Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm

We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of investigative dermatology Ročník 138; číslo 7; s. 1529
Hlavní autori: Han, Seung Seog, Kim, Myoung Shin, Lim, Woohyung, Park, Gyeong Hun, Park, Ilwoo, Chang, Sung Eun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.07.2018
Predmet:
ISSN:1523-1747, 1523-1747
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, and wart. The convolutional neural network (Microsoft ResNet-152 model; Microsoft Research Asia, Beijing, China) was fine-tuned with images from the training portion of the Asan dataset, MED-NODE dataset, and atlas site images (19,398 images in total). The trained model was validated with the testing portion of the Asan, Hallym and Edinburgh datasets. With the Asan dataset, the area under the curve for the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, and melanoma was 0.96 ± 0.01, 0.83 ± 0.01, 0.82 ± 0.02, and 0.96 ± 0.00, respectively. With the Edinburgh dataset, the area under the curve for the corresponding diseases was 0.90 ± 0.01, 0.91 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. With the Hallym dataset, the sensitivity for basal cell carcinoma diagnosis was 87.1% ± 6.0%. The tested algorithm performance with 480 Asan and Edinburgh images was comparable to that of 16 dermatologists. To improve the performance of convolutional neural network, additional images with a broader range of ages and ethnicities should be collected.
AbstractList We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, and wart. The convolutional neural network (Microsoft ResNet-152 model; Microsoft Research Asia, Beijing, China) was fine-tuned with images from the training portion of the Asan dataset, MED-NODE dataset, and atlas site images (19,398 images in total). The trained model was validated with the testing portion of the Asan, Hallym and Edinburgh datasets. With the Asan dataset, the area under the curve for the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, and melanoma was 0.96 ± 0.01, 0.83 ± 0.01, 0.82 ± 0.02, and 0.96 ± 0.00, respectively. With the Edinburgh dataset, the area under the curve for the corresponding diseases was 0.90 ± 0.01, 0.91 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. With the Hallym dataset, the sensitivity for basal cell carcinoma diagnosis was 87.1% ± 6.0%. The tested algorithm performance with 480 Asan and Edinburgh images was comparable to that of 16 dermatologists. To improve the performance of convolutional neural network, additional images with a broader range of ages and ethnicities should be collected.We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, and wart. The convolutional neural network (Microsoft ResNet-152 model; Microsoft Research Asia, Beijing, China) was fine-tuned with images from the training portion of the Asan dataset, MED-NODE dataset, and atlas site images (19,398 images in total). The trained model was validated with the testing portion of the Asan, Hallym and Edinburgh datasets. With the Asan dataset, the area under the curve for the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, and melanoma was 0.96 ± 0.01, 0.83 ± 0.01, 0.82 ± 0.02, and 0.96 ± 0.00, respectively. With the Edinburgh dataset, the area under the curve for the corresponding diseases was 0.90 ± 0.01, 0.91 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. With the Hallym dataset, the sensitivity for basal cell carcinoma diagnosis was 87.1% ± 6.0%. The tested algorithm performance with 480 Asan and Edinburgh images was comparable to that of 16 dermatologists. To improve the performance of convolutional neural network, additional images with a broader range of ages and ethnicities should be collected.
We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, and wart. The convolutional neural network (Microsoft ResNet-152 model; Microsoft Research Asia, Beijing, China) was fine-tuned with images from the training portion of the Asan dataset, MED-NODE dataset, and atlas site images (19,398 images in total). The trained model was validated with the testing portion of the Asan, Hallym and Edinburgh datasets. With the Asan dataset, the area under the curve for the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, and melanoma was 0.96 ± 0.01, 0.83 ± 0.01, 0.82 ± 0.02, and 0.96 ± 0.00, respectively. With the Edinburgh dataset, the area under the curve for the corresponding diseases was 0.90 ± 0.01, 0.91 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. With the Hallym dataset, the sensitivity for basal cell carcinoma diagnosis was 87.1% ± 6.0%. The tested algorithm performance with 480 Asan and Edinburgh images was comparable to that of 16 dermatologists. To improve the performance of convolutional neural network, additional images with a broader range of ages and ethnicities should be collected.
Author Park, Ilwoo
Han, Seung Seog
Park, Gyeong Hun
Lim, Woohyung
Kim, Myoung Shin
Chang, Sung Eun
Author_xml – sequence: 1
  givenname: Seung Seog
  surname: Han
  fullname: Han, Seung Seog
  organization: I Dermatology Clinic, Seoul, Korea
– sequence: 2
  givenname: Myoung Shin
  surname: Kim
  fullname: Kim, Myoung Shin
  organization: Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
– sequence: 3
  givenname: Woohyung
  surname: Lim
  fullname: Lim, Woohyung
  organization: SK Telecom, Human Machine Interface Technology Laboratory, Seoul, Korea
– sequence: 4
  givenname: Gyeong Hun
  surname: Park
  fullname: Park, Gyeong Hun
  organization: Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan, Korea
– sequence: 5
  givenname: Ilwoo
  surname: Park
  fullname: Park, Ilwoo
  organization: Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju, Korea
– sequence: 6
  givenname: Sung Eun
  surname: Chang
  fullname: Chang, Sung Eun
  email: csesnumd@gmail.com
  organization: Department of Dermatology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea. Electronic address: csesnumd@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29428356$$D View this record in MEDLINE/PubMed
BookMark eNpNUDtPwzAYtBCIPuAHsCCPLAm24zjOWMKrUhFLO0d-JXXl2CVOBv49QS0S03ff6e50ugW49MEbAO4wSjHC7PGQHqxOCcI8RThFhF-AOc5JluCCFpf_8AwsYjygyUNzfg1mpKSEZzmbg1A5EaNtrBKDDR6GBg57Aytn_UQ5uO5EayJsQg-fjLeth8Jr-CHcBIUfYDUOwpswRrgdu9BHuIvWt1DAZ2OOcGNE73__lWtDb4d9dwOuGuGiuT3fJdi9vmyr92Tz-bauVptEUVwOiZIaU2OUlCVhDaNKSyNpnvFCklxrWnJWoonAvOESN4KLnKlcyUJqZkqNyBI8nHKPffgaTRzqzkZlnDu1rck0BkUlo9kkvT9LR9kZXR9724n-u_4bifwAcOxtAw
CitedBy_id crossref_primary_10_3390_bioengineering9030097
crossref_primary_10_1001_jamadermatol_2018_4378
crossref_primary_10_3390_jimaging8070197
crossref_primary_10_1016_j_jid_2018_05_014
crossref_primary_10_1080_10408363_2018_1561640
crossref_primary_10_1016_j_asoc_2021_107707
crossref_primary_10_1007_s11042_022_12633_5
crossref_primary_10_1016_j_dajour_2023_100240
crossref_primary_10_1002_ima_70050
crossref_primary_10_1007_s11042_020_09067_2
crossref_primary_10_1007_s11042_024_19837_x
crossref_primary_10_3390_bioengineering11080758
crossref_primary_10_1016_j_jid_2020_07_034
crossref_primary_10_32604_cmc_2022_018621
crossref_primary_10_1007_s13555_020_00372_0
crossref_primary_10_1016_j_media_2021_102254
crossref_primary_10_1109_ACCESS_2020_3010800
crossref_primary_10_3390_s19163607
crossref_primary_10_1186_s12880_019_0307_7
crossref_primary_10_1007_s12312_019_00729_3
crossref_primary_10_1007_s10278_021_00457_y
crossref_primary_10_1111_jdv_16371
crossref_primary_10_2196_22909
crossref_primary_10_3390_jcm8091419
crossref_primary_10_1080_09720502_2020_1857905
crossref_primary_10_1111_ajd_13946
crossref_primary_10_3389_fmed_2023_1114362
crossref_primary_10_1055_s_0041_1735470
crossref_primary_10_1136_bmjopen_2021_050203
crossref_primary_10_1007_s41666_023_00127_4
crossref_primary_10_1038_s41598_024_59436_2
crossref_primary_10_3390_info14120642
crossref_primary_10_1002_jemt_23686
crossref_primary_10_1016_j_neucom_2021_08_096
crossref_primary_10_1016_j_jid_2018_06_175
crossref_primary_10_3389_fmed_2025_1623408
crossref_primary_10_1111_bjd_18459
crossref_primary_10_1002_mp_14518
crossref_primary_10_1016_j_ijom_2024_11_010
crossref_primary_10_1016_j_compbiomed_2018_11_010
crossref_primary_10_1016_j_jaad_2019_07_016
crossref_primary_10_1109_ACCESS_2023_3339635
crossref_primary_10_17116_klinderma202423031246
crossref_primary_10_3390_app12042092
crossref_primary_10_1016_j_biosystemseng_2021_09_010
crossref_primary_10_1371_journal_pone_0260895
crossref_primary_10_2196_26025
crossref_primary_10_3389_fpsyg_2022_804447
crossref_primary_10_1371_journal_pdig_0000864
crossref_primary_10_2196_18091
crossref_primary_10_3389_fmed_2019_00191
crossref_primary_10_1007_s00417_019_04575_w
crossref_primary_10_1007_s00500_023_09430_z
crossref_primary_10_1007_s13671_024_00440_0
crossref_primary_10_1016_j_bspc_2023_105065
crossref_primary_10_3390_cancers13194974
crossref_primary_10_1016_j_jid_2023_05_018
crossref_primary_10_3390_diagnostics15070939
crossref_primary_10_1007_s10916_019_1414_2
crossref_primary_10_1016_j_bspc_2022_104059
crossref_primary_10_1016_j_compbiomed_2022_105966
crossref_primary_10_3390_diagnostics14020230
crossref_primary_10_1111_exd_13777
crossref_primary_10_1007_s00292_020_00827_3
crossref_primary_10_1155_2022_9991794
crossref_primary_10_1097_CM9_0000000000001023
crossref_primary_10_1155_2022_6322272
crossref_primary_10_1007_s11227_021_03881_7
crossref_primary_10_7717_peerj_cs_371
crossref_primary_10_2196_28114
crossref_primary_10_1371_journal_pone_0256290
crossref_primary_10_1007_s40257_020_00574_4
crossref_primary_10_3390_jcm11175102
crossref_primary_10_1007_s11042_022_13756_5
crossref_primary_10_1111_pcmr_13027
crossref_primary_10_3390_app10072488
crossref_primary_10_1016_j_health_2023_100259
crossref_primary_10_4103_jrms_jrms_607_24
crossref_primary_10_32604_cmc_2024_052548
crossref_primary_10_1016_j_procs_2024_05_026
crossref_primary_10_1093_ced_llad400
crossref_primary_10_1016_j_bspc_2022_103893
crossref_primary_10_1016_j_jaad_2021_10_010
crossref_primary_10_1001_jamadermatol_2019_2335
crossref_primary_10_1155_2021_7192016
crossref_primary_10_3390_jcm11237103
crossref_primary_10_4103_jewd_jewd_18_25
crossref_primary_10_1109_ACCESS_2020_2998098
crossref_primary_10_1109_ACCESS_2022_3199613
crossref_primary_10_3389_fsurg_2025_1640588
crossref_primary_10_1001_jamadermatol_2023_3521
crossref_primary_10_3390_math9222974
crossref_primary_10_3389_fphy_2022_1046314
crossref_primary_10_1186_s12896_022_00755_5
crossref_primary_10_1177_11769351251349891
crossref_primary_10_1038_s41598_023_40395_z
crossref_primary_10_1109_TMI_2021_3136682
crossref_primary_10_1016_j_isci_2025_113329
crossref_primary_10_3390_diagnostics12061371
crossref_primary_10_3390_electronics11091294
crossref_primary_10_1016_j_xjidi_2025_100404
crossref_primary_10_3390_electronics14010049
crossref_primary_10_1007_s42979_022_01439_9
crossref_primary_10_3390_diagnostics10110969
crossref_primary_10_3390_ph18091273
crossref_primary_10_3389_fcvm_2023_1161914
crossref_primary_10_1016_j_cmpb_2023_107986
crossref_primary_10_1111_jdv_16967
crossref_primary_10_1111_jdv_20781
crossref_primary_10_1177_10732748221095946
crossref_primary_10_1155_2022_4942637
crossref_primary_10_1016_j_cmpb_2025_108841
crossref_primary_10_1007_s00170_024_13874_4
crossref_primary_10_1016_j_aei_2023_102036
crossref_primary_10_1049_iet_ipr_2019_0553
crossref_primary_10_1007_s11654_021_00298_9
crossref_primary_10_1038_s41598_025_90418_0
crossref_primary_10_3389_fdgth_2022_765406
crossref_primary_10_1056_AIdbp2400732
crossref_primary_10_1111_ijd_15242
crossref_primary_10_1080_09546634_2019_1623373
crossref_primary_10_1007_s13167_020_00199_x
crossref_primary_10_1038_s41598_024_51742_z
crossref_primary_10_2147_CCID_S458255
crossref_primary_10_3390_diagnostics12071628
crossref_primary_10_1007_s10120_020_01093_1
crossref_primary_10_1016_j_ajpath_2023_02_008
crossref_primary_10_3390_s21238142
crossref_primary_10_3390_life14121602
crossref_primary_10_1016_j_compbiomed_2019_103423
crossref_primary_10_1016_j_compbiomed_2019_103545
crossref_primary_10_1016_j_jpi_2022_100159
crossref_primary_10_1109_TMI_2024_3450682
crossref_primary_10_1007_s10489_021_02199_4
crossref_primary_10_1007_s11548_021_02440_y
crossref_primary_10_1109_ACCESS_2025_3584904
crossref_primary_10_1016_j_bspc_2025_107731
crossref_primary_10_1016_S1470_2045_19_30333_X
crossref_primary_10_1097_JD9_0000000000000404
crossref_primary_10_1177_2475530320950267
crossref_primary_10_1515_jisys_2024_0381
crossref_primary_10_3390_diagnostics14131359
crossref_primary_10_1016_j_ejca_2018_12_016
crossref_primary_10_1016_j_ijmedinf_2023_105266
crossref_primary_10_2196_11936
crossref_primary_10_3390_cancers15194861
crossref_primary_10_1016_j_bios_2024_116045
crossref_primary_10_1016_j_compbiomed_2025_110533
crossref_primary_10_1007_s13671_019_00267_0
crossref_primary_10_1016_j_ejca_2020_11_020
crossref_primary_10_1093_ced_llad430
crossref_primary_10_1016_j_jaad_2020_01_028
crossref_primary_10_1038_s41598_020_74936_7
crossref_primary_10_1007_s13671_024_00436_w
crossref_primary_10_2196_52914
crossref_primary_10_1007_s11042_023_16520_5
crossref_primary_10_1177_14727978241299234
crossref_primary_10_3390_s22187065
crossref_primary_10_1016_j_jvoice_2020_08_003
crossref_primary_10_1001_jamadermatol_2019_5014
crossref_primary_10_1002_ski2_19
crossref_primary_10_2196_39143
crossref_primary_10_7759_cureus_88711
crossref_primary_10_1016_j_compbiomed_2022_106170
crossref_primary_10_1186_s13638_019_1541_y
crossref_primary_10_62675_2965_2774_20250380
crossref_primary_10_3389_fmed_2021_723914
crossref_primary_10_1109_ACCESS_2020_3037258
crossref_primary_10_3389_fonc_2021_810909
crossref_primary_10_1016_j_imu_2019_100282
crossref_primary_10_3390_life13112123
crossref_primary_10_1016_j_jdermsci_2020_11_009
crossref_primary_10_1093_ced_llad324
crossref_primary_10_1111_jdv_16812
crossref_primary_10_1016_j_jid_2019_10_018
crossref_primary_10_1111_jdv_15965
crossref_primary_10_3390_app9091827
crossref_primary_10_1016_j_media_2020_101858
crossref_primary_10_1097_SCS_0000000000011498
crossref_primary_10_1007_s42044_024_00210_y
crossref_primary_10_1016_j_compbiomed_2021_104924
crossref_primary_10_1016_j_jid_2020_06_040
crossref_primary_10_1111_cts_12884
crossref_primary_10_1016_j_compbiomed_2020_104065
crossref_primary_10_25259_IJDVL_518_19
crossref_primary_10_1111_ddg_15608
crossref_primary_10_3390_ijerph182413409
crossref_primary_10_1007_s00761_019_00679_4
crossref_primary_10_1038_s41597_024_04104_3
crossref_primary_10_1038_s41591_020_0942_0
crossref_primary_10_1038_s41598_022_24315_1
crossref_primary_10_1080_00207543_2021_1894366
crossref_primary_10_1111_jdv_19890
crossref_primary_10_1111_jdv_19234
crossref_primary_10_1016_j_cmpb_2020_105649
crossref_primary_10_1038_s41598_022_20632_7
crossref_primary_10_1016_j_cmpb_2019_105079
crossref_primary_10_3389_fmed_2020_00100
crossref_primary_10_1016_j_jid_2020_01_019
crossref_primary_10_1109_ACCESS_2020_3004766
crossref_primary_10_1371_journal_pone_0218713
crossref_primary_10_1007_s11042_022_13550_3
crossref_primary_10_3389_frai_2025_1608837
crossref_primary_10_1002_jbio_202100180
crossref_primary_10_1016_j_media_2021_102099
crossref_primary_10_1007_s10815_020_01950_z
crossref_primary_10_17749_2070_4909_farmakoekonomika_2025_294
crossref_primary_10_1136_annrheumdis_2020_217125
crossref_primary_10_1155_2022_2765486
crossref_primary_10_1109_ACCESS_2022_3165574
crossref_primary_10_1016_j_esmorw_2024_100077
crossref_primary_10_1155_2020_1713904
crossref_primary_10_1063_5_0188187
crossref_primary_10_1016_j_ejca_2022_04_015
crossref_primary_10_1111_jdv_18814
crossref_primary_10_1016_j_cmpb_2020_105631
crossref_primary_10_1016_j_health_2023_100199
crossref_primary_10_1007_s11042_024_19298_2
crossref_primary_10_3389_fmed_2021_626369
crossref_primary_10_1111_srt_13045
crossref_primary_10_1155_2019_6212759
crossref_primary_10_1016_S1470_2045_19_30391_2
crossref_primary_10_2196_45529
crossref_primary_10_1111_bjd_18859
crossref_primary_10_1016_j_ebiom_2019_01_028
crossref_primary_10_3389_fmed_2021_644327
crossref_primary_10_3390_diagnostics13233506
crossref_primary_10_1007_s00405_024_08659_0
crossref_primary_10_1016_j_giec_2021_05_010
crossref_primary_10_1016_j_patrec_2022_02_005
crossref_primary_10_1111_1346_8138_15683
crossref_primary_10_2196_39972
crossref_primary_10_1002_ett_4080
crossref_primary_10_5826_dpc_1503a5110
crossref_primary_10_1007_s11042_020_08768_y
crossref_primary_10_1016_j_patcog_2022_108990
crossref_primary_10_1016_j_ejca_2022_07_002
crossref_primary_10_3390_app12115714
crossref_primary_10_1016_j_clindermatol_2019_08_004
crossref_primary_10_1371_journal_pone_0280670
crossref_primary_10_7717_peerj_cs_1533
crossref_primary_10_1109_ACCESS_2020_3007939
crossref_primary_10_1038_s41551_022_00898_y
crossref_primary_10_1038_s41598_021_90328_x
crossref_primary_10_1097_CMR_0000000000000779
crossref_primary_10_3390_ijerph191610032
crossref_primary_10_1016_j_ejca_2021_06_049
crossref_primary_10_3389_fmed_2024_1331895
crossref_primary_10_1016_j_ejca_2021_06_047
crossref_primary_10_1038_s41591_018_0300_7
crossref_primary_10_1155_dth_4636142
crossref_primary_10_1016_j_lana_2022_100192
crossref_primary_10_3389_fmed_2023_1278232
crossref_primary_10_1097_CMR_0000000000000774
crossref_primary_10_1111_jocd_15310
crossref_primary_10_1155_2022_9308188
crossref_primary_10_1016_j_jid_2018_04_040
crossref_primary_10_3389_fmed_2021_670300
crossref_primary_10_1016_j_jid_2020_02_026
crossref_primary_10_1111_bjd_17189
crossref_primary_10_3389_fmed_2021_754202
crossref_primary_10_1111_jgh_15522
crossref_primary_10_2196_35150
crossref_primary_10_3389_fmed_2024_1365524
crossref_primary_10_1007_s13555_022_00874_z
crossref_primary_10_1186_s12916_019_1426_2
crossref_primary_10_1007_s42979_021_00641_5
crossref_primary_10_1093_nutrit_nuac033
crossref_primary_10_1111_jdv_16185
crossref_primary_10_3389_fmed_2025_1476685
crossref_primary_10_3390_cancers15041183
crossref_primary_10_1007_s11042_019_07988_1
crossref_primary_10_1159_000497275
crossref_primary_10_1007_s00138_020_01094_1
crossref_primary_10_3390_diagnostics14010089
crossref_primary_10_1159_000530225
crossref_primary_10_1001_jamadermatol_2019_3807
crossref_primary_10_1016_j_clindermatol_2024_09_012
crossref_primary_10_1089_sur_2022_223
crossref_primary_10_1016_j_compbiomed_2024_108742
crossref_primary_10_1001_jamadermatol_2021_3129
crossref_primary_10_1109_JBHI_2022_3218166
crossref_primary_10_1111_exsy_13215
crossref_primary_10_1038_s41598_023_42693_y
crossref_primary_10_3389_fmed_2021_751649
crossref_primary_10_1007_s11831_023_09910_3
crossref_primary_10_1016_j_jaad_2020_05_053
crossref_primary_10_1001_jamadermatol_2019_1633
crossref_primary_10_3390_app12052677
crossref_primary_10_3390_life12030426
crossref_primary_10_1007_s00105_020_04664_6
crossref_primary_10_1016_j_compbiomed_2022_105580
crossref_primary_10_1111_jdv_18192
crossref_primary_10_1007_s13273_022_00249_7
crossref_primary_10_4103_ijd_IJD_418_20
crossref_primary_10_1016_j_compbiomed_2024_108074
crossref_primary_10_3390_ijtm1030016
crossref_primary_10_1093_neuros_nyab170
crossref_primary_10_1007_s13671_019_0259_8
crossref_primary_10_1016_j_jid_2021_12_033
crossref_primary_10_3390_electronics12061342
crossref_primary_10_1001_jamadermatol_2019_1735
crossref_primary_10_1109_ACCESS_2023_3253430
crossref_primary_10_1016_j_jid_2019_12_029
crossref_primary_10_1093_ced_llae361
crossref_primary_10_1038_s41598_023_30699_5
crossref_primary_10_1016_j_ejca_2021_05_026
crossref_primary_10_1016_j_jid_2022_02_003
crossref_primary_10_1109_JBHI_2021_3052044
crossref_primary_10_1038_s41568_020_00327_9
crossref_primary_10_3390_bioengineering10080979
crossref_primary_10_7717_peerj_cs_2795
crossref_primary_10_1155_2021_6638522
crossref_primary_10_3390_diagnostics13030385
crossref_primary_10_1007_s11831_025_10275_y
crossref_primary_10_2196_24845
crossref_primary_10_1001_jamadermatol_2019_3360
crossref_primary_10_1038_s41746_024_01103_x
crossref_primary_10_1177_20503121241274197
crossref_primary_10_1111_ijd_17847
crossref_primary_10_1111_srt_13607
crossref_primary_10_1093_jigpal_jzab009
crossref_primary_10_1186_s12911_023_02229_w
crossref_primary_10_1001_jamadermatol_2021_4915
crossref_primary_10_1016_j_jid_2021_09_029
crossref_primary_10_1007_s11912_023_01407_3
crossref_primary_10_1186_s42836_022_00145_4
crossref_primary_10_1186_s10033_021_00629_5
crossref_primary_10_1016_j_ejca_2019_06_013
crossref_primary_10_1111_exd_14938
crossref_primary_10_1038_s41551_023_01160_9
crossref_primary_10_1159_000517070
crossref_primary_10_1016_j_ejca_2022_02_025
crossref_primary_10_1038_s41598_021_85489_8
crossref_primary_10_1111_ddg_15608_g
crossref_primary_10_1038_sdata_2018_161
crossref_primary_10_1109_TMI_2021_3068404
crossref_primary_10_1016_j_cmpb_2022_106628
crossref_primary_10_1016_j_csbr_2025_100051
crossref_primary_10_1007_s10439_024_03471_7
crossref_primary_10_1155_2022_2546015
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_1155_int_3164952
crossref_primary_10_32604_cmc_2021_018402
crossref_primary_10_1111_bjd_18880
crossref_primary_10_2196_34896
crossref_primary_10_7759_cureus_69818
crossref_primary_10_1038_s41598_022_20168_w
crossref_primary_10_3389_fdgth_2020_569178
crossref_primary_10_1053_j_ajkd_2019_05_020
crossref_primary_10_1007_s13555_022_00833_8
crossref_primary_10_1007_s10278_023_00775_3
crossref_primary_10_1002_ski2_81
crossref_primary_10_1007_s40257_019_00462_6
crossref_primary_10_1001_jamadermatol_2018_2714
crossref_primary_10_1111_1346_8138_15640
crossref_primary_10_1684_ejd_2019_3538
crossref_primary_10_1038_s41467_024_50043_3
crossref_primary_10_1109_ACCESS_2020_2975198
crossref_primary_10_2196_48811
ContentType Journal Article
Copyright Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jid.2018.01.028
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1523-1747
ExternalDocumentID 29428356
Genre Validation Studies
Journal Article
GroupedDBID ---
--K
.55
.GJ
0R~
0SF
1B1
29K
2WC
36B
3O-
3V.
4.4
457
53G
5GY
5RE
5VS
6I.
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABAWZ
ABJNI
ABLJU
ABMAC
ABUWG
ABVKL
ACGFO
ACGFS
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AENEX
AEXQZ
AFEBI
AFETI
AFFNX
AFJKZ
AFKRA
AFTJW
AGHFR
AHMBA
AI.
AITUG
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BENPR
BFHJK
BPHCQ
BVXVI
CAG
CCPQU
CGR
COF
CS3
CUY
CVF
D-I
DIK
E3Z
EBS
ECM
EIF
EJD
F5P
FDB
FRP
FYUFA
GX1
HMCUK
HZ~
IH2
IHE
J5H
JSO
KQ8
L7B
LH4
LW6
M1P
M41
MVM
NCXOZ
NPM
NQ-
O9-
OK1
P2P
PKN
PQQKQ
PROAC
PSQYO
Q2X
R9-
RIG
RNS
ROL
RPZ
SSZ
TR2
UKHRP
VH1
W2D
X7M
Y6R
YFH
YOC
YUY
ZGI
7X8
AAYWO
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
EFKBS
ID FETCH-LOGICAL-c419t-cbd14eecbb926f64cdbeb45387b25dd498690b4518f8b1fa8a56c5cb7bd6e9d02
IEDL.DBID 7X8
ISICitedReferencesCount 411
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436407000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1523-1747
IngestDate Thu Sep 25 08:43:49 EDT 2025
Wed Feb 19 02:36:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-cbd14eecbb926f64cdbeb45387b25dd498690b4518f8b1fa8a56c5cb7bd6e9d02
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://dx.doi.org/10.1016/j.jid.2018.01.028
PMID 29428356
PQID 2001409643
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2001409643
pubmed_primary_29428356
PublicationCentury 2000
PublicationDate 2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of investigative dermatology
PublicationTitleAlternate J Invest Dermatol
PublicationYear 2018
References 29864435 - J Invest Dermatol. 2018 Oct;138(10):2277-2279
29864434 - J Invest Dermatol. 2018 Oct;138(10):2275-2277
References_xml – reference: 29864435 - J Invest Dermatol. 2018 Oct;138(10):2277-2279
– reference: 29864434 - J Invest Dermatol. 2018 Oct;138(10):2275-2277
SSID ssj0016458
Score 2.690865
Snippet We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1529
SubjectTerms Adult
Aged
Aged, 80 and over
Area Under Curve
Biopsy
Datasets as Topic
Deep Learning
Diagnosis, Differential
False Positive Reactions
Female
Granuloma, Pyogenic - diagnostic imaging
Granuloma, Pyogenic - pathology
Humans
Image Processing, Computer-Assisted - methods
Keratosis, Actinic - diagnostic imaging
Keratosis, Actinic - pathology
Keratosis, Seborrheic - diagnostic imaging
Keratosis, Seborrheic - pathology
Lentigo - diagnostic imaging
Lentigo - pathology
Male
Middle Aged
Photography
Predictive Value of Tests
ROC Curve
Skin - diagnostic imaging
Skin - pathology
Skin Neoplasms - diagnostic imaging
Skin Neoplasms - pathology
Software
Warts - diagnostic imaging
Warts - pathology
Young Adult
Title Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/29428356
https://www.proquest.com/docview/2001409643
Volume 138
WOSCitedRecordID wos000436407000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEBVtU0ov3Zd0Ywq9msa2LEunki6hPSTkkEJuRmuakthpnPT7K8kOORUKvehgEMia0eihebyH0J0yiY554hQAYhFgJnnABY-CkHEjSBTqmEpvNpH2enQ4ZP36wa2saZWrmugLtSqkeyO_j7wSjFOPeph9Bc41ynVXawuNTdSILZRxWZ0O110Egr0_p72inAwnTlddTc_v-hw7odCQVqqd9HeE6W-azv5_13iA9mqMCe0qKQ7Rhs6P0E637qIfo8I7YTqOkA8LFAYsDIRaInQCb1NbZEqwcBYedT4e5cBzBV2L2EeONgNPS4sodbEsYbCcFvMSPO8AODxrPYNasXUE7cnILm7xMT1B752XwdNrUBsvBBKHbBFIoUKstRSCRcQQLJXQAtvSmIooUQozZ2NlP4TUUBEaTnlCZCJFKhTRTLWiU7SVF7k-R0AElUZKjE1LYxFzKjgPpeYsjSUWKW6i29VWZjaxXbei-oNsvZlNdFbFI5tVChxZxLxOHLn4w-xLtOvCXFFsr1DD2GOtr9G2_F6My_mNzxg79vrdH8HfzWQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+the+Clinical+Images+for+Benign+and+Malignant+Cutaneous+Tumors+Using+a+Deep+Learning+Algorithm&rft.jtitle=Journal+of+investigative+dermatology&rft.au=Han%2C+Seung+Seog&rft.au=Kim%2C+Myoung+Shin&rft.au=Lim%2C+Woohyung&rft.au=Park%2C+Gyeong+Hun&rft.date=2018-07-01&rft.eissn=1523-1747&rft.volume=138&rft.issue=7&rft.spage=1529&rft_id=info:doi/10.1016%2Fj.jid.2018.01.028&rft_id=info%3Apmid%2F29428356&rft_id=info%3Apmid%2F29428356&rft.externalDocID=29428356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1523-1747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1523-1747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1523-1747&client=summon