Macroeconomic indicators alone can predict the monthly closing price of major U.S. indices: Insights from artificial intelligence, time-series analysis and hybrid models

[Display omitted] •A 2-stage method is proposed to predict the 1-month ahead price for 13 U.S. indices.•Ensembles of macroeconomic factors alone are more predictive than time-series models.•Errors in time-series models are explained by the ensembles of macroeconomic factors.•A decision support syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 71; S. 685 - 697
Hauptverfasser: Weng, Bin, Martinez, Waldyn, Tsai, Yao-Te, Li, Chen, Lu, Lin, Barth, James R., Megahed, Fadel M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2018
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •A 2-stage method is proposed to predict the 1-month ahead price for 13 U.S. indices.•Ensembles of macroeconomic factors alone are more predictive than time-series models.•Errors in time-series models are explained by the ensembles of macroeconomic factors.•A decision support system for predicting the monthly stock price is presented.•The code is freely available for investors and researchers. This paper proposes a two-stage approach that can be used to investigate whether the information hidden in macroeconomic variables (alone) can be used to accurately predict the one-month ahead price for major U.S stock and sector indices. Stage 1 is constructed to evaluate the hypothesis that the price for different indices is driven by different economic indicators. It consists of three phases. In phase I, the data is automatically acquired using freely available APIs (application programming interfaces) and prepared for analysis. Phase II reduces the set of potential predictors without the loss of information through several variable selection methods. The third phase employs four ensemble models and three time-series models for prediction. The prediction performance of the seven models are compared using the Mean Absolute Percent Error (and two additional metrics). If the hypothesis were to be true, one expects that the performance of the ensemble models to outperform the time-series models since the information in the economy is more important than the information in previous prices. In Stage 2, a hybrid approach of the recurring neural network used for time-series prediction (i.e., the LSTM) and the ensemble models is constructed to examine the secondary hypothesis that the residuals from the time-series models are not random and can be explained by the macroeconomic indicators. To test the two hypotheses, the monthly closing prices for 13 U.S. stock and sector indices and the corresponding values for 23 macroeconomic indicators were collected from 01/1992–10/2016. Based on the case study, the four ensembles prediction performance were superior to that of the three time-series models. The MAPE of the best model for a given index was < 1.87%. The Stage 2 results also show that the three evaluation metrics (RMSE, MAPE and MAE) can be typically improved by 25–50% by incorporating the information hidden in the macroeconomic indicators (through the ensemble approach). Thus, this paper shows that, for the analysis period and the indices studied, the macro-economic indicators are leading predictors of the price of 13 U.S. sector indices.
AbstractList [Display omitted] •A 2-stage method is proposed to predict the 1-month ahead price for 13 U.S. indices.•Ensembles of macroeconomic factors alone are more predictive than time-series models.•Errors in time-series models are explained by the ensembles of macroeconomic factors.•A decision support system for predicting the monthly stock price is presented.•The code is freely available for investors and researchers. This paper proposes a two-stage approach that can be used to investigate whether the information hidden in macroeconomic variables (alone) can be used to accurately predict the one-month ahead price for major U.S stock and sector indices. Stage 1 is constructed to evaluate the hypothesis that the price for different indices is driven by different economic indicators. It consists of three phases. In phase I, the data is automatically acquired using freely available APIs (application programming interfaces) and prepared for analysis. Phase II reduces the set of potential predictors without the loss of information through several variable selection methods. The third phase employs four ensemble models and three time-series models for prediction. The prediction performance of the seven models are compared using the Mean Absolute Percent Error (and two additional metrics). If the hypothesis were to be true, one expects that the performance of the ensemble models to outperform the time-series models since the information in the economy is more important than the information in previous prices. In Stage 2, a hybrid approach of the recurring neural network used for time-series prediction (i.e., the LSTM) and the ensemble models is constructed to examine the secondary hypothesis that the residuals from the time-series models are not random and can be explained by the macroeconomic indicators. To test the two hypotheses, the monthly closing prices for 13 U.S. stock and sector indices and the corresponding values for 23 macroeconomic indicators were collected from 01/1992–10/2016. Based on the case study, the four ensembles prediction performance were superior to that of the three time-series models. The MAPE of the best model for a given index was < 1.87%. The Stage 2 results also show that the three evaluation metrics (RMSE, MAPE and MAE) can be typically improved by 25–50% by incorporating the information hidden in the macroeconomic indicators (through the ensemble approach). Thus, this paper shows that, for the analysis period and the indices studied, the macro-economic indicators are leading predictors of the price of 13 U.S. sector indices.
Author Li, Chen
Tsai, Yao-Te
Martinez, Waldyn
Barth, James R.
Megahed, Fadel M.
Weng, Bin
Lu, Lin
Author_xml – sequence: 1
  givenname: Bin
  surname: Weng
  fullname: Weng, Bin
  email: bzw0018@auburn.edu
  organization: Department of Industrial & Systems Engineering, Auburn University, AL 36849, USA
– sequence: 2
  givenname: Waldyn
  surname: Martinez
  fullname: Martinez, Waldyn
  email: martinwg@miamioh.edu
  organization: Farmer School of Business, Miami University, Oxford, OH 45056, USA
– sequence: 3
  givenname: Yao-Te
  surname: Tsai
  fullname: Tsai, Yao-Te
  email: yaottsai@fcu.edu.tw
  organization: Department of International Business, Feng Chia University, Taiwan 40724, ROC
– sequence: 4
  givenname: Chen
  surname: Li
  fullname: Li, Chen
  email: czl0053@auburn.edu
  organization: Department of Agricultural Economics, Auburn University, AL 36849, USA
– sequence: 5
  givenname: Lin
  surname: Lu
  fullname: Lu, Lin
  email: lzl0032@auburn.edu
  organization: Department of Industrial & Systems Engineering, Auburn University, AL 36849, USA
– sequence: 6
  givenname: James R.
  surname: Barth
  fullname: Barth, James R.
  email: barthjr@auburn.edu
  organization: Raymond J. Harbert College of Business, Auburn University, AL 36849, USA
– sequence: 7
  givenname: Fadel M.
  orcidid: 0000-0003-2194-5110
  surname: Megahed
  fullname: Megahed, Fadel M.
  email: fmegahed@miamioh.edu
  organization: Farmer School of Business, Miami University, OH 45056, USA
BookMark eNp9kMFu3CAQhlGVSk3SvEBOPEDtgo0NrnqpoqaNlKqHJmfEwrA7KwwVoEr7SH3LYG1PPYQLo4FvRv93RS5iikDILWc9Z3z-eOxNSbYfGFc9kz0bxBtyyZUcumVW_KLV06w6sYj5Hbkq5cgatAzqkvz9YWxOYFNMK1qK0aE1NeVCTWgrqDWR_s7QupXWA9A1xXoIJ2pDKhj37Q0t0OTpao4p0-f-V38eAuUTfYgF94daqM9ppSZX9GjRhPajQgi4h2jhA624QlcgI7St0YRTwa1w9HDaZXRtp4NQ3pO33oQCN__ua_J8__Xp7nv3-PPbw92Xx84KvtTO2t0iRgA5g59G0UIy6YdxXCbRjhS7RXlnpF2UUnyadtJL5YTzchBmmr0cr8lwntu8lJLB65ZxNfmkOdObbH3Um2y9ydZM6ia7Qeo_yGI1FZutbDC8jn4-oy0j_EHIuljcxDjMYKt2CV_DXwB7raDW
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106422
crossref_primary_10_1016_j_asoc_2022_109519
crossref_primary_10_3233_HIS_190266
crossref_primary_10_32604_cmc_2021_012302
crossref_primary_10_3846_jbem_2020_13641
crossref_primary_10_1108_IJPPM_12_2023_0676
crossref_primary_10_3390_math8101640
crossref_primary_10_1016_j_asoc_2021_107649
crossref_primary_10_3390_math9212646
crossref_primary_10_3390_axioms12090835
crossref_primary_10_1016_j_technovation_2024_103067
crossref_primary_10_1016_j_techfore_2023_122979
crossref_primary_10_48175_IJETIR_6012
crossref_primary_10_1007_s42044_022_00120_x
crossref_primary_10_3389_fpsyg_2022_870777
crossref_primary_10_1007_s13132_023_01183_2
crossref_primary_10_3390_pr9071157
crossref_primary_10_1016_j_asoc_2019_105837
crossref_primary_10_1016_j_matpr_2021_06_153
crossref_primary_10_1016_j_physa_2019_122272
crossref_primary_10_1080_23270012_2019_1570365
crossref_primary_10_1016_j_asoc_2022_109642
crossref_primary_10_1109_ACCESS_2020_3015966
Cites_doi 10.1016/j.asoc.2010.10.001
10.1016/j.eswa.2005.06.024
10.1214/09-SS054
10.1016/j.eswa.2011.02.068
10.1016/j.dss.2010.08.028
10.1257/000282803322156954
10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
10.1109/BigData.2015.7364089
10.1023/A:1010933404324
10.1016/j.dss.2012.11.012
10.1162/neco.1997.9.8.1735
10.3905/joi.2011.20.4.089
10.2469/faj.v49.n4.21
10.1016/j.apenergy.2012.04.001
10.1016/j.eswa.2014.10.031
10.1016/j.jocs.2010.12.007
10.1016/j.eswa.2008.07.006
10.1002/fut.3990130605
10.1016/j.dss.2016.02.007
10.1016/j.eswa.2013.06.071
10.1093/rfs/15.3.751
10.1016/j.omega.2004.07.024
10.5539/ijef.v9n11p100
10.1016/j.eswa.2008.02.025
10.1016/j.omega.2011.07.008
10.1080/15427560701381028
10.1109/WIIAT.2008.309
10.1257/089533003321164958
10.5539/mas.v3n12p28
10.1016/S0925-2312(01)00702-0
10.1016/j.dss.2013.10.005
10.1016/S0925-2312(03)00372-2
10.1016/j.asoc.2015.11.026
10.1016/j.apergo.2017.02.001
10.1007/s11104-010-0425-z
10.1086/294743
10.1371/journal.pone.0188107
10.1016/j.dss.2016.10.005
10.1016/S0378-4266(02)00262-5
10.1086/296344
10.1016/S0148-2963(03)00043-2
10.1162/neco.1994.6.6.1289
10.1093/rfs/3.2.281
10.1016/j.eneco.2008.04.003
10.1016/j.cor.2004.03.016
10.1613/jair.614
10.1016/j.dss.2014.07.003
10.1016/j.asoc.2012.09.024
10.1016/S0140-9883(99)00020-1
10.1111/j.1468-2354.2009.00568.x
10.1257/.41.2.478
10.1207/s15427579jpfm0603_4
10.1023/A:1018054314350
10.1016/j.dss.2012.12.013
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.07.024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 697
ExternalDocumentID 10_1016_j_asoc_2018_07_024
S1568494618304125
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c419t-ccb943ee76ef53492807f23395444474b98fda7c9888155b7f78d4df724a56f73
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445126100045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:05:02 EST 2025
Tue Nov 18 22:39:58 EST 2025
Tue Jul 16 04:31:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Long short-term memory (LSTM) networks
GARCH
Ensembles
ARIMA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c419t-ccb943ee76ef53492807f23395444474b98fda7c9888155b7f78d4df724a56f73
ORCID 0000-0003-2194-5110
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_asoc_2018_07_024
crossref_citationtrail_10_1016_j_asoc_2018_07_024
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_07_024
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References de Oliveira, Nobre, Zarate (bib0330) 2013; 40
Hochreiter, Schmidhuber (bib0160) 1997; 9
Bollen, Mao, Zeng (bib0035) 2011; 2
Ahangar, Yahyazadehfar, Pournaghshband (bib0155) 2010; 7
Ou, Wang (bib0100) 2009; 3
Pyo, Lee, Cha, Jang (bib0120) 2017; 12
Ican, Çelik (bib0085) 2017; 9
Sadaei, Enayatifar, Lee, Mahmud (bib0135) 2016; 40
Flannery, Protopapadakis (bib0215) 2002; 15
Tsai, Lin, Yen, Chen (bib0110) 2011; 11
Mahajan, Dey, Haque (bib0220) 2008
Opitz, Maclin (bib0290) 1999
Fama (bib0005) 1965; 38
Hajizadeh, Ardakani, Shahrabi (bib0075) 2010; 2
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization
Szegö (bib0395) 2002; 26
Hyndman, Khandakar (bib0350) 2007
Huang, Nakamori, Wang (bib0095) 2005; 32
Lai, Fan, Huang, Chang (bib0315) 2009; 36
Rahman, Sidek, Tafri (bib0200) 2009; 3
Hyndman, O’Hara-Wild, Bergmeir, Razbash, Wang (bib0345) 2017
Kazem, Sharifi, Hussain, Saberi, Hussain (bib0385) 2013; 13
Sadorsky (bib0180) 1999; 21
Case, Quigley, Shiller (bib0195) 2005; 5
Quinlan (bib0280) 1996; vol. 1
Gottschlich, Hinz (bib0390) 2014; 59
Chen, Roll, Ross (bib0210) 1986
Ryan, Ulrich (bib0230) 2017
Grudnitski, Osburn (bib0140) 1993; 13
.
McTaggart, Daroczi, Leung (bib0235) 2016
Box, Jenkins, Reinsel, Ljung (bib0355) 2015
Kiersz (bib0040) 2015
Patel, Shah, Thakkar, Kotecha (bib0130) 2015; 42
Park, Ratti (bib0185) 2008; 30
Malkiel (bib0015) 2003; 17
Prechter, Parker (bib0030) 2007; 8
Akita, Yoshihara, Matsubara, Uehara (bib0165) 2016
Kilian, Park (bib0190) 2009; 50
Hamao, Masulis, Ng (bib0205) 1990; 3
L. Breiman, Bias, variance, and arcing classifiers, Technical Report 460.
Dag, Topuz, Oztekin, Bulur, Megahed (bib0245) 2016; 86
Ghalanos (bib0360) 2018
Drucker, Cortes, Jackel, LeCun, Vapnik (bib0265) 1994; 6
Nofsinger (bib0025) 2005; 6
Vaisla, Bhatt (bib0080) 2010; 2
Zhang (bib0370) 2003; 50
Atsalakis, Valavanis (bib0070) 2009; 36
Tsai, Hsiao (bib0105) 2010; 50
Da Silva, Hruschka, Hruschka (bib0115) 2014; 66
Arlot, Celisse (bib0250) 2010; 4
Guresen, Kayakutlu, Daim (bib0325) 2011; 38
Pai, Lin (bib0375) 2005; 33
Smith (bib0020) 2003; 93
Kim (bib0090) 2003; 55
Kuhn (bib0260) 2008; 28
Schapire, Freund, Bartlett, Lee (bib0285) 1998; 26
Loomis (bib0045) 2012
Breiman (bib0300) 2001; 45
Johnson, Watson (bib0225) 2011; 20
H. Jia, Investigation into the effectiveness of long short term memory networks for stock price prediction
Wiesmeier, Barthold, Blank, Kögel-Knabner (bib0320) 2011; 340
Enke, Thawornwong (bib0065) 2005; 29
Schumaker (bib0335) 2013; 54
Wang, Wang, Zhang, Guo (bib0055) 2012; 40
Cootner (bib0010) 1964
Breiman (bib0270) 1996; 24
Maclin, Opitz (bib0305) 2011; 11
Poon, Granger (bib0060) 2003; 41
Chen, Zhou, Dai (bib0175) 2015
Liu, Tian, Li (bib0380) 2012; 98
Taylor (bib0340) 2000; 19
Meinshausen (bib0310) 2006; 7
Kryzanowski, Galler, Wright (bib0145) 1993; 49
Maman, Yazdi, Cavuoto, Megahed (bib0400) 2017; 65
Lewis (bib0050) 2015
Kao, Chiu, Lu, Chang (bib0125) 2013; 54
Quinlan (bib0240) 2014
Hamid, Iqbal (bib0150) 2004; 57
Dag, Oztekin, Yucel, Bulur, Megahed (bib0255) 2017; 94
Dietterich (bib0295) 2000
Szegö (10.1016/j.asoc.2018.07.024_bib0395) 2002; 26
Ican (10.1016/j.asoc.2018.07.024_bib0085) 2017; 9
10.1016/j.asoc.2018.07.024_bib0170
Vaisla (10.1016/j.asoc.2018.07.024_bib0080) 2010; 2
Case (10.1016/j.asoc.2018.07.024_bib0195) 2005; 5
Flannery (10.1016/j.asoc.2018.07.024_bib0215) 2002; 15
Kilian (10.1016/j.asoc.2018.07.024_bib0190) 2009; 50
Breiman (10.1016/j.asoc.2018.07.024_bib0300) 2001; 45
Zhang (10.1016/j.asoc.2018.07.024_bib0370) 2003; 50
Loomis (10.1016/j.asoc.2018.07.024_bib0045) 2012
Huang (10.1016/j.asoc.2018.07.024_bib0095) 2005; 32
Chen (10.1016/j.asoc.2018.07.024_bib0175) 2015
Rahman (10.1016/j.asoc.2018.07.024_bib0200) 2009; 3
Arlot (10.1016/j.asoc.2018.07.024_bib0250) 2010; 4
Ou (10.1016/j.asoc.2018.07.024_bib0100) 2009; 3
Pai (10.1016/j.asoc.2018.07.024_bib0375) 2005; 33
McTaggart (10.1016/j.asoc.2018.07.024_bib0235) 2016
Kazem (10.1016/j.asoc.2018.07.024_bib0385) 2013; 13
Gottschlich (10.1016/j.asoc.2018.07.024_bib0390) 2014; 59
Mahajan (10.1016/j.asoc.2018.07.024_bib0220) 2008
Meinshausen (10.1016/j.asoc.2018.07.024_bib0310) 2006; 7
Schumaker (10.1016/j.asoc.2018.07.024_bib0335) 2013; 54
Smith (10.1016/j.asoc.2018.07.024_bib0020) 2003; 93
Ryan (10.1016/j.asoc.2018.07.024_bib0230) 2017
Maclin (10.1016/j.asoc.2018.07.024_bib0305) 2011; 11
Prechter (10.1016/j.asoc.2018.07.024_bib0030) 2007; 8
Patel (10.1016/j.asoc.2018.07.024_bib0130) 2015; 42
Liu (10.1016/j.asoc.2018.07.024_bib0380) 2012; 98
Atsalakis (10.1016/j.asoc.2018.07.024_bib0070) 2009; 36
Hyndman (10.1016/j.asoc.2018.07.024_bib0345) 2017
Wang (10.1016/j.asoc.2018.07.024_bib0055) 2012; 40
Poon (10.1016/j.asoc.2018.07.024_bib0060) 2003; 41
Dag (10.1016/j.asoc.2018.07.024_bib0255) 2017; 94
Opitz (10.1016/j.asoc.2018.07.024_bib0290) 1999
Tsai (10.1016/j.asoc.2018.07.024_bib0105) 2010; 50
Drucker (10.1016/j.asoc.2018.07.024_bib0265) 1994; 6
Malkiel (10.1016/j.asoc.2018.07.024_bib0015) 2003; 17
Hamid (10.1016/j.asoc.2018.07.024_bib0150) 2004; 57
Breiman (10.1016/j.asoc.2018.07.024_bib0270) 1996; 24
Guresen (10.1016/j.asoc.2018.07.024_bib0325) 2011; 38
Hochreiter (10.1016/j.asoc.2018.07.024_bib0160) 1997; 9
Bollen (10.1016/j.asoc.2018.07.024_bib0035) 2011; 2
Johnson (10.1016/j.asoc.2018.07.024_bib0225) 2011; 20
Grudnitski (10.1016/j.asoc.2018.07.024_bib0140) 1993; 13
Sadaei (10.1016/j.asoc.2018.07.024_bib0135) 2016; 40
Akita (10.1016/j.asoc.2018.07.024_bib0165) 2016
Kiersz (10.1016/j.asoc.2018.07.024_bib0040) 2015
Kuhn (10.1016/j.asoc.2018.07.024_bib0260) 2008; 28
Taylor (10.1016/j.asoc.2018.07.024_bib0340) 2000; 19
Kim (10.1016/j.asoc.2018.07.024_bib0090) 2003; 55
Chen (10.1016/j.asoc.2018.07.024_bib0210) 1986
10.1016/j.asoc.2018.07.024_bib0275
Da Silva (10.1016/j.asoc.2018.07.024_bib0115) 2014; 66
Quinlan (10.1016/j.asoc.2018.07.024_bib0280) 1996; vol. 1
Lewis (10.1016/j.asoc.2018.07.024_bib0050) 2015
Ahangar (10.1016/j.asoc.2018.07.024_bib0155) 2010; 7
Dietterich (10.1016/j.asoc.2018.07.024_bib0295) 2000
Box (10.1016/j.asoc.2018.07.024_bib0355) 2015
Ghalanos (10.1016/j.asoc.2018.07.024_bib0360) 2018
Lai (10.1016/j.asoc.2018.07.024_bib0315) 2009; 36
Tsai (10.1016/j.asoc.2018.07.024_bib0110) 2011; 11
Pyo (10.1016/j.asoc.2018.07.024_bib0120) 2017; 12
Nofsinger (10.1016/j.asoc.2018.07.024_bib0025) 2005; 6
Maman (10.1016/j.asoc.2018.07.024_bib0400) 2017; 65
Wiesmeier (10.1016/j.asoc.2018.07.024_bib0320) 2011; 340
Cootner (10.1016/j.asoc.2018.07.024_bib0010) 1964
Fama (10.1016/j.asoc.2018.07.024_bib0005) 1965; 38
Sadorsky (10.1016/j.asoc.2018.07.024_bib0180) 1999; 21
Hyndman (10.1016/j.asoc.2018.07.024_bib0350) 2007
10.1016/j.asoc.2018.07.024_bib0365
Kao (10.1016/j.asoc.2018.07.024_bib0125) 2013; 54
Kryzanowski (10.1016/j.asoc.2018.07.024_bib0145) 1993; 49
Park (10.1016/j.asoc.2018.07.024_bib0185) 2008; 30
Quinlan (10.1016/j.asoc.2018.07.024_bib0240) 2014
Enke (10.1016/j.asoc.2018.07.024_bib0065) 2005; 29
Dag (10.1016/j.asoc.2018.07.024_bib0245) 2016; 86
Hajizadeh (10.1016/j.asoc.2018.07.024_bib0075) 2010; 2
Schapire (10.1016/j.asoc.2018.07.024_bib0285) 1998; 26
de Oliveira (10.1016/j.asoc.2018.07.024_bib0330) 2013; 40
Hamao (10.1016/j.asoc.2018.07.024_bib0205) 1990; 3
References_xml – volume: 17
  start-page: 59
  year: 2003
  end-page: 82
  ident: bib0015
  article-title: The efficient market hypothesis and its critics
  publication-title: J. Econ. Perspect.
– volume: 57
  start-page: 1116
  year: 2004
  end-page: 1125
  ident: bib0150
  article-title: Using neural networks for forecasting volatility of s&p 500 index futures prices
  publication-title: J. Bus. Res.
– year: 2007
  ident: bib0350
  article-title: Automatic Time Series for Forecasting: the Forecast Package for R, No. 6/07
– volume: 21
  start-page: 449
  year: 1999
  end-page: 469
  ident: bib0180
  article-title: Oil price shocks and stock market activity
  publication-title: Energy Econ.
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  ident: bib0260
  article-title: Caret package
  publication-title: J. Stat. Softw.
– start-page: 423
  year: 2008
  end-page: 426
  ident: bib0220
  article-title: Mining financial news for major events and their impacts on the market
  publication-title: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 1
– year: 2015
  ident: bib0040
  article-title: Here's How Badly Warren Buffett Beat the Market
– volume: 98
  start-page: 415
  year: 2012
  end-page: 424
  ident: bib0380
  article-title: Comparison of two new arima-ann and arima-kalman hybrid methods for wind speed prediction
  publication-title: Appl. Energy
– volume: 54
  start-page: 1228
  year: 2013
  end-page: 1244
  ident: bib0125
  article-title: A hybrid approach by integrating wavelet-based feature extraction with mars and SVR for stock index forecasting
  publication-title: Decis. Support Syst.
– volume: 54
  start-page: 1370
  year: 2013
  end-page: 1379
  ident: bib0335
  article-title: Machine learning the harness track: crowdsourcing and varying race history
  publication-title: Decis. Support Syst.
– volume: 7
  start-page: 983
  year: 2006
  end-page: 999
  ident: bib0310
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 109
  year: 2010
  ident: bib0075
  article-title: Application of data mining techniques in stock markets: a survey
  publication-title: J. Econ. Int. Finance
– reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization,
– volume: 42
  start-page: 2162
  year: 2015
  end-page: 2172
  ident: bib0130
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Syst. Appl.
– volume: 93
  start-page: 465
  year: 2003
  end-page: 508
  ident: bib0020
  article-title: Constructivist and ecological rationality in economics
  publication-title: Am. Econ. Rev.
– volume: 38
  start-page: 10389
  year: 2011
  end-page: 10397
  ident: bib0325
  article-title: Using artificial neural network models in stock market index prediction
  publication-title: Expert Syst. Appl.
– volume: 30
  start-page: 2587
  year: 2008
  end-page: 2608
  ident: bib0185
  article-title: Oil price shocks and stock markets in the us and 13 European countries
  publication-title: Energy Econ.
– start-page: 1
  year: 2000
  end-page: 15
  ident: bib0295
  article-title: Ensemble methods in machine learning
  publication-title: International Workshop on Multiple Classifier Systems
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0270
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 7
  start-page: 38
  year: 2010
  end-page: 46
  ident: bib0155
  article-title: The comparison of methods artificial neural network with linear regression using specific variables for prediction stock price in tehran stock exchange
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 38
  start-page: 34
  year: 1965
  end-page: 105
  ident: bib0005
  article-title: The behavior of stock-market prices
  publication-title: J. Bus.
– volume: 50
  start-page: 258
  year: 2010
  end-page: 269
  ident: bib0105
  article-title: Combining multiple feature selection methods for stock prediction: union, intersection, and multi-intersection approaches
  publication-title: Decis. Support Syst.
– reference: L. Breiman, Bias, variance, and arcing classifiers, Technical Report 460.
– volume: 8
  start-page: 84
  year: 2007
  end-page: 108
  ident: bib0030
  article-title: The financial/economic dichotomy in social behavioral dynamics: the socionomic perspective
  publication-title: J. Behav. Finance
– start-page: 383
  year: 1986
  end-page: 403
  ident: bib0210
  article-title: Economic forces and the stock market
  publication-title: J. Bus.
– volume: 36
  start-page: 5932
  year: 2009
  end-page: 5941
  ident: bib0070
  article-title: Surveying stock market forecasting techniques – Part II: Soft computing methods
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 144
  year: 2005
  end-page: 160
  ident: bib0025
  article-title: Social mood and financial economics
  publication-title: J. Behav. Finance
– year: 2015
  ident: bib0355
  article-title: Time Series Analysis: Forecasting and Control
– volume: 33
  start-page: 497
  year: 2005
  end-page: 505
  ident: bib0375
  article-title: A hybrid arima and support vector machines model in stock price forecasting
  publication-title: Omega
– year: 2017
  ident: bib0230
  article-title: Quantmod: Quantitative Financial Modelling Framework. R Package Version 0.4-12
– year: 2016
  ident: bib0235
  article-title: Quandl: Api Wrapper for quandl.com. R Package Version 2.8.0
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0300
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 2018
  ident: bib0360
  article-title: Introduction to the Rugarch Package.(Version 1.3-1), Tech. Rep., Technical Report v
– volume: 3
  start-page: 28
  year: 2009
  ident: bib0100
  article-title: Prediction of stock market index movement by ten data mining techniques
  publication-title: Mod. Appl. Sci.
– volume: 26
  start-page: 1651
  year: 1998
  end-page: 1686
  ident: bib0285
  article-title: Boosting the margin: a new explanation for the effectiveness of voting methods
  publication-title: Ann. Stat.
– year: 2012
  ident: bib0045
  article-title: Buffett Beats the SP for the 39th Year
– volume: 40
  start-page: 132
  year: 2016
  end-page: 149
  ident: bib0135
  article-title: A hybrid model based on differential fuzzy logic relationships and imperialist competitive algorithm for stock market forecasting
  publication-title: Appl. Soft Comput.
– volume: 13
  start-page: 947
  year: 2013
  end-page: 958
  ident: bib0385
  article-title: Support vector regression with chaos-based firefly algorithm for stock market price forecasting
  publication-title: Appl. Soft Comput.
– volume: 29
  start-page: 927
  year: 2005
  end-page: 940
  ident: bib0065
  article-title: The use of data mining and neural networks for forecasting stock market returns
  publication-title: Expert Syst. Appl.
– volume: 32
  start-page: 2513
  year: 2005
  end-page: 2522
  ident: bib0095
  article-title: Forecasting stock market movement direction with support vector machine
  publication-title: Comput. Oper. Res.
– volume: 26
  start-page: 1253
  year: 2002
  end-page: 1272
  ident: bib0395
  article-title: Measures of risk
  publication-title: J. Bank. Finance
– volume: 11
  start-page: 2452
  year: 2011
  end-page: 2459
  ident: bib0110
  article-title: Predicting stock returns by classifier ensembles
  publication-title: Appl. Soft Comput.
– year: 2015
  ident: bib0050
  article-title: The Big Short: Inside the Doomsday Machine (movie tie-in)
– volume: 94
  start-page: 42
  year: 2017
  end-page: 52
  ident: bib0255
  article-title: Predicting heart transplantation outcomes through data analytics
  publication-title: Decis. Support Syst.
– volume: 12
  start-page: e0188107
  year: 2017
  ident: bib0120
  article-title: Predictability of machine learning techniques to forecast the trends of market index prices: hypothesis testing for the Korean stock markets
  publication-title: PLoS ONE
– volume: 40
  start-page: 758
  year: 2012
  end-page: 766
  ident: bib0055
  article-title: Stock index forecasting based on a hybrid model
  publication-title: Omega
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0160
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 55
  start-page: 307
  year: 2003
  end-page: 319
  ident: bib0090
  article-title: Financial time series forecasting using support vector machines
  publication-title: Neurocomputing
– volume: 2
  start-page: 2104
  year: 2010
  end-page: 2109
  ident: bib0080
  article-title: An analysis of the performance of artificial neural network technique for stock market forecasting
  publication-title: Int. J. Comput. Sci. Eng.
– start-page: 2823
  year: 2015
  end-page: 2824
  ident: bib0175
  article-title: A LSTM-based method for stock returns prediction: a case study of china stock market
  publication-title: 2015 IEEE International Conference on Big Data (Big Data), IEEE
– volume: 49
  start-page: 21
  year: 1993
  end-page: 27
  ident: bib0145
  article-title: Using artificial neural networks to pick stocks
  publication-title: Financ. Anal. J.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 8
  ident: bib0035
  article-title: Twitter mood predicts the stock market
  publication-title: J. Comput. Sci.
– volume: 9
  start-page: 100
  year: 2017
  ident: bib0085
  article-title: Stock market prediction performance of neural networks: a literature review
  publication-title: Int. J. Econ. Finance
– volume: 13
  start-page: 631
  year: 1993
  end-page: 643
  ident: bib0140
  article-title: Forecasting s&p and gold futures prices: an application of neural networks
  publication-title: J. Futures Mark.
– volume: 15
  start-page: 751
  year: 2002
  end-page: 782
  ident: bib0215
  article-title: Macroeconomic factors do influence aggregate stock returns
  publication-title: Rev. Financ. Stud.
– volume: 86
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib0245
  article-title: A probabilistic data-driven framework for scoring the preoperative recipient-donor heart transplant survival
  publication-title: Decis. Support Syst.
– volume: 65
  start-page: 515
  year: 2017
  end-page: 529
  ident: bib0400
  article-title: A data-driven approach to modeling physical fatigue in the workplace using wearable sensors
  publication-title: Appl. Ergonom.
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: bib0250
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
– volume: 20
  start-page: 89
  year: 2011
  end-page: 98
  ident: bib0225
  article-title: Can changes in the purchasing managers’ index foretell stock returns? An additional forward-looking sentiment indicator
  publication-title: J. Invest.
– year: 2014
  ident: bib0240
  article-title: C4.5: Programs for Machine Learning, Morgan Kaufmann Series in Machine Learning
– volume: 11
  start-page: 169
  year: 2011
  end-page: 198
  ident: bib0305
  article-title: Popular ensemble methods: an empirical study
  publication-title: J. Artif. Intell. Res.
– volume: 5
  start-page: 1
  year: 2005
  end-page: 23
  ident: bib0195
  article-title: Comparing wealth effects: the stock market versus the housing market
  publication-title: Adv. Macroecon.
– volume: 40
  start-page: 7596
  year: 2013
  end-page: 7606
  ident: bib0330
  article-title: Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index-case study of petr4, petrobras, Brazil
  publication-title: Expert Syst. Appl.
– start-page: 169
  year: 1999
  end-page: 198
  ident: bib0290
  article-title: Popular ensemble methods: an empirical study
  publication-title: J. Artif. Intell. Res.
– volume: 66
  start-page: 170
  year: 2014
  end-page: 179
  ident: bib0115
  article-title: Tweet sentiment analysis with classifier ensembles
  publication-title: Decis. Support Syst.
– volume: 3
  start-page: 281
  year: 1990
  end-page: 307
  ident: bib0205
  article-title: Correlations in price changes and volatility across international stock markets
  publication-title: Rev. Financ. Stud.
– volume: vol. 1
  start-page: 725
  year: 1996
  end-page: 730
  ident: bib0280
  publication-title: Bagging, Boosting, and c4. 5, AAAI/IAAI
– volume: 340
  start-page: 7
  year: 2011
  end-page: 24
  ident: bib0320
  article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem
  publication-title: Plant Soil
– year: 2017
  ident: bib0345
  article-title: Forecast: Forecasting Functions for Time Series and Linear Models. R Package Version 8.2
– year: 1964
  ident: bib0010
  article-title: The Random Character of Stock Market Prices
– reference: .
– volume: 59
  start-page: 52
  year: 2014
  end-page: 62
  ident: bib0390
  article-title: A decision support system for stock investment recommendations using collective wisdom
  publication-title: Decis. Support Syst.
– volume: 3
  start-page: 95
  year: 2009
  ident: bib0200
  article-title: Macroeconomic determinants of malaysian stock market
  publication-title: Afr. J. Bus. Manag.
– volume: 36
  start-page: 3761
  year: 2009
  end-page: 3773
  ident: bib0315
  article-title: Evolving and clustering fuzzy decision tree for financial time series data forecasting
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 299
  year: 2000
  end-page: 311
  ident: bib0340
  article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns
  publication-title: J. Forecast.
– volume: 50
  start-page: 1267
  year: 2009
  end-page: 1287
  ident: bib0190
  article-title: The impact of oil price shocks on the us stock market
  publication-title: Int. Econ. Rev.
– volume: 6
  start-page: 1289
  year: 1994
  end-page: 1301
  ident: bib0265
  article-title: Boosting and other ensemble methods
  publication-title: Neural Comput.
– reference: H. Jia, Investigation into the effectiveness of long short term memory networks for stock price prediction,
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib0165
  article-title: Deep learning for stock prediction using numerical and textual information
  publication-title: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), IEEE
– volume: 41
  start-page: 478
  year: 2003
  end-page: 539
  ident: bib0060
  article-title: Forecasting volatility in financial markets: a review
  publication-title: J. Econ. Lit.
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: bib0370
  article-title: Time series forecasting using a hybrid arima and neural network model
  publication-title: Neurocomputing
– volume: 11
  start-page: 2452
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2018.07.024_bib0110
  article-title: Predicting stock returns by classifier ensembles
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.10.001
– volume: 29
  start-page: 927
  issue: 4
  year: 2005
  ident: 10.1016/j.asoc.2018.07.024_bib0065
  article-title: The use of data mining and neural networks for forecasting stock market returns
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.06.024
– year: 2017
  ident: 10.1016/j.asoc.2018.07.024_bib0345
– volume: 4
  start-page: 40
  year: 2010
  ident: 10.1016/j.asoc.2018.07.024_bib0250
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS054
– volume: 38
  start-page: 10389
  issue: 8
  year: 2011
  ident: 10.1016/j.asoc.2018.07.024_bib0325
  article-title: Using artificial neural network models in stock market index prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.068
– volume: 50
  start-page: 258
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2018.07.024_bib0105
  article-title: Combining multiple feature selection methods for stock prediction: union, intersection, and multi-intersection approaches
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2010.08.028
– year: 2018
  ident: 10.1016/j.asoc.2018.07.024_bib0360
– volume: 93
  start-page: 465
  issue: 3
  year: 2003
  ident: 10.1016/j.asoc.2018.07.024_bib0020
  article-title: Constructivist and ecological rationality in economics
  publication-title: Am. Econ. Rev.
  doi: 10.1257/000282803322156954
– start-page: 1
  year: 2000
  ident: 10.1016/j.asoc.2018.07.024_bib0295
  article-title: Ensemble methods in machine learning
– volume: 19
  start-page: 299
  issue: 4
  year: 2000
  ident: 10.1016/j.asoc.2018.07.024_bib0340
  article-title: A quantile regression neural network approach to estimating the conditional density of multiperiod returns
  publication-title: J. Forecast.
  doi: 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
– start-page: 2823
  year: 2015
  ident: 10.1016/j.asoc.2018.07.024_bib0175
  article-title: A LSTM-based method for stock returns prediction: a case study of china stock market
  publication-title: 2015 IEEE International Conference on Big Data (Big Data), IEEE
  doi: 10.1109/BigData.2015.7364089
– volume: 2
  start-page: 2104
  issue: 6
  year: 2010
  ident: 10.1016/j.asoc.2018.07.024_bib0080
  article-title: An analysis of the performance of artificial neural network technique for stock market forecasting
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2018.07.024_bib0300
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 54
  start-page: 1228
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2018.07.024_bib0125
  article-title: A hybrid approach by integrating wavelet-based feature extraction with mars and SVR for stock index forecasting
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2012.11.012
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.asoc.2018.07.024_bib0160
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 20
  start-page: 89
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2018.07.024_bib0225
  article-title: Can changes in the purchasing managers’ index foretell stock returns? An additional forward-looking sentiment indicator
  publication-title: J. Invest.
  doi: 10.3905/joi.2011.20.4.089
– volume: 49
  start-page: 21
  issue: 4
  year: 1993
  ident: 10.1016/j.asoc.2018.07.024_bib0145
  article-title: Using artificial neural networks to pick stocks
  publication-title: Financ. Anal. J.
  doi: 10.2469/faj.v49.n4.21
– volume: 98
  start-page: 415
  year: 2012
  ident: 10.1016/j.asoc.2018.07.024_bib0380
  article-title: Comparison of two new arima-ann and arima-kalman hybrid methods for wind speed prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.04.001
– volume: 42
  start-page: 2162
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2018.07.024_bib0130
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.031
– volume: 5
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.asoc.2018.07.024_bib0195
  article-title: Comparing wealth effects: the stock market versus the housing market
  publication-title: Adv. Macroecon.
– year: 2017
  ident: 10.1016/j.asoc.2018.07.024_bib0230
– ident: 10.1016/j.asoc.2018.07.024_bib0275
– volume: 11
  start-page: 169
  year: 2011
  ident: 10.1016/j.asoc.2018.07.024_bib0305
  article-title: Popular ensemble methods: an empirical study
  publication-title: J. Artif. Intell. Res.
– ident: 10.1016/j.asoc.2018.07.024_bib0365
– volume: 2
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2018.07.024_bib0035
  article-title: Twitter mood predicts the stock market
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2010.12.007
– volume: 36
  start-page: 5932
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2018.07.024_bib0070
  article-title: Surveying stock market forecasting techniques – Part II: Soft computing methods
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.07.006
– volume: 13
  start-page: 631
  issue: 6
  year: 1993
  ident: 10.1016/j.asoc.2018.07.024_bib0140
  article-title: Forecasting s&p and gold futures prices: an application of neural networks
  publication-title: J. Futures Mark.
  doi: 10.1002/fut.3990130605
– volume: 86
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2018.07.024_bib0245
  article-title: A probabilistic data-driven framework for scoring the preoperative recipient-donor heart transplant survival
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2016.02.007
– volume: 28
  start-page: 1
  issue: 5
  year: 2008
  ident: 10.1016/j.asoc.2018.07.024_bib0260
  article-title: Caret package
  publication-title: J. Stat. Softw.
– volume: 40
  start-page: 7596
  issue: 18
  year: 2013
  ident: 10.1016/j.asoc.2018.07.024_bib0330
  article-title: Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index-case study of petr4, petrobras, Brazil
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.06.071
– year: 2015
  ident: 10.1016/j.asoc.2018.07.024_bib0040
– volume: 15
  start-page: 751
  issue: 3
  year: 2002
  ident: 10.1016/j.asoc.2018.07.024_bib0215
  article-title: Macroeconomic factors do influence aggregate stock returns
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/15.3.751
– volume: 33
  start-page: 497
  issue: 6
  year: 2005
  ident: 10.1016/j.asoc.2018.07.024_bib0375
  article-title: A hybrid arima and support vector machines model in stock price forecasting
  publication-title: Omega
  doi: 10.1016/j.omega.2004.07.024
– volume: 9
  start-page: 100
  issue: 11
  year: 2017
  ident: 10.1016/j.asoc.2018.07.024_bib0085
  article-title: Stock market prediction performance of neural networks: a literature review
  publication-title: Int. J. Econ. Finance
  doi: 10.5539/ijef.v9n11p100
– volume: 3
  start-page: 95
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2018.07.024_bib0200
  article-title: Macroeconomic determinants of malaysian stock market
  publication-title: Afr. J. Bus. Manag.
– volume: 36
  start-page: 3761
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2018.07.024_bib0315
  article-title: Evolving and clustering fuzzy decision tree for financial time series data forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.02.025
– volume: 40
  start-page: 758
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2018.07.024_bib0055
  article-title: Stock index forecasting based on a hybrid model
  publication-title: Omega
  doi: 10.1016/j.omega.2011.07.008
– volume: 8
  start-page: 84
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2018.07.024_bib0030
  article-title: The financial/economic dichotomy in social behavioral dynamics: the socionomic perspective
  publication-title: J. Behav. Finance
  doi: 10.1080/15427560701381028
– ident: 10.1016/j.asoc.2018.07.024_bib0170
– start-page: 423
  year: 2008
  ident: 10.1016/j.asoc.2018.07.024_bib0220
  article-title: Mining financial news for major events and their impacts on the market
  publication-title: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 1
  doi: 10.1109/WIIAT.2008.309
– volume: 17
  start-page: 59
  issue: 1
  year: 2003
  ident: 10.1016/j.asoc.2018.07.024_bib0015
  article-title: The efficient market hypothesis and its critics
  publication-title: J. Econ. Perspect.
  doi: 10.1257/089533003321164958
– volume: 3
  start-page: 28
  issue: 12
  year: 2009
  ident: 10.1016/j.asoc.2018.07.024_bib0100
  article-title: Prediction of stock market index movement by ten data mining techniques
  publication-title: Mod. Appl. Sci.
  doi: 10.5539/mas.v3n12p28
– year: 2015
  ident: 10.1016/j.asoc.2018.07.024_bib0050
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2018.07.024_bib0165
  article-title: Deep learning for stock prediction using numerical and textual information
  publication-title: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), IEEE
– volume: 2
  start-page: 109
  issue: 7
  year: 2010
  ident: 10.1016/j.asoc.2018.07.024_bib0075
  article-title: Application of data mining techniques in stock markets: a survey
  publication-title: J. Econ. Int. Finance
– volume: 50
  start-page: 159
  year: 2003
  ident: 10.1016/j.asoc.2018.07.024_bib0370
  article-title: Time series forecasting using a hybrid arima and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 59
  start-page: 52
  year: 2014
  ident: 10.1016/j.asoc.2018.07.024_bib0390
  article-title: A decision support system for stock investment recommendations using collective wisdom
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2013.10.005
– volume: 55
  start-page: 307
  issue: 1
  year: 2003
  ident: 10.1016/j.asoc.2018.07.024_bib0090
  article-title: Financial time series forecasting using support vector machines
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00372-2
– volume: 40
  start-page: 132
  year: 2016
  ident: 10.1016/j.asoc.2018.07.024_bib0135
  article-title: A hybrid model based on differential fuzzy logic relationships and imperialist competitive algorithm for stock market forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.11.026
– volume: vol. 1
  start-page: 725
  year: 1996
  ident: 10.1016/j.asoc.2018.07.024_bib0280
– volume: 65
  start-page: 515
  year: 2017
  ident: 10.1016/j.asoc.2018.07.024_bib0400
  article-title: A data-driven approach to modeling physical fatigue in the workplace using wearable sensors
  publication-title: Appl. Ergonom.
  doi: 10.1016/j.apergo.2017.02.001
– volume: 340
  start-page: 7
  issue: 1–2
  year: 2011
  ident: 10.1016/j.asoc.2018.07.024_bib0320
  article-title: Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0425-z
– volume: 38
  start-page: 34
  issue: 1
  year: 1965
  ident: 10.1016/j.asoc.2018.07.024_bib0005
  article-title: The behavior of stock-market prices
  publication-title: J. Bus.
  doi: 10.1086/294743
– volume: 12
  start-page: e0188107
  issue: 11
  year: 2017
  ident: 10.1016/j.asoc.2018.07.024_bib0120
  article-title: Predictability of machine learning techniques to forecast the trends of market index prices: hypothesis testing for the Korean stock markets
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0188107
– volume: 94
  start-page: 42
  year: 2017
  ident: 10.1016/j.asoc.2018.07.024_bib0255
  article-title: Predicting heart transplantation outcomes through data analytics
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2016.10.005
– volume: 26
  start-page: 1253
  issue: 7
  year: 2002
  ident: 10.1016/j.asoc.2018.07.024_bib0395
  article-title: Measures of risk
  publication-title: J. Bank. Finance
  doi: 10.1016/S0378-4266(02)00262-5
– year: 2014
  ident: 10.1016/j.asoc.2018.07.024_bib0240
– start-page: 383
  year: 1986
  ident: 10.1016/j.asoc.2018.07.024_bib0210
  article-title: Economic forces and the stock market
  publication-title: J. Bus.
  doi: 10.1086/296344
– volume: 57
  start-page: 1116
  issue: 10
  year: 2004
  ident: 10.1016/j.asoc.2018.07.024_bib0150
  article-title: Using neural networks for forecasting volatility of s&p 500 index futures prices
  publication-title: J. Bus. Res.
  doi: 10.1016/S0148-2963(03)00043-2
– year: 2016
  ident: 10.1016/j.asoc.2018.07.024_bib0235
– volume: 6
  start-page: 1289
  issue: 6
  year: 1994
  ident: 10.1016/j.asoc.2018.07.024_bib0265
  article-title: Boosting and other ensemble methods
  publication-title: Neural Comput.
  doi: 10.1162/neco.1994.6.6.1289
– year: 2007
  ident: 10.1016/j.asoc.2018.07.024_bib0350
– volume: 3
  start-page: 281
  issue: 2
  year: 1990
  ident: 10.1016/j.asoc.2018.07.024_bib0205
  article-title: Correlations in price changes and volatility across international stock markets
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/3.2.281
– year: 2012
  ident: 10.1016/j.asoc.2018.07.024_bib0045
– volume: 7
  start-page: 38
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2018.07.024_bib0155
  article-title: The comparison of methods artificial neural network with linear regression using specific variables for prediction stock price in tehran stock exchange
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 30
  start-page: 2587
  issue: 5
  year: 2008
  ident: 10.1016/j.asoc.2018.07.024_bib0185
  article-title: Oil price shocks and stock markets in the us and 13 European countries
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2008.04.003
– volume: 7
  start-page: 983
  issue: June
  year: 2006
  ident: 10.1016/j.asoc.2018.07.024_bib0310
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– year: 1964
  ident: 10.1016/j.asoc.2018.07.024_bib0010
– volume: 32
  start-page: 2513
  issue: 10
  year: 2005
  ident: 10.1016/j.asoc.2018.07.024_bib0095
  article-title: Forecasting stock market movement direction with support vector machine
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2004.03.016
– start-page: 169
  year: 1999
  ident: 10.1016/j.asoc.2018.07.024_bib0290
  article-title: Popular ensemble methods: an empirical study
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.614
– volume: 66
  start-page: 170
  year: 2014
  ident: 10.1016/j.asoc.2018.07.024_bib0115
  article-title: Tweet sentiment analysis with classifier ensembles
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2014.07.003
– year: 2015
  ident: 10.1016/j.asoc.2018.07.024_bib0355
– volume: 13
  start-page: 947
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2018.07.024_bib0385
  article-title: Support vector regression with chaos-based firefly algorithm for stock market price forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.09.024
– volume: 21
  start-page: 449
  issue: 5
  year: 1999
  ident: 10.1016/j.asoc.2018.07.024_bib0180
  article-title: Oil price shocks and stock market activity
  publication-title: Energy Econ.
  doi: 10.1016/S0140-9883(99)00020-1
– volume: 50
  start-page: 1267
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2018.07.024_bib0190
  article-title: The impact of oil price shocks on the us stock market
  publication-title: Int. Econ. Rev.
  doi: 10.1111/j.1468-2354.2009.00568.x
– volume: 41
  start-page: 478
  issue: 2
  year: 2003
  ident: 10.1016/j.asoc.2018.07.024_bib0060
  article-title: Forecasting volatility in financial markets: a review
  publication-title: J. Econ. Lit.
  doi: 10.1257/.41.2.478
– volume: 6
  start-page: 144
  issue: 3
  year: 2005
  ident: 10.1016/j.asoc.2018.07.024_bib0025
  article-title: Social mood and financial economics
  publication-title: J. Behav. Finance
  doi: 10.1207/s15427579jpfm0603_4
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.asoc.2018.07.024_bib0270
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
– volume: 26
  start-page: 1651
  year: 1998
  ident: 10.1016/j.asoc.2018.07.024_bib0285
  article-title: Boosting the margin: a new explanation for the effectiveness of voting methods
  publication-title: Ann. Stat.
– volume: 54
  start-page: 1370
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2018.07.024_bib0335
  article-title: Machine learning the harness track: crowdsourcing and varying race history
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2012.12.013
SSID ssj0016928
Score 2.408192
Snippet [Display omitted] •A 2-stage method is proposed to predict the 1-month ahead price for 13 U.S. indices.•Ensembles of macroeconomic factors alone are more...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 685
SubjectTerms ARIMA
Deep learning
Ensembles
GARCH
Long short-term memory (LSTM) networks
Title Macroeconomic indicators alone can predict the monthly closing price of major U.S. indices: Insights from artificial intelligence, time-series analysis and hybrid models
URI https://dx.doi.org/10.1016/j.asoc.2018.07.024
Volume 71
WOSCitedRecordID wos000445126100045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9NAEIBXoeXAhTeiFNAcuAVHibPeR28FFVFUKiRSEU7W7tpWE1l2FadV85P4K_wqZh920gIVPZCDZa3i9WM-74x350HIG8YNUzKnUazlMKKa5ZGOi1GUaNTGDC10lTtJH_HjYzGdyi-93s82Fuai5FUlLi_l2X8VNbahsG3o7C3E3XWKDbiPQsctih23_yT4zwrH1jzEG_ftkrRRrqSOKuvKeXnZxADY6qIY-3hdy9Ny1Tdl3fjIdBw63Kq7mteL_sng68B34p3nDqvGfs43Pi7Fnj6koJht5Pa0crNF6yN7w7nNAh0yn9hZ-tOVDRLzJXiaTdu4NYgb1AzO1f182epVt3TkR6V3sw5nnwLBT4F_U2W2WjsVN77K9ndVR5MO3aOZdzAI0W9hrmMkOq-5bnhmIqIyTFqG8duXcAkDMPMFgIIuZ9739zc14Wcs5gOFb4B17xMugasP5r6ak_uaruw8GFvnuHlq-0htH-mQp9jHHbId80SiktjePzyYfurWtJh0lX67ewghXN7b8PqV_NlM2jB9Jg_J_fDNAvuetUekl1ePyYO2HggE9fCE_LiCHqzRA4ceIHoQ0ANEDwJ6ENADhx7UBTj0wKIHAb09aMEDCx6swYNN8N7CBnbQYoc7GXjswGP3lJx8OJi8_xiFUiCRoSO5jIzRko7znLO8SGxCTTHkRTwey4Tij1MtRZEpbqQQAi1kzQsuMpoVPKYqYQUfPyNbFd7pcwLZSGfMSM0NLyjVmU5szsWYW4cBpTXdIaP2yacm5Mm35VrK9O8y3yH97pgznyXmxn8nrUDTYOd6-zVFPm847sWtzrJL7q1foZdka7k4z1-Ru-ZiOWsWrwOcvwBL3dBu
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macroeconomic+indicators+alone+can+predict+the+monthly+closing+price+of+major+U.S.+indices%3A+Insights+from+artificial+intelligence%2C+time-series+analysis+and+hybrid+models&rft.jtitle=Applied+soft+computing&rft.au=Weng%2C+Bin&rft.au=Martinez%2C+Waldyn&rft.au=Tsai%2C+Yao-Te&rft.au=Li%2C+Chen&rft.date=2018-10-01&rft.issn=1568-4946&rft.volume=71&rft.spage=685&rft.epage=697&rft_id=info:doi/10.1016%2Fj.asoc.2018.07.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2018_07_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon