I. organization: Schena Foundation – sequence: 5 givenname: Vito W. surname: Anelli fullname: Anelli, Vito W. organization: Department of Electrical and Information Engineering, Polytechnic of Bari – sequence: 6 givenname: Tommaso surname: Di Noia fullname: Di Noia, Tommaso organization: Department of Electrical and Information Engineering, Polytechnic of Bari |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35266037$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kMtqwzAQRUVpaR7tD3RRAt1043QkWQ8vQ-gLAt20kJ2QnXFQcOxUshf9-yp1QiGLrIZhzh0uZ0Qu66ZGQu4oTCmAegoAqVQJMJqASGmW6AsypClnCc308pIMIePxlNLlgIxC2ACAFlpekwEXTErgakimM9-60hXOVhNXt1hVbo11gXGZrKtmi76rrJ-sXEAbMNyQq9JWAW8Pc0y-Xp4_52_J4uP1fT5bJEXs0SYriVRDrkEUGeVlJjKBeckQS87SVFuLJQqVlrmQoFguJeM5UGG1LfIcWMbH5LH_u_PNd4ehNVsXitjO1th0wTDJNdAU1B59OEE3Tefr2M4wRUUGQgkWqfsD1eVbXJmdd1vrf8zRRAR0DxS-CcFjaQrX2tY1deutqwwFs5dueukmSjd_0o2OUXYSPX4_G-J9KES4XqP_r30m9QsjfJH- |
| CitedBy_id | crossref_primary_10_1186_s12882_025_04253_6 crossref_primary_10_3390_jcm11195919 crossref_primary_10_1007_s00467_024_06510_6 crossref_primary_10_1007_s11560_022_00609_3 crossref_primary_10_1093_ckj_sfad182 crossref_primary_10_1007_s00292_024_01300_1 crossref_primary_10_1053_j_akdh_2022_11_001 crossref_primary_10_1093_clinchem_hvad136 crossref_primary_10_1109_ACCESS_2024_3413595 |
| Cites_doi | 10.1016/j.artmed.2020.101808 10.1136/jamia.2009.002733 10.1053/j.ajkd.2019.02.016 10.3390/diagnostics11050864 10.1159/000495818 10.3233/978-1-61499-852-5-106 10.1159/000513566 10.1002/path.5491 10.1681/ASN.2010010010 10.1001/jama.2017.18391 10.1016/j.bj.2021.08.011 10.1016/j.biopha.2010.06.003 10.1016/j.kint.2020.07.046 10.1016/j.amjmed.2020.03.033 10.1186/s12880-021-00647-8 10.1001/10.1016/j.jfma.2021.08.011 10.1038/s41598-019-48263-5 10.1159/000518187 10.1016/j.ekir.2017.11.002 10.1016/j.cmpb.2019.105273 10.1016/j.eswa.2016.10.053 10.1186/1471-2369-14-162 10.1191/0961203302lu226oa 10.1186/s12882-020-02016-z 10.1136/jamia.2009.000893 10.1038/ki.2014.63 10.3390/fi12120230 10.1001/jamanetworkopen.2021.11176 10.1109/ACCESS.2020.3000815 10.1681/ASN.2018121259 10.1016/j.kint.2020.07.044 10.1038/ki.2009.168 10.1007/s10916-007-9109-5 10.1038/s41746-019-0104-2 10.1080/17517575.2019.1597386 10.1016/j.eswa.2013.01.046 10.1093/ndt/gfv232 10.1007/s11548-018-1898-0 10.1136/jamia.2009.001560 10.1371/journal.pone.0174200 10.1038/s41467-021-25221-2 10.1038/ki.2009.243 10.1109/TPAMI.2017.2656884 10.1016/j.compbiomed.2015.09.003 10.1002/art.39623 10.1056/NEJMp1606181 10.1038/s41598-019-45989-0 10.1093/jamia/ocy165 10.2215/CJN.03210320 10.1007/s10729-014-9281-3 10.1016/j.ajpath.2019.05.019 10.1093/jamia/ocy173 10.1136/lupus-2021-000489 10.34067/KID.0002892021 10.1109/DICTA.2018.8615769 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to International Pediatric Nephrology Association 2022 2022. The Author(s), under exclusive licence to International Pediatric Nephrology Association. The Author(s), under exclusive licence to International Pediatric Nephrology Association 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to International Pediatric Nephrology Association 2022 – notice: 2022. The Author(s), under exclusive licence to International Pediatric Nephrology Association. – notice: The Author(s), under exclusive licence to International Pediatric Nephrology Association 2022. |
| DBID | AAYXX CITATION NPM 3V. 7QP 7RV 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU FYUFA GHDGH K9- K9. KB0 M0R M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1007/s00467-021-05419-8 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) Consumer Health Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Consumer Health Database ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Middle East (New) PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-198X |
| EndPage | 2545 |
| ExternalDocumentID | 35266037 10_1007_s00467_021_05419_8 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Ministero dell’Istruzione, dell’Università e della Ricerca grantid: PON RI ARS01_00876 funderid: http://dx.doi.org/10.13039/501100003407 – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca grantid: PON RI ARS01_00876 |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5QI 5RE 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHVE ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BKNYI BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBB EBC EBD EBLON EBS EBX EHN EIHBH EIOEI EJD EMB EMK EMOBN EN4 ENC EPL EPT ESBYG ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEA IHE IHR IHW IJ- IKXTQ IMOTQ INH INR IOF ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K9- KDC KOV KOW KPH L7B LAS LLZTM M0R M1P M4Y MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS Q~Q R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7U Z82 Z83 Z87 Z8O Z8V Z8W Z91 ZGI ZMTXR ZOVNA ZXP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY NPM 7QP 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c419t-d6e180b805c913f9595ebf2eef32448aaefe574fb56072b6623b015a8acbb0293 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766449800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0931-041X 1432-198X |
| IngestDate | Sun Nov 09 14:07:28 EST 2025 Wed Nov 05 04:12:24 EST 2025 Wed Feb 19 02:27:09 EST 2025 Tue Nov 18 21:27:16 EST 2025 Sat Nov 29 06:32:30 EST 2025 Fri Feb 21 02:45:49 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Glomerulonephritis Machine Learning Algorithm Clinical Outcome Deep Learning Algorithm Artificial Intelligence Natural Language Processing |
| Language | English |
| License | 2022. The Author(s), under exclusive licence to International Pediatric Nephrology Association. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-d6e180b805c913f9595ebf2eef32448aaefe574fb56072b6623b015a8acbb0293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | http://hdl.handle.net/11380/1286813 |
| PMID | 35266037 |
| PQID | 2715905752 |
| PQPubID | 30509 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2638014079 proquest_journals_2715905752 pubmed_primary_35266037 crossref_citationtrail_10_1007_s00467_021_05419_8 crossref_primary_10_1007_s00467_021_05419_8 springer_journals_10_1007_s00467_021_05419_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Berlin |
| PublicationSubtitle | Journal of the International Pediatric Nephrology Association |
| PublicationTitle | Pediatric nephrology (Berlin, West) |
| PublicationTitleAbbrev | Pediatr Nephrol |
| PublicationTitleAlternate | Pediatr Nephrol |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Diciolla, Binetti, Di Noia, Pesce (CR36) 2015; 66 Savova, Masanz, Ogren, Zheng (CR3) 2010; 17 Beam, Kohane (CR1) 2018; 319 Ginley, Lutnick, Jen, Fogo (CR11) 2019; 30 Roberts, Cook, Troyanov, Alpers (CR16) 2009; 76 Schena, Anelli, Trotta, Di Noia (CR38) 2021; 99 Pesce, Diciolla, Binetti, Naso (CR37) 2016; 31 Chagas, Souza, Araújo, Aldeman (CR13) 2020; 103 Rajimehr, Farsiu, Montaser Kouhsari, Bidari (CR45) 2002; 11 Obermeyer, Emanuel (CR33) 2016; 375 Liu, Zhang, Liu, Tan (CR40) 2018; 43 Song, Waitman, Hu, Yu (CR51) 2019; 26 Helget, Dillon, Wolf, Parks (CR48) 2021; 8 Chang, Han, Zhong, Snijders (CR56) 2018; 40 CR5 Aronson, Lang (CR4) 2010; 17 CR9 Wells, Chagin, Li, Hu (CR32) 2015; 18 de Haan, Zhang, Zuckerman, Liu (CR20) 2021; 12 Koleck, Theresa, Bourne, Bakken (CR2) 2019; 26 Bommanna, Madheswaran, Thyagarajah (CR25) 2008; 32 Coppo, Troyanov, Bellur, Cattran (CR39) 2014; 86 Zhang, Chen, Feng, Guo (CR29) 2021; 21 Zeng, Nan, Xu, Lei (CR12) 2020; 252 Wolf, Spainhour, Arthur (CR47) 2016; 68 Ellahham (CR49) 2020; 133 Katsuki, Ono, Koseki, Kudo (CR55) 2018; 247 Tervaert, Mooyaart, Amann, Cohen (CR18) 2010; 21 Kuo, Chang, Liu, Lin (CR26) 2019; 2 Sheehan, Mawe, Cianciolo, Korstanje, Mahoney (CR19) 2019; 189 Cattran, Coppo, Cook, Fehally (CR17) 2009; 76 Naumovic, Furuncic, Jovanovic, Stosovic (CR34) 2010; 64 Zhang, Wang, Shi (CR42) 2020; 12 Polignano, Narducci, Iovine, Musto (CR6) 2020; 8 Eikstadt, Desmond, Lindner, Chen (CR7) 2021; 1 Makino, Yoshimoto, Ono, Itoko (CR54) 2019; 9 Chen, Li, Li, Xia (CR41) 2019; 20 Leung, Wang, Ma, Luk (CR52) 2013; 14 Murphy, Weber, Mendis, Gainer (CR50) 2010; 17 Ligabue, Pollastri, Fontana, Leonelli (CR24) 2020; 15 Zhu, Ma, Yang, Tang (CR31) 2021 Ceccarelli, Sciandrone, Perricone, Galvan (CR44) 2017; 12 Bueno, Fernandez-Carrobles, Gonzalez-Lopez, Deniz (CR14) 2020; 184 Yang, Leea, Wangb, Shun-Chen (CR22) 2021; S2319–4170 Chen, Pai, Hsu, Lee (CR27) 2019; 14 Kolachalama, Singh, Lin, Mun (CR10) 2018; 3 CR23 Chen, Huang, Chen, Liang (CR46) 2021; 52 CR21 Meza-Palacios, Aguilar-Lasserre, Ureña-Bogarín, Vázquez-Rodríguez (CR53) 2017; 72 Athavale, Hart, Itteera, Cimbaluk (CR30) 2021; 4 Kang, Kim, Kim, Kim (CR8) 2020; 21 Uzunova, Schultz, Handels, Ehrhardt (CR57) 2019; 14 Kim, Ye (CR28) 2021; 11 Jayapandian, Chen, Janowczyk, Palmer (CR15) 2021; 99 Kegerreis, Catalina, Bachali, Geraci (CR43) 2018; 9 Di Noia, Ostuni, Pesce, Binetti (CR35) 2013; 40 G Bueno (5419_CR14) 2020; 184 S Sheehan (5419_CR19) 2019; 189 K Yang (5419_CR22) 2021; S2319–4170 M Polignano (5419_CR6) 2020; 8 IS Roberts (5419_CR16) 2009; 76 T Di Noia (5419_CR35) 2013; 40 M Diciolla (5419_CR36) 2015; 66 F Ceccarelli (5419_CR44) 2017; 12 TA Koleck (5419_CR2) 2019; 26 AM Athavale (5419_CR30) 2021; 4 B Kegerreis (5419_CR43) 2018; 9 K de Haan (5419_CR20) 2021; 12 VB Kolachalama (5419_CR10) 2018; 3 Z Obermeyer (5419_CR33) 2016; 375 RKK Leung (5419_CR52) 2013; 14 H Uzunova (5419_CR57) 2019; 14 CP Jayapandian (5419_CR15) 2021; 99 CJ Chen (5419_CR27) 2019; 14 5419_CR5 C Zeng (5419_CR12) 2020; 252 AR Aronson (5419_CR4) 2010; 17 B Ginley (5419_CR11) 2019; 30 5419_CR23 RN Eikstadt (5419_CR7) 2021; 1 GK Savova (5419_CR3) 2010; 17 BJ Wells (5419_CR32) 2015; 18 S Ellahham (5419_CR49) 2020; 133 G Ligabue (5419_CR24) 2020; 15 5419_CR9 RK Bommanna (5419_CR25) 2008; 32 5419_CR21 X Song (5419_CR51) 2019; 26 AL Beam (5419_CR1) 2018; 319 F Pesce (5419_CR37) 2016; 31 R Meza-Palacios (5419_CR53) 2017; 72 R Naumovic (5419_CR34) 2010; 64 L Zhang (5419_CR29) 2021; 21 FP Schena (5419_CR38) 2021; 99 T Chen (5419_CR41) 2019; 20 CC Kuo (5419_CR26) 2019; 2 TW Tervaert (5419_CR18) 2010; 21 T Katsuki (5419_CR55) 2018; 247 H Chang (5419_CR56) 2018; 40 D-H Kim (5419_CR28) 2021; 11 M Makino (5419_CR54) 2019; 9 R Coppo (5419_CR39) 2014; 86 P Zhang (5419_CR42) 2020; 12 Y Chen (5419_CR46) 2021; 52 SN Murphy (5419_CR50) 2010; 17 R Rajimehr (5419_CR45) 2002; 11 BJ Wolf (5419_CR47) 2016; 68 P Chagas (5419_CR13) 2020; 103 LN Helget (5419_CR48) 2021; 8 Y Liu (5419_CR40) 2018; 43 E Kang (5419_CR8) 2020; 21 DC Cattran (5419_CR17) 2009; 76 M Zhu (5419_CR31) 2021 |
| References_xml | – volume: 103 start-page: 101808 year: 2020 ident: CR13 article-title: Classification of glomerular hypercellularity using convolutional features and support vector machine publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101808 – volume: 17 start-page: 229 year: 2010 end-page: 236 ident: CR4 article-title: An overview of MetaMap: historical perspective and recent advances publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2009.002733 – volume: 20 start-page: 300 year: 2019 end-page: 309 ident: CR41 article-title: Prediction and Risk Stratification of Kidney Outcomes in IgA Nephropathy publication-title: Am J Kidney Dis doi: 10.1053/j.ajkd.2019.02.016 – volume: 11 start-page: 864 year: 2021 ident: CR28 article-title: Classification of Chronic Kidney Disease in Sonography Using the GLCM and Artificial Neural Network publication-title: Diagnostics doi: 10.3390/diagnostics11050864 – volume: 43 start-page: 1852 year: 2018 end-page: 1864 ident: CR40 article-title: Prediction of ESRD in IgA Nephropathy Patients from an Asian Cohort: A Random Forest Model publication-title: Kidney Blood Press Res doi: 10.1159/000495818 – volume: 247 start-page: 106 year: 2018 end-page: 110 ident: CR55 article-title: Risk Prediction of Diabetic Nephropathy via Interpretable Feature Extraction from EHR Using Convolutional Autoencoder publication-title: Stud Health Technol Inform doi: 10.3233/978-1-61499-852-5-106 – volume: 52 start-page: 152 year: 2021 end-page: 160 ident: CR46 article-title: Machine Learning for Prediction and Risk Stratification of Lupus Nephritis Renal Flare publication-title: Am J Nephrol doi: 10.1159/000513566 – volume: 252 start-page: 53 year: 2020 end-page: 64 ident: CR12 article-title: Identification of glomerular lesions and intrinsic glomerular cell types in kidney diseases via deep learning publication-title: J Pathology doi: 10.1002/path.5491 – volume: 21 start-page: 556 year: 2010 end-page: 563 ident: CR18 article-title: Pathologic classification of diabetic nephropathy publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2010010010 – volume: 319 start-page: 1317 year: 2018 end-page: 1318 ident: CR1 article-title: Big Data and Machine Learning in Health Care publication-title: JAMA doi: 10.1001/jama.2017.18391 – volume: S2319–4170 start-page: 00111 issue: 21 year: 2021 end-page: 116 ident: CR22 article-title: Glomerular disease classification and lesion identification by machine learning publication-title: Biomed J doi: 10.1016/j.bj.2021.08.011 – volume: 64 start-page: 633 year: 2010 end-page: 638 ident: CR34 article-title: Application of artificial neural networks in estimating predictive factors and therapeutic efficacy in idiopathic membranous nephropathy publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2010.06.003 – volume: 99 start-page: 1179 year: 2021 end-page: 1188 ident: CR38 article-title: Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobin A nephropathy publication-title: Kidney Int doi: 10.1016/j.kint.2020.07.046 – volume: 133 start-page: 895 year: 2020 end-page: 900 ident: CR49 article-title: Artificial Intelligence: The Future for Diabetes Care publication-title: Am J Med doi: 10.1016/j.amjmed.2020.03.033 – volume: 21 start-page: 115 year: 2021 ident: CR29 article-title: Preliminary study on the application of renal ultrasonography radiomics in the classification of glomerulopathy publication-title: BMC Med Imaging doi: 10.1186/s12880-021-00647-8 – year: 2021 ident: CR31 article-title: Elastography ultrasound with machine learning improves the diagnostic performance of traditional ultrasound in predicting kidney fibrosis publication-title: J Formosan Med Ass doi: 10.1001/10.1016/j.jfma.2021.08.011 – ident: CR21 – volume: 9 start-page: 11862 year: 2019 ident: CR54 article-title: Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning publication-title: Sci Rep doi: 10.1038/s41598-019-48263-5 – volume: 1 start-page: 173 year: 2021 end-page: 179 ident: CR7 article-title: The Development and Use of an EHR-Linked Database for Glomerular Disease Research and Quality Initiatives publication-title: Glomerular Dis doi: 10.1159/000518187 – volume: 3 start-page: 464 year: 2018 end-page: 475 ident: CR10 article-title: Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks publication-title: Kidney Int Rep doi: 10.1016/j.ekir.2017.11.002 – volume: 184 start-page: 105273 year: 2020 ident: CR14 article-title: Glomerulosclerosis identification in whole slide images using semantic segmentation publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.105273 – volume: 72 start-page: 335 year: 2017 end-page: 343 ident: CR53 article-title: Development of a fuzzy expert system for the nephropathy control assessment in patients with type 2 diabetes mellitus publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.053 – volume: 14 start-page: 162 year: 2013 ident: CR52 article-title: Using a multi-staged strategy based on machine learning and mathematical modeling to predict genotype-phenotype risk patterns in diabetic kidney disease: a prospective case–control cohort analysis publication-title: BMC Nephrol doi: 10.1186/1471-2369-14-162 – volume: 11 start-page: 485 year: 2002 end-page: 492 ident: CR45 article-title: Prediction of lupus nephritis in patients with systemic lupus erythematosus using artificial neural networks publication-title: Lupus doi: 10.1191/0961203302lu226oa – ident: CR9 – volume: 21 start-page: 367 year: 2020 ident: CR8 article-title: Biobanking for glomerular diseases: a study design and protocol for KOrea Renal biobank NEtwoRk System TOward NExt-generation analysis (KORNERSTONE) publication-title: BMC Nephrol doi: 10.1186/s12882-020-02016-z – ident: CR5 – volume: 17 start-page: 124 year: 2010 end-page: 130 ident: CR50 article-title: Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2) publication-title: JAMA doi: 10.1136/jamia.2009.000893 – volume: 86 start-page: 828 year: 2014 end-page: 836 ident: CR39 article-title: Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments publication-title: Kidney Int doi: 10.1038/ki.2014.63 – volume: 12 start-page: 230 year: 2020 ident: CR42 article-title: IgA Nephropathy Prediction in Children with Machine Learning Algorithms publication-title: Future Internet doi: 10.3390/fi12120230 – volume: 4 start-page: e2111176 year: 2021 ident: CR30 article-title: Development and Validation of a Deep Learning Model to Quantify Interstitial Fibrosis and Tubular Atrophy From Kidney Ultrasonography Images publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2021.11176 – volume: 8 start-page: 107479 year: 2020 end-page: 107497 ident: CR6 article-title: HealthAssistantBot: a personal health assistant for the Italian language publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000815 – volume: 30 start-page: 1953 year: 2019 end-page: 1967 ident: CR11 article-title: Computational Segmentation and Classification of Diabetic Glomerulosclerosis publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2018121259 – volume: 99 start-page: 86 year: 2021 end-page: 101 ident: CR15 article-title: Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains publication-title: Kidney Int doi: 10.1016/j.kint.2020.07.044 – volume: 76 start-page: 546 year: 2009 end-page: 556 ident: CR16 article-title: The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility publication-title: Kidney Int doi: 10.1038/ki.2009.168 – volume: 32 start-page: 65 year: 2008 end-page: 83 ident: CR25 article-title: A Hybrid Fuzzy-Neural System for Computer-Aided Diagnosis of Ultrasound Kidney Images Using Prominent Features publication-title: J Med Syst doi: 10.1007/s10916-007-9109-5 – volume: 2 start-page: 29 year: 2019 ident: CR26 article-title: Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning publication-title: NPJ Digit Med doi: 10.1038/s41746-019-0104-2 – volume: 14 start-page: 1 year: 2019 end-page: 18 ident: CR27 article-title: Prediction of chronic kidney disease stages by renal ultrasound imaging publication-title: Enterp Inf Syst doi: 10.1080/17517575.2019.1597386 – volume: 40 start-page: 4438 year: 2013 end-page: 4445 ident: CR35 article-title: An end stage kidney disease predictor based on an artificial neural networks ensemble publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.01.046 – volume: 31 start-page: 80 year: 2016 end-page: 86 ident: CR37 article-title: Clinical decision support system for end-stage kidney disease risk estimation in IgA nephropathy patients publication-title: Nephrol Dial Transpl doi: 10.1093/ndt/gfv232 – volume: 14 start-page: 451 year: 2019 end-page: 461 ident: CR57 article-title: Unsupervised pathology detection in medical images using conditional variational autoencoders publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-018-1898-0 – volume: 17 start-page: 507 year: 2010 end-page: 513 ident: CR3 article-title: Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and application publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2009.001560 – volume: 12 start-page: e0174200 year: 2017 ident: CR44 article-title: Prediction of chronic damage in systemic lupus erythematosus by using machine-learning models publication-title: PLoS One doi: 10.1371/journal.pone.0174200 – ident: CR23 – volume: 12 start-page: 4884 year: 2021 ident: CR20 article-title: Deep learning-based transformation of H&E stained tissues into special stains publication-title: Nat Commun doi: 10.1038/s41467-021-25221-2 – volume: 76 start-page: 534 year: 2009 end-page: 545 ident: CR17 article-title: The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification publication-title: Kidney Int doi: 10.1038/ki.2009.243 – volume: 40 start-page: 1182 year: 2018 end-page: 1194 ident: CR56 article-title: Unsupervised transfer learning via multiscale convolutional sparse coding for biomedical applications publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2656884 – volume: 66 start-page: 278 year: 2015 end-page: 286 ident: CR36 article-title: Patient classification and outcome prediction in IgA nephropathy publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.09.003 – volume: 68 start-page: 1955 year: 2016 end-page: 1963 ident: CR47 article-title: Development of Biomarker Models to Predict Outcomes in Lupus Nephritis publication-title: Arthr Rheum doi: 10.1002/art.39623 – volume: 375 start-page: 1216 year: 2016 end-page: 1219 ident: CR33 article-title: Predicting the Future - Big Data, Machine Learning, and Clinical Medicine publication-title: N Engl J Med doi: 10.1056/NEJMp1606181 – volume: 9 start-page: 9617 year: 2018 ident: CR43 article-title: Machine learning approaches to predict lupus disease activity from gene expression data publication-title: Sci Rep doi: 10.1038/s41598-019-45989-0 – volume: 26 start-page: 242 year: 2019 end-page: 253 ident: CR51 article-title: Robust clinical marker identification for diabetic kidney disease with ensemble feature selection publication-title: J Am Med Informatics Ass doi: 10.1093/jamia/ocy165 – volume: 15 start-page: 1445 year: 2020 end-page: 1454 ident: CR24 article-title: Evaluation of the Classification Accuracy of the Kidney Biopsy Direct Immunofluorescence through Convolutional Neural Networks publication-title: Clin J Am Soc Nephrol doi: 10.2215/CJN.03210320 – volume: 18 start-page: 86 year: 2015 end-page: 92 ident: CR32 article-title: Using the landmark method for creating prediction models in large datasets derived from electronic health records publication-title: Health Care Manag Sci doi: 10.1007/s10729-014-9281-3 – volume: 189 start-page: 1786 year: 2019 end-page: 1796 ident: CR19 article-title: Detection and Classification of Novel Renal Histologic Phenotypes Using Deep Neural Networks publication-title: Am J Pathol doi: 10.1016/j.ajpath.2019.05.019 – volume: 26 start-page: 364 year: 2019 end-page: 379 ident: CR2 article-title: Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocy173 – volume: 8 start-page: e000489 year: 2021 ident: CR48 article-title: Development of a lupus nephritis suboptimal response prediction tool using renal histopathological and clinical laboratory variables at the time of diagnosis publication-title: Lupus Sci Med doi: 10.1136/lupus-2021-000489 – volume: 247 start-page: 106 year: 2018 ident: 5419_CR55 publication-title: Stud Health Technol Inform doi: 10.3233/978-1-61499-852-5-106 – volume: 76 start-page: 534 year: 2009 ident: 5419_CR17 publication-title: Kidney Int doi: 10.1038/ki.2009.243 – volume: 18 start-page: 86 year: 2015 ident: 5419_CR32 publication-title: Health Care Manag Sci doi: 10.1007/s10729-014-9281-3 – volume: 26 start-page: 364 year: 2019 ident: 5419_CR2 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocy173 – volume: 103 start-page: 101808 year: 2020 ident: 5419_CR13 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2020.101808 – volume: 52 start-page: 152 year: 2021 ident: 5419_CR46 publication-title: Am J Nephrol doi: 10.1159/000513566 – volume: 14 start-page: 1 year: 2019 ident: 5419_CR27 publication-title: Enterp Inf Syst doi: 10.1080/17517575.2019.1597386 – volume: 189 start-page: 1786 year: 2019 ident: 5419_CR19 publication-title: Am J Pathol doi: 10.1016/j.ajpath.2019.05.019 – volume: 76 start-page: 546 year: 2009 ident: 5419_CR16 publication-title: Kidney Int doi: 10.1038/ki.2009.168 – volume: 133 start-page: 895 year: 2020 ident: 5419_CR49 publication-title: Am J Med doi: 10.1016/j.amjmed.2020.03.033 – volume: 21 start-page: 115 year: 2021 ident: 5419_CR29 publication-title: BMC Med Imaging doi: 10.1186/s12880-021-00647-8 – volume: 17 start-page: 229 year: 2010 ident: 5419_CR4 publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2009.002733 – volume: 31 start-page: 80 year: 2016 ident: 5419_CR37 publication-title: Nephrol Dial Transpl doi: 10.1093/ndt/gfv232 – volume: S2319–4170 start-page: 00111 issue: 21 year: 2021 ident: 5419_CR22 publication-title: Biomed J doi: 10.1016/j.bj.2021.08.011 – volume: 30 start-page: 1953 year: 2019 ident: 5419_CR11 publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2018121259 – volume: 319 start-page: 1317 year: 2018 ident: 5419_CR1 publication-title: JAMA doi: 10.1001/jama.2017.18391 – volume: 15 start-page: 1445 year: 2020 ident: 5419_CR24 publication-title: Clin J Am Soc Nephrol doi: 10.2215/CJN.03210320 – volume: 66 start-page: 278 year: 2015 ident: 5419_CR36 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.09.003 – volume: 184 start-page: 105273 year: 2020 ident: 5419_CR14 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.105273 – volume: 12 start-page: 4884 year: 2021 ident: 5419_CR20 publication-title: Nat Commun doi: 10.1038/s41467-021-25221-2 – ident: 5419_CR21 – volume: 9 start-page: 9617 year: 2018 ident: 5419_CR43 publication-title: Sci Rep doi: 10.1038/s41598-019-45989-0 – volume: 68 start-page: 1955 year: 2016 ident: 5419_CR47 publication-title: Arthr Rheum doi: 10.1002/art.39623 – volume: 12 start-page: e0174200 year: 2017 ident: 5419_CR44 publication-title: PLoS One doi: 10.1371/journal.pone.0174200 – volume: 14 start-page: 451 year: 2019 ident: 5419_CR57 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-018-1898-0 – volume: 14 start-page: 162 year: 2013 ident: 5419_CR52 publication-title: BMC Nephrol doi: 10.1186/1471-2369-14-162 – volume: 21 start-page: 367 year: 2020 ident: 5419_CR8 publication-title: BMC Nephrol doi: 10.1186/s12882-020-02016-z – ident: 5419_CR9 doi: 10.34067/KID.0002892021 – volume: 99 start-page: 1179 year: 2021 ident: 5419_CR38 publication-title: Kidney Int doi: 10.1016/j.kint.2020.07.046 – volume: 72 start-page: 335 year: 2017 ident: 5419_CR53 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.10.053 – volume: 17 start-page: 124 year: 2010 ident: 5419_CR50 publication-title: JAMA doi: 10.1136/jamia.2009.000893 – volume: 17 start-page: 507 year: 2010 ident: 5419_CR3 publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2009.001560 – volume: 64 start-page: 633 year: 2010 ident: 5419_CR34 publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2010.06.003 – volume: 9 start-page: 11862 year: 2019 ident: 5419_CR54 publication-title: Sci Rep doi: 10.1038/s41598-019-48263-5 – ident: 5419_CR23 doi: 10.1109/DICTA.2018.8615769 – volume: 2 start-page: 29 year: 2019 ident: 5419_CR26 publication-title: NPJ Digit Med doi: 10.1038/s41746-019-0104-2 – volume: 86 start-page: 828 year: 2014 ident: 5419_CR39 publication-title: Kidney Int doi: 10.1038/ki.2014.63 – volume: 1 start-page: 173 year: 2021 ident: 5419_CR7 publication-title: Glomerular Dis doi: 10.1159/000518187 – volume: 11 start-page: 485 year: 2002 ident: 5419_CR45 publication-title: Lupus doi: 10.1191/0961203302lu226oa – volume: 20 start-page: 300 year: 2019 ident: 5419_CR41 publication-title: Am J Kidney Dis doi: 10.1053/j.ajkd.2019.02.016 – ident: 5419_CR5 – volume: 11 start-page: 864 year: 2021 ident: 5419_CR28 publication-title: Diagnostics doi: 10.3390/diagnostics11050864 – volume: 8 start-page: e000489 year: 2021 ident: 5419_CR48 publication-title: Lupus Sci Med doi: 10.1136/lupus-2021-000489 – volume: 26 start-page: 242 year: 2019 ident: 5419_CR51 publication-title: J Am Med Informatics Ass doi: 10.1093/jamia/ocy165 – year: 2021 ident: 5419_CR31 publication-title: J Formosan Med Ass doi: 10.1001/10.1016/j.jfma.2021.08.011 – volume: 40 start-page: 4438 year: 2013 ident: 5419_CR35 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.01.046 – volume: 40 start-page: 1182 year: 2018 ident: 5419_CR56 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2656884 – volume: 43 start-page: 1852 year: 2018 ident: 5419_CR40 publication-title: Kidney Blood Press Res doi: 10.1159/000495818 – volume: 3 start-page: 464 year: 2018 ident: 5419_CR10 publication-title: Kidney Int Rep doi: 10.1016/j.ekir.2017.11.002 – volume: 32 start-page: 65 year: 2008 ident: 5419_CR25 publication-title: J Med Syst doi: 10.1007/s10916-007-9109-5 – volume: 4 start-page: e2111176 year: 2021 ident: 5419_CR30 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2021.11176 – volume: 21 start-page: 556 year: 2010 ident: 5419_CR18 publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2010010010 – volume: 12 start-page: 230 year: 2020 ident: 5419_CR42 publication-title: Future Internet doi: 10.3390/fi12120230 – volume: 99 start-page: 86 year: 2021 ident: 5419_CR15 publication-title: Kidney Int doi: 10.1016/j.kint.2020.07.044 – volume: 252 start-page: 53 year: 2020 ident: 5419_CR12 publication-title: J Pathology doi: 10.1002/path.5491 – volume: 375 start-page: 1216 year: 2016 ident: 5419_CR33 publication-title: N Engl J Med doi: 10.1056/NEJMp1606181 – volume: 8 start-page: 107479 year: 2020 ident: 5419_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000815 |
| SSID | ssj0008586 |
| Score | 2.425788 |
| SecondaryResourceType | review_article |
| Snippet | In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2533 |
| SubjectTerms | Algorithms Artificial intelligence Biopsy Cellular telephones Clinical medicine Computers Deep learning Glomerulonephritis Kidney diseases Learning algorithms Medicine Medicine & Public Health Nephrology Pathology Patients Pediatrics Phenotypes Review Ultrasonic imaging Urology |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50FfHi-1FdpYI3rbTpI-lRRPHiIr7YW0nSRBbWrmx3_f1O2rQqq4IeS6ZJmGQy32QyMwDH0qdS5iE1N_eRFxGNMseT0ENdoWUahCISvCo2QXs91u-ntzYorGxeuzcuyeqkboPdjClHPfOkAGFGkHpsHhZQ3TEjjnf3T-35y-KqviOa6kgZBX0bKvN9H1_V0QzGnPGPVmrnavV_E16DFQsz3fN6X6zDnCo2YOnGOtI34cy01Mkj3MGnrJz44T4PRy9qbJ6nutZ9U27B49Xlw8W1Z0sneBJHmnh5ogLmC-bHhuE6jdNYCU2U0gigIsa50iqmkRYIeCgRCYIggcCAMy6F8BECbEOnGBVqF1xBeUI0pbmM84iShHPt8zQhEg1JX-XUgaDhYCZtXnFT3mKYtRmRK0ZkyIisYkTGHDhp_3mts2r8St1tFiazElZmhCIQM2CTOHDUNqNsGIcHL9RoijR4uBgLkqYO7NQL2g5n6gIkfojTP21W76Pzn-ey9zfyfVgmJl6iCl7sQmcynqoDWJRvk0E5Pqz27Tu56-N6 priority: 102 providerName: Springer Nature |
| Title | Artificial intelligence in glomerular diseases |
| URI | https://link.springer.com/article/10.1007/s00467-021-05419-8 https://www.ncbi.nlm.nih.gov/pubmed/35266037 https://www.proquest.com/docview/2715905752 https://www.proquest.com/docview/2638014079 |
| Volume | 37 |
| WOSCitedRecordID | wos000766449800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1432-198X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008586 issn: 0931-041X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIMSF92O8VCRuUGiztklPCNAmLkxoPLRblaQJQoINtsHvx86yAkJw4RIpStq6TuJ8jmMb4EBHXOuywenkPgkTZnHNyawR4l5hdR43VKKkSzbB223R7ebX_sBt6K9VTmSiE9RlX9MZ-QnjuPESuGCnL68hZY0i66pPoTENMxSpLKnBzHmzfd2pZLFIXa5HVNtRaU7irnebcc5zpBrykK4oIGyJ81B835p-4M0ftlK3BbUW_0v8Eix48BmcjWfLMkyZ3grMXXnz-iocU8s4pETw-CVWJ1aCh6f-sxnQpdXAG3WGa3DXat5eXIY-oUKo8QdHYZmZWERKRCkNg83TPDXKMmMswqpESGmsSXliFcIgzlSG0EghXJBCaqUiBAbrUOv1e2YTAsVlxiznpU7LhLNMShvJPGMa1cvIlLwO8YSXhfbRxinpxVNRxUl2_C-Q_4XjfyHqcFg98zKOtfFn750Jrwu_7obFJ6PrsF8144ohM4jsmf4b9kGRQ3olz-uwMR7a6nOULSCLGkj-0WSsP1_-Oy1bf9OyDfOMvCacC-MO1EaDN7MLs_p99Dgc7ME079xT2eWuFHt-FmPtKqKyc3P_AWhK86M |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqEovUAq0y6tBghMEEufh-FBVqAWBgBVCgPYWbMdGSLBLdxeq_il-IzPOAxCCG4ceI-cxyoy_mfG8AFZ0wLUuIk4n97EfM4t7TqaRj7rCahFGKlbSDZvg7XbW6YijEbiva2EorbLGRAfURU_TGfkm46h4ybhgP2_--DQ1iqKr9QiNUiz2zb-_6LINfuz9Rv6uMrazffJr16-mCvg6DsXQL1ITZoHKgoRosSIRiVGWGWPRtogzKY01CY-tQluAM5WifaBQZ8pMaqUCRs2XEPLHEMdDSiHjx2cN8meJmywZiAhd9DjsVEU6rlSPHFHuU0IEGkmh8LPnivCFdfsiMusU3s7k__arPsNEZVp7W-VemIIR0_0CHw-r5IFp2KCVsmGGd_mkEyleeBdXvWvTp5RcrwpZDWbg9F2onYXRbq9rvoGnuEyZ5bzQSRFzlkppAylSptF5DkzBWxDWvMt11UudRnpc5U0XaMfvHPmdO37nWQvWmmduyk4ib969UPM2r1BlkD8ytgXLzTLiAQV5ZNf0bvEeBFTymrlowddSlJrP0SyENIiQ_PVath5f_jotc2_T8h3Gd08OD_KDvfb-PHxiVB_iijUXYHTYvzWL8EHfDS8H_SW3Wzw4f2-ZewDRkUrQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZT9wwEB4hQKgvUOjBcjVI7VOb4jiH44cKIWAFgq5Q1Ur7ltqOjZBgF3YXEH-tv64zzgEIlTce-hg5xygznsNzfAAfDRPGlLGgk_skTLjDPaeyOERb4YyMYp1o5cEmRK-X9_vyZAr-NL0wVFbZ6ESvqMuhoTPyLS7Q8JJzwbdcXRZxstfdvrwKCUGKMq0NnEYlIkf27hbDt_G3wz3k9SfOu_s_dw_CGmEgNEkkJ2GZ2ShnOmcp0eVkKlOrHbfWoZ-R5EpZZ1OROI1-geA6Q19Bo_1UuTJaM06DmFD9zwhKDlLZIPvRWoE89SiTTMYYridRv27Y8W17FJSKkIoj0GGKZJg_NopPPN0nWVpv_LoL__Nvew3ztcsd7FR7ZBGm7GAJ5r7XRQVv4CutVIM0grMHE0rxIjg9H17YEZXqBnUqa_wWfr0Ite9gejAc2GUItFAZd0KUJi0TwTOlHFMy4waDamZL0YGo4WNh6hnrBPVxXrTToT3vC-R94Xlf5B343D5zWU0YefbutYbPRa1txsU9kzuw2S6jnqDkjxrY4TXeg4qWomkhO_C-Eqv2c4SRkLEYyf_SyNn9y_9Ny8rztHyAORS14viwd7QKrzi1jfgezjWYnoyu7TrMmpvJ2Xi04TdOAL9fWuT-AlGjU20 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+glomerular+diseases&rft.jtitle=Pediatric+nephrology+%28Berlin%2C+West%29&rft.au=Schena%2C+Francesco+P&rft.au=Magistroni%2C+Riccardo&rft.au=Narducci%2C+Fedelucio&rft.au=Abbrescia%2C+Daniela+I&rft.date=2022-11-01&rft.issn=1432-198X&rft.eissn=1432-198X&rft.volume=37&rft.issue=11&rft.spage=2533&rft_id=info:doi/10.1007%2Fs00467-021-05419-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0931-041X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0931-041X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0931-041X&client=summon |