Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm
We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermat...
Uložené v:
| Vydané v: | Journal of investigative dermatology Ročník 138; číslo 7; s. 1529 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.07.2018
|
| Predmet: | |
| ISSN: | 1523-1747, 1523-1747 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, and wart. The convolutional neural network (Microsoft ResNet-152 model; Microsoft Research Asia, Beijing, China) was fine-tuned with images from the training portion of the Asan dataset, MED-NODE dataset, and atlas site images (19,398 images in total). The trained model was validated with the testing portion of the Asan, Hallym and Edinburgh datasets. With the Asan dataset, the area under the curve for the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, and melanoma was 0.96 ± 0.01, 0.83 ± 0.01, 0.82 ± 0.02, and 0.96 ± 0.00, respectively. With the Edinburgh dataset, the area under the curve for the corresponding diseases was 0.90 ± 0.01, 0.91 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. With the Hallym dataset, the sensitivity for basal cell carcinoma diagnosis was 87.1% ± 6.0%. The tested algorithm performance with 480 Asan and Edinburgh images was comparable to that of 16 dermatologists. To improve the performance of convolutional neural network, additional images with a broader range of ages and ethnicities should be collected. |
|---|---|
| AbstractList | We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, and wart. The convolutional neural network (Microsoft ResNet-152 model; Microsoft Research Asia, Beijing, China) was fine-tuned with images from the training portion of the Asan dataset, MED-NODE dataset, and atlas site images (19,398 images in total). The trained model was validated with the testing portion of the Asan, Hallym and Edinburgh datasets. With the Asan dataset, the area under the curve for the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, and melanoma was 0.96 ± 0.01, 0.83 ± 0.01, 0.82 ± 0.02, and 0.96 ± 0.00, respectively. With the Edinburgh dataset, the area under the curve for the corresponding diseases was 0.90 ± 0.01, 0.91 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. With the Hallym dataset, the sensitivity for basal cell carcinoma diagnosis was 87.1% ± 6.0%. The tested algorithm performance with 480 Asan and Edinburgh images was comparable to that of 16 dermatologists. To improve the performance of convolutional neural network, additional images with a broader range of ages and ethnicities should be collected.We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, and wart. The convolutional neural network (Microsoft ResNet-152 model; Microsoft Research Asia, Beijing, China) was fine-tuned with images from the training portion of the Asan dataset, MED-NODE dataset, and atlas site images (19,398 images in total). The trained model was validated with the testing portion of the Asan, Hallym and Edinburgh datasets. With the Asan dataset, the area under the curve for the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, and melanoma was 0.96 ± 0.01, 0.83 ± 0.01, 0.82 ± 0.02, and 0.96 ± 0.00, respectively. With the Edinburgh dataset, the area under the curve for the corresponding diseases was 0.90 ± 0.01, 0.91 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. With the Hallym dataset, the sensitivity for basal cell carcinoma diagnosis was 87.1% ± 6.0%. The tested algorithm performance with 480 Asan and Edinburgh images was comparable to that of 16 dermatologists. To improve the performance of convolutional neural network, additional images with a broader range of ages and ethnicities should be collected. We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, and wart. The convolutional neural network (Microsoft ResNet-152 model; Microsoft Research Asia, Beijing, China) was fine-tuned with images from the training portion of the Asan dataset, MED-NODE dataset, and atlas site images (19,398 images in total). The trained model was validated with the testing portion of the Asan, Hallym and Edinburgh datasets. With the Asan dataset, the area under the curve for the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, and melanoma was 0.96 ± 0.01, 0.83 ± 0.01, 0.82 ± 0.02, and 0.96 ± 0.00, respectively. With the Edinburgh dataset, the area under the curve for the corresponding diseases was 0.90 ± 0.01, 0.91 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. With the Hallym dataset, the sensitivity for basal cell carcinoma diagnosis was 87.1% ± 6.0%. The tested algorithm performance with 480 Asan and Edinburgh images was comparable to that of 16 dermatologists. To improve the performance of convolutional neural network, additional images with a broader range of ages and ethnicities should be collected. |
| Author | Park, Ilwoo Han, Seung Seog Park, Gyeong Hun Lim, Woohyung Kim, Myoung Shin Chang, Sung Eun |
| Author_xml | – sequence: 1 givenname: Seung Seog surname: Han fullname: Han, Seung Seog organization: I Dermatology Clinic, Seoul, Korea – sequence: 2 givenname: Myoung Shin surname: Kim fullname: Kim, Myoung Shin organization: Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea – sequence: 3 givenname: Woohyung surname: Lim fullname: Lim, Woohyung organization: SK Telecom, Human Machine Interface Technology Laboratory, Seoul, Korea – sequence: 4 givenname: Gyeong Hun surname: Park fullname: Park, Gyeong Hun organization: Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan, Korea – sequence: 5 givenname: Ilwoo surname: Park fullname: Park, Ilwoo organization: Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju, Korea – sequence: 6 givenname: Sung Eun surname: Chang fullname: Chang, Sung Eun email: csesnumd@gmail.com organization: Department of Dermatology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea. Electronic address: csesnumd@gmail.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29428356$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUDtPwzAYtBCIPuAHsCCPLAm24zjOWMKrUhFLO0d-JXXl2CVOBv49QS0S03ff6e50ugW49MEbAO4wSjHC7PGQHqxOCcI8RThFhF-AOc5JluCCFpf_8AwsYjygyUNzfg1mpKSEZzmbg1A5EaNtrBKDDR6GBg57Aytn_UQ5uO5EayJsQg-fjLeth8Jr-CHcBIUfYDUOwpswRrgdu9BHuIvWt1DAZ2OOcGNE73__lWtDb4d9dwOuGuGiuT3fJdi9vmyr92Tz-bauVptEUVwOiZIaU2OUlCVhDaNKSyNpnvFCklxrWnJWoonAvOESN4KLnKlcyUJqZkqNyBI8nHKPffgaTRzqzkZlnDu1rck0BkUlo9kkvT9LR9kZXR9724n-u_4bifwAcOxtAw |
| CitedBy_id | crossref_primary_10_3390_bioengineering9030097 crossref_primary_10_1001_jamadermatol_2018_4378 crossref_primary_10_3390_jimaging8070197 crossref_primary_10_1016_j_jid_2018_05_014 crossref_primary_10_1080_10408363_2018_1561640 crossref_primary_10_1016_j_asoc_2021_107707 crossref_primary_10_1007_s11042_022_12633_5 crossref_primary_10_1016_j_dajour_2023_100240 crossref_primary_10_1002_ima_70050 crossref_primary_10_1007_s11042_020_09067_2 crossref_primary_10_1007_s11042_024_19837_x crossref_primary_10_3390_bioengineering11080758 crossref_primary_10_1016_j_jid_2020_07_034 crossref_primary_10_32604_cmc_2022_018621 crossref_primary_10_1007_s13555_020_00372_0 crossref_primary_10_1016_j_media_2021_102254 crossref_primary_10_1109_ACCESS_2020_3010800 crossref_primary_10_3390_s19163607 crossref_primary_10_1186_s12880_019_0307_7 crossref_primary_10_1007_s12312_019_00729_3 crossref_primary_10_1007_s10278_021_00457_y crossref_primary_10_1111_jdv_16371 crossref_primary_10_2196_22909 crossref_primary_10_3390_jcm8091419 crossref_primary_10_1080_09720502_2020_1857905 crossref_primary_10_1111_ajd_13946 crossref_primary_10_3389_fmed_2023_1114362 crossref_primary_10_1055_s_0041_1735470 crossref_primary_10_1136_bmjopen_2021_050203 crossref_primary_10_1007_s41666_023_00127_4 crossref_primary_10_1038_s41598_024_59436_2 crossref_primary_10_3390_info14120642 crossref_primary_10_1002_jemt_23686 crossref_primary_10_1016_j_neucom_2021_08_096 crossref_primary_10_1016_j_jid_2018_06_175 crossref_primary_10_3389_fmed_2025_1623408 crossref_primary_10_1111_bjd_18459 crossref_primary_10_1002_mp_14518 crossref_primary_10_1016_j_ijom_2024_11_010 crossref_primary_10_1016_j_compbiomed_2018_11_010 crossref_primary_10_1016_j_jaad_2019_07_016 crossref_primary_10_1109_ACCESS_2023_3339635 crossref_primary_10_17116_klinderma202423031246 crossref_primary_10_3390_app12042092 crossref_primary_10_1016_j_biosystemseng_2021_09_010 crossref_primary_10_1371_journal_pone_0260895 crossref_primary_10_2196_26025 crossref_primary_10_3389_fpsyg_2022_804447 crossref_primary_10_1371_journal_pdig_0000864 crossref_primary_10_2196_18091 crossref_primary_10_3389_fmed_2019_00191 crossref_primary_10_1007_s00417_019_04575_w crossref_primary_10_1007_s00500_023_09430_z crossref_primary_10_1007_s13671_024_00440_0 crossref_primary_10_1016_j_bspc_2023_105065 crossref_primary_10_3390_cancers13194974 crossref_primary_10_1016_j_jid_2023_05_018 crossref_primary_10_3390_diagnostics15070939 crossref_primary_10_1007_s10916_019_1414_2 crossref_primary_10_1016_j_bspc_2022_104059 crossref_primary_10_1016_j_compbiomed_2022_105966 crossref_primary_10_3390_diagnostics14020230 crossref_primary_10_1111_exd_13777 crossref_primary_10_1007_s00292_020_00827_3 crossref_primary_10_1155_2022_9991794 crossref_primary_10_1097_CM9_0000000000001023 crossref_primary_10_1155_2022_6322272 crossref_primary_10_1007_s11227_021_03881_7 crossref_primary_10_7717_peerj_cs_371 crossref_primary_10_2196_28114 crossref_primary_10_1371_journal_pone_0256290 crossref_primary_10_1007_s40257_020_00574_4 crossref_primary_10_3390_jcm11175102 crossref_primary_10_1007_s11042_022_13756_5 crossref_primary_10_1111_pcmr_13027 crossref_primary_10_3390_app10072488 crossref_primary_10_1016_j_health_2023_100259 crossref_primary_10_4103_jrms_jrms_607_24 crossref_primary_10_32604_cmc_2024_052548 crossref_primary_10_1016_j_procs_2024_05_026 crossref_primary_10_1093_ced_llad400 crossref_primary_10_1016_j_bspc_2022_103893 crossref_primary_10_1016_j_jaad_2021_10_010 crossref_primary_10_1001_jamadermatol_2019_2335 crossref_primary_10_1155_2021_7192016 crossref_primary_10_3390_jcm11237103 crossref_primary_10_4103_jewd_jewd_18_25 crossref_primary_10_1109_ACCESS_2020_2998098 crossref_primary_10_1109_ACCESS_2022_3199613 crossref_primary_10_3389_fsurg_2025_1640588 crossref_primary_10_1001_jamadermatol_2023_3521 crossref_primary_10_3390_math9222974 crossref_primary_10_3389_fphy_2022_1046314 crossref_primary_10_1186_s12896_022_00755_5 crossref_primary_10_1177_11769351251349891 crossref_primary_10_1038_s41598_023_40395_z crossref_primary_10_1109_TMI_2021_3136682 crossref_primary_10_1016_j_isci_2025_113329 crossref_primary_10_3390_diagnostics12061371 crossref_primary_10_3390_electronics11091294 crossref_primary_10_1016_j_xjidi_2025_100404 crossref_primary_10_3390_electronics14010049 crossref_primary_10_1007_s42979_022_01439_9 crossref_primary_10_3390_diagnostics10110969 crossref_primary_10_3390_ph18091273 crossref_primary_10_3389_fcvm_2023_1161914 crossref_primary_10_1016_j_cmpb_2023_107986 crossref_primary_10_1111_jdv_16967 crossref_primary_10_1111_jdv_20781 crossref_primary_10_1177_10732748221095946 crossref_primary_10_1155_2022_4942637 crossref_primary_10_1016_j_cmpb_2025_108841 crossref_primary_10_1007_s00170_024_13874_4 crossref_primary_10_1016_j_aei_2023_102036 crossref_primary_10_1049_iet_ipr_2019_0553 crossref_primary_10_1007_s11654_021_00298_9 crossref_primary_10_1038_s41598_025_90418_0 crossref_primary_10_3389_fdgth_2022_765406 crossref_primary_10_1056_AIdbp2400732 crossref_primary_10_1111_ijd_15242 crossref_primary_10_1080_09546634_2019_1623373 crossref_primary_10_1007_s13167_020_00199_x crossref_primary_10_1038_s41598_024_51742_z crossref_primary_10_2147_CCID_S458255 crossref_primary_10_3390_diagnostics12071628 crossref_primary_10_1007_s10120_020_01093_1 crossref_primary_10_1016_j_ajpath_2023_02_008 crossref_primary_10_3390_s21238142 crossref_primary_10_3390_life14121602 crossref_primary_10_1016_j_compbiomed_2019_103423 crossref_primary_10_1016_j_compbiomed_2019_103545 crossref_primary_10_1016_j_jpi_2022_100159 crossref_primary_10_1109_TMI_2024_3450682 crossref_primary_10_1007_s10489_021_02199_4 crossref_primary_10_1007_s11548_021_02440_y crossref_primary_10_1109_ACCESS_2025_3584904 crossref_primary_10_1016_j_bspc_2025_107731 crossref_primary_10_1016_S1470_2045_19_30333_X crossref_primary_10_1097_JD9_0000000000000404 crossref_primary_10_1177_2475530320950267 crossref_primary_10_1515_jisys_2024_0381 crossref_primary_10_3390_diagnostics14131359 crossref_primary_10_1016_j_ejca_2018_12_016 crossref_primary_10_1016_j_ijmedinf_2023_105266 crossref_primary_10_2196_11936 crossref_primary_10_3390_cancers15194861 crossref_primary_10_1016_j_bios_2024_116045 crossref_primary_10_1016_j_compbiomed_2025_110533 crossref_primary_10_1007_s13671_019_00267_0 crossref_primary_10_1016_j_ejca_2020_11_020 crossref_primary_10_1093_ced_llad430 crossref_primary_10_1016_j_jaad_2020_01_028 crossref_primary_10_1038_s41598_020_74936_7 crossref_primary_10_1007_s13671_024_00436_w crossref_primary_10_2196_52914 crossref_primary_10_1007_s11042_023_16520_5 crossref_primary_10_1177_14727978241299234 crossref_primary_10_3390_s22187065 crossref_primary_10_1016_j_jvoice_2020_08_003 crossref_primary_10_1001_jamadermatol_2019_5014 crossref_primary_10_1002_ski2_19 crossref_primary_10_2196_39143 crossref_primary_10_7759_cureus_88711 crossref_primary_10_1016_j_compbiomed_2022_106170 crossref_primary_10_1186_s13638_019_1541_y crossref_primary_10_62675_2965_2774_20250380 crossref_primary_10_3389_fmed_2021_723914 crossref_primary_10_1109_ACCESS_2020_3037258 crossref_primary_10_3389_fonc_2021_810909 crossref_primary_10_1016_j_imu_2019_100282 crossref_primary_10_3390_life13112123 crossref_primary_10_1016_j_jdermsci_2020_11_009 crossref_primary_10_1093_ced_llad324 crossref_primary_10_1111_jdv_16812 crossref_primary_10_1016_j_jid_2019_10_018 crossref_primary_10_1111_jdv_15965 crossref_primary_10_3390_app9091827 crossref_primary_10_1016_j_media_2020_101858 crossref_primary_10_1097_SCS_0000000000011498 crossref_primary_10_1007_s42044_024_00210_y crossref_primary_10_1016_j_compbiomed_2021_104924 crossref_primary_10_1016_j_jid_2020_06_040 crossref_primary_10_1111_cts_12884 crossref_primary_10_1016_j_compbiomed_2020_104065 crossref_primary_10_25259_IJDVL_518_19 crossref_primary_10_1111_ddg_15608 crossref_primary_10_3390_ijerph182413409 crossref_primary_10_1007_s00761_019_00679_4 crossref_primary_10_1038_s41597_024_04104_3 crossref_primary_10_1038_s41591_020_0942_0 crossref_primary_10_1038_s41598_022_24315_1 crossref_primary_10_1080_00207543_2021_1894366 crossref_primary_10_1111_jdv_19890 crossref_primary_10_1111_jdv_19234 crossref_primary_10_1016_j_cmpb_2020_105649 crossref_primary_10_1038_s41598_022_20632_7 crossref_primary_10_1016_j_cmpb_2019_105079 crossref_primary_10_3389_fmed_2020_00100 crossref_primary_10_1016_j_jid_2020_01_019 crossref_primary_10_1109_ACCESS_2020_3004766 crossref_primary_10_1371_journal_pone_0218713 crossref_primary_10_1007_s11042_022_13550_3 crossref_primary_10_3389_frai_2025_1608837 crossref_primary_10_1002_jbio_202100180 crossref_primary_10_1016_j_media_2021_102099 crossref_primary_10_1007_s10815_020_01950_z crossref_primary_10_17749_2070_4909_farmakoekonomika_2025_294 crossref_primary_10_1136_annrheumdis_2020_217125 crossref_primary_10_1155_2022_2765486 crossref_primary_10_1109_ACCESS_2022_3165574 crossref_primary_10_1016_j_esmorw_2024_100077 crossref_primary_10_1155_2020_1713904 crossref_primary_10_1063_5_0188187 crossref_primary_10_1016_j_ejca_2022_04_015 crossref_primary_10_1111_jdv_18814 crossref_primary_10_1016_j_cmpb_2020_105631 crossref_primary_10_1016_j_health_2023_100199 crossref_primary_10_1007_s11042_024_19298_2 crossref_primary_10_3389_fmed_2021_626369 crossref_primary_10_1111_srt_13045 crossref_primary_10_1155_2019_6212759 crossref_primary_10_1016_S1470_2045_19_30391_2 crossref_primary_10_2196_45529 crossref_primary_10_1111_bjd_18859 crossref_primary_10_1016_j_ebiom_2019_01_028 crossref_primary_10_3389_fmed_2021_644327 crossref_primary_10_3390_diagnostics13233506 crossref_primary_10_1007_s00405_024_08659_0 crossref_primary_10_1016_j_giec_2021_05_010 crossref_primary_10_1016_j_patrec_2022_02_005 crossref_primary_10_1111_1346_8138_15683 crossref_primary_10_2196_39972 crossref_primary_10_1002_ett_4080 crossref_primary_10_5826_dpc_1503a5110 crossref_primary_10_1007_s11042_020_08768_y crossref_primary_10_1016_j_patcog_2022_108990 crossref_primary_10_1016_j_ejca_2022_07_002 crossref_primary_10_3390_app12115714 crossref_primary_10_1016_j_clindermatol_2019_08_004 crossref_primary_10_1371_journal_pone_0280670 crossref_primary_10_7717_peerj_cs_1533 crossref_primary_10_1109_ACCESS_2020_3007939 crossref_primary_10_1038_s41551_022_00898_y crossref_primary_10_1038_s41598_021_90328_x crossref_primary_10_1097_CMR_0000000000000779 crossref_primary_10_3390_ijerph191610032 crossref_primary_10_1016_j_ejca_2021_06_049 crossref_primary_10_3389_fmed_2024_1331895 crossref_primary_10_1016_j_ejca_2021_06_047 crossref_primary_10_1038_s41591_018_0300_7 crossref_primary_10_1155_dth_4636142 crossref_primary_10_1016_j_lana_2022_100192 crossref_primary_10_3389_fmed_2023_1278232 crossref_primary_10_1097_CMR_0000000000000774 crossref_primary_10_1111_jocd_15310 crossref_primary_10_1155_2022_9308188 crossref_primary_10_1016_j_jid_2018_04_040 crossref_primary_10_3389_fmed_2021_670300 crossref_primary_10_1016_j_jid_2020_02_026 crossref_primary_10_1111_bjd_17189 crossref_primary_10_3389_fmed_2021_754202 crossref_primary_10_1111_jgh_15522 crossref_primary_10_2196_35150 crossref_primary_10_3389_fmed_2024_1365524 crossref_primary_10_1007_s13555_022_00874_z crossref_primary_10_1186_s12916_019_1426_2 crossref_primary_10_1007_s42979_021_00641_5 crossref_primary_10_1093_nutrit_nuac033 crossref_primary_10_1111_jdv_16185 crossref_primary_10_3389_fmed_2025_1476685 crossref_primary_10_3390_cancers15041183 crossref_primary_10_1007_s11042_019_07988_1 crossref_primary_10_1159_000497275 crossref_primary_10_1007_s00138_020_01094_1 crossref_primary_10_3390_diagnostics14010089 crossref_primary_10_1159_000530225 crossref_primary_10_1001_jamadermatol_2019_3807 crossref_primary_10_1016_j_clindermatol_2024_09_012 crossref_primary_10_1089_sur_2022_223 crossref_primary_10_1016_j_compbiomed_2024_108742 crossref_primary_10_1001_jamadermatol_2021_3129 crossref_primary_10_1109_JBHI_2022_3218166 crossref_primary_10_1111_exsy_13215 crossref_primary_10_1038_s41598_023_42693_y crossref_primary_10_3389_fmed_2021_751649 crossref_primary_10_1007_s11831_023_09910_3 crossref_primary_10_1016_j_jaad_2020_05_053 crossref_primary_10_1001_jamadermatol_2019_1633 crossref_primary_10_3390_app12052677 crossref_primary_10_3390_life12030426 crossref_primary_10_1007_s00105_020_04664_6 crossref_primary_10_1016_j_compbiomed_2022_105580 crossref_primary_10_1111_jdv_18192 crossref_primary_10_1007_s13273_022_00249_7 crossref_primary_10_4103_ijd_IJD_418_20 crossref_primary_10_1016_j_compbiomed_2024_108074 crossref_primary_10_3390_ijtm1030016 crossref_primary_10_1093_neuros_nyab170 crossref_primary_10_1007_s13671_019_0259_8 crossref_primary_10_1016_j_jid_2021_12_033 crossref_primary_10_3390_electronics12061342 crossref_primary_10_1001_jamadermatol_2019_1735 crossref_primary_10_1109_ACCESS_2023_3253430 crossref_primary_10_1016_j_jid_2019_12_029 crossref_primary_10_1093_ced_llae361 crossref_primary_10_1038_s41598_023_30699_5 crossref_primary_10_1016_j_ejca_2021_05_026 crossref_primary_10_1016_j_jid_2022_02_003 crossref_primary_10_1109_JBHI_2021_3052044 crossref_primary_10_1038_s41568_020_00327_9 crossref_primary_10_3390_bioengineering10080979 crossref_primary_10_7717_peerj_cs_2795 crossref_primary_10_1155_2021_6638522 crossref_primary_10_3390_diagnostics13030385 crossref_primary_10_1007_s11831_025_10275_y crossref_primary_10_2196_24845 crossref_primary_10_1001_jamadermatol_2019_3360 crossref_primary_10_1038_s41746_024_01103_x crossref_primary_10_1177_20503121241274197 crossref_primary_10_1111_ijd_17847 crossref_primary_10_1111_srt_13607 crossref_primary_10_1093_jigpal_jzab009 crossref_primary_10_1186_s12911_023_02229_w crossref_primary_10_1001_jamadermatol_2021_4915 crossref_primary_10_1016_j_jid_2021_09_029 crossref_primary_10_1007_s11912_023_01407_3 crossref_primary_10_1186_s42836_022_00145_4 crossref_primary_10_1186_s10033_021_00629_5 crossref_primary_10_1016_j_ejca_2019_06_013 crossref_primary_10_1111_exd_14938 crossref_primary_10_1038_s41551_023_01160_9 crossref_primary_10_1159_000517070 crossref_primary_10_1016_j_ejca_2022_02_025 crossref_primary_10_1038_s41598_021_85489_8 crossref_primary_10_1111_ddg_15608_g crossref_primary_10_1038_sdata_2018_161 crossref_primary_10_1109_TMI_2021_3068404 crossref_primary_10_1016_j_cmpb_2022_106628 crossref_primary_10_1016_j_csbr_2025_100051 crossref_primary_10_1007_s10439_024_03471_7 crossref_primary_10_1155_2022_2546015 crossref_primary_10_1080_14737167_2023_2279107 crossref_primary_10_1155_int_3164952 crossref_primary_10_32604_cmc_2021_018402 crossref_primary_10_1111_bjd_18880 crossref_primary_10_2196_34896 crossref_primary_10_7759_cureus_69818 crossref_primary_10_1038_s41598_022_20168_w crossref_primary_10_3389_fdgth_2020_569178 crossref_primary_10_1053_j_ajkd_2019_05_020 crossref_primary_10_1007_s13555_022_00833_8 crossref_primary_10_1007_s10278_023_00775_3 crossref_primary_10_1002_ski2_81 crossref_primary_10_1007_s40257_019_00462_6 crossref_primary_10_1001_jamadermatol_2018_2714 crossref_primary_10_1111_1346_8138_15640 crossref_primary_10_1684_ejd_2019_3538 crossref_primary_10_1038_s41467_024_50043_3 crossref_primary_10_1109_ACCESS_2020_2975198 crossref_primary_10_2196_48811 |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.jid.2018.01.028 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1523-1747 |
| ExternalDocumentID | 29428356 |
| Genre | Validation Studies Journal Article |
| GroupedDBID | --- --K .55 .GJ 0R~ 0SF 1B1 29K 2WC 36B 3O- 3V. 4.4 457 53G 5GY 5RE 5VS 6I. 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AACTN AAEDW AAFTH AALRI AAXUO ABAWZ ABJNI ABLJU ABMAC ABUWG ABVKL ACGFO ACGFS ACPRK ADBBV ADEZE ADFRT ADVLN AENEX AEXQZ AFEBI AFETI AFFNX AFJKZ AFKRA AFTJW AGHFR AHMBA AI. AITUG AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BENPR BFHJK BPHCQ BVXVI CAG CCPQU CGR COF CS3 CUY CVF D-I DIK E3Z EBS ECM EIF EJD F5P FDB FRP FYUFA GX1 HMCUK HZ~ IH2 IHE J5H JSO KQ8 L7B LH4 LW6 M1P M41 MVM NCXOZ NPM NQ- O9- OK1 P2P PKN PQQKQ PROAC PSQYO Q2X R9- RIG RNS ROL RPZ SSZ TR2 UKHRP VH1 W2D X7M Y6R YFH YOC YUY ZGI 7X8 AAYWO ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP EFKBS |
| ID | FETCH-LOGICAL-c419t-cbd14eecbb926f64cdbeb45387b25dd498690b4518f8b1fa8a56c5cb7bd6e9d02 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 411 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436407000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1523-1747 |
| IngestDate | Thu Sep 25 08:43:49 EDT 2025 Wed Feb 19 02:36:33 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-cbd14eecbb926f64cdbeb45387b25dd498690b4518f8b1fa8a56c5cb7bd6e9d02 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jid.2018.01.028 |
| PMID | 29428356 |
| PQID | 2001409643 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2001409643 pubmed_primary_29428356 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-00 20180701 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-00 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of investigative dermatology |
| PublicationTitleAlternate | J Invest Dermatol |
| PublicationYear | 2018 |
| References | 29864435 - J Invest Dermatol. 2018 Oct;138(10):2277-2279 29864434 - J Invest Dermatol. 2018 Oct;138(10):2275-2277 |
| References_xml | – reference: 29864435 - J Invest Dermatol. 2018 Oct;138(10):2277-2279 – reference: 29864434 - J Invest Dermatol. 2018 Oct;138(10):2275-2277 |
| SSID | ssj0016458 |
| Score | 2.690865 |
| Snippet | We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma,... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1529 |
| SubjectTerms | Adult Aged Aged, 80 and over Area Under Curve Biopsy Datasets as Topic Deep Learning Diagnosis, Differential False Positive Reactions Female Granuloma, Pyogenic - diagnostic imaging Granuloma, Pyogenic - pathology Humans Image Processing, Computer-Assisted - methods Keratosis, Actinic - diagnostic imaging Keratosis, Actinic - pathology Keratosis, Seborrheic - diagnostic imaging Keratosis, Seborrheic - pathology Lentigo - diagnostic imaging Lentigo - pathology Male Middle Aged Photography Predictive Value of Tests ROC Curve Skin - diagnostic imaging Skin - pathology Skin Neoplasms - diagnostic imaging Skin Neoplasms - pathology Software Warts - diagnostic imaging Warts - pathology Young Adult |
| Title | Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29428356 https://www.proquest.com/docview/2001409643 |
| Volume | 138 |
| WOSCitedRecordID | wos000436407000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEBVtU0ov3Zd0Ywq9msa2LEunki6hPSTkkEJuRmuakthpnPT7K8kOORUKvehgEMia0eihebyH0J0yiY554hQAYhFgJnnABY-CkHEjSBTqmEpvNpH2enQ4ZP36wa2saZWrmugLtSqkeyO_j7wSjFOPeph9Bc41ynVXawuNTdSILZRxWZ0O110Egr0_p72inAwnTlddTc_v-hw7odCQVqqd9HeE6W-azv5_13iA9mqMCe0qKQ7Rhs6P0E637qIfo8I7YTqOkA8LFAYsDIRaInQCb1NbZEqwcBYedT4e5cBzBV2L2EeONgNPS4sodbEsYbCcFvMSPO8AODxrPYNasXUE7cnILm7xMT1B752XwdNrUBsvBBKHbBFIoUKstRSCRcQQLJXQAtvSmIooUQozZ2NlP4TUUBEaTnlCZCJFKhTRTLWiU7SVF7k-R0AElUZKjE1LYxFzKjgPpeYsjSUWKW6i29VWZjaxXbei-oNsvZlNdFbFI5tVChxZxLxOHLn4w-xLtOvCXFFsr1DD2GOtr9G2_F6My_mNzxg79vrdH8HfzWQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+the+Clinical+Images+for+Benign+and+Malignant+Cutaneous+Tumors+Using+a+Deep+Learning+Algorithm&rft.jtitle=Journal+of+investigative+dermatology&rft.au=Han%2C+Seung+Seog&rft.au=Kim%2C+Myoung+Shin&rft.au=Lim%2C+Woohyung&rft.au=Park%2C+Gyeong+Hun&rft.date=2018-07-01&rft.eissn=1523-1747&rft.volume=138&rft.issue=7&rft.spage=1529&rft_id=info:doi/10.1016%2Fj.jid.2018.01.028&rft_id=info%3Apmid%2F29428356&rft_id=info%3Apmid%2F29428356&rft.externalDocID=29428356 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1523-1747&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1523-1747&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1523-1747&client=summon |