Fully automated quantification of cardiac chamber and function assessment in 2-D echocardiography: clinical feasibility of deep learning-based algorithms

We aimed to compare the segmentation performance of the current prominent deep learning (DL) algorithms with ground-truth segmentations and to validate the reproducibility of the manually created 2D echocardiographic four cardiac chamber ground-truth annotation. Recently emerged DL based fully-autom...

Full description

Saved in:
Bibliographic Details
Published in:The international journal of cardiovascular imaging Vol. 38; no. 5; pp. 1047 - 1059
Main Authors: Kim, Sekeun, Park, Hyung-Bok, Jeon, Jaeik, Arsanjani, Reza, Heo, Ran, Lee, Sang-Eun, Moon, Inki, Yoo, Sun Kook, Chang, Hyuk-Jae
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.05.2022
Springer Nature B.V
Subjects:
ISSN:1875-8312, 1569-5794, 1875-8312, 1573-0743
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We aimed to compare the segmentation performance of the current prominent deep learning (DL) algorithms with ground-truth segmentations and to validate the reproducibility of the manually created 2D echocardiographic four cardiac chamber ground-truth annotation. Recently emerged DL based fully-automated chamber segmentation and function assessment methods have shown great potential for future application in aiding image acquisition, quantification, and suggestion for diagnosis. However, the performance of current DL algorithms have not previously been compared with each other. In addition, the reproducibility of ground-truth annotations which are the basis of these algorithms have not yet been fully validated. We retrospectively enrolled 500 consecutive patients who underwent transthoracic echocardiogram (TTE) from December 2019 to December 2020. Simple U-net, Res-U-net, and Dense-U-net algorithms were compared for the segmentation performances and clinical indices such as left atrial volume (LAV), left ventricular end diastolic volume (LVEDV), left ventricular end systolic volume (LVESV), LV mass, and ejection fraction (EF) were evaluated. The inter- and intra-observer variability analysis was performed by two expert sonographers for a randomly selected echocardiographic view in 100 patients (apical 2-chamber, apical 4-chamber, and parasternal short axis views). The overall performance of all DL methods was excellent [average dice similarity coefficient (DSC) 0.91 to 0.95 and average Intersection over union (IOU) 0.83 to 0.90], with the exception of LV wall area on PSAX view (average DSC of 0.83, IOU 0.72). In addition, there were no significant difference in clinical indices between ground truth and automated DL measurements. For inter- and intra-observer variability analysis, the overall intra observer reproducibility was excellent: LAV (ICC = 0.995), LVEDV (ICC = 0.996), LVESV (ICC = 0.997), LV mass (ICC = 0.991) and EF (ICC = 0.984). The inter-observer reproducibility was slightly lower as compared to intraobserver agreement: LAV (ICC = 0.976), LVEDV (ICC = 0.982), LVESV (ICC = 0.970), LV mass (ICC = 0.971), and EF (ICC = 0.899). The three current prominent DL-based fully automated methods are able to reliably perform four-chamber segmentation and quantification of clinical indices. Furthermore, we were able to validate the four cardiac chamber ground-truth annotation and demonstrate an overall excellent reproducibility, but still with some degree of inter-observer variability.
AbstractList We aimed to compare the segmentation performance of the current prominent deep learning (DL) algorithms with ground-truth segmentations and to validate the reproducibility of the manually created 2D echocardiographic four cardiac chamber ground-truth annotation. Recently emerged DL based fully-automated chamber segmentation and function assessment methods have shown great potential for future application in aiding image acquisition, quantification, and suggestion for diagnosis. However, the performance of current DL algorithms have not previously been compared with each other. In addition, the reproducibility of ground-truth annotations which are the basis of these algorithms have not yet been fully validated. We retrospectively enrolled 500 consecutive patients who underwent transthoracic echocardiogram (TTE) from December 2019 to December 2020. Simple U-net, Res-U-net, and Dense-U-net algorithms were compared for the segmentation performances and clinical indices such as left atrial volume (LAV), left ventricular end diastolic volume (LVEDV), left ventricular end systolic volume (LVESV), LV mass, and ejection fraction (EF) were evaluated. The inter- and intra-observer variability analysis was performed by two expert sonographers for a randomly selected echocardiographic view in 100 patients (apical 2-chamber, apical 4-chamber, and parasternal short axis views). The overall performance of all DL methods was excellent [average dice similarity coefficient (DSC) 0.91 to 0.95 and average Intersection over union (IOU) 0.83 to 0.90], with the exception of LV wall area on PSAX view (average DSC of 0.83, IOU 0.72). In addition, there were no significant difference in clinical indices between ground truth and automated DL measurements. For inter- and intra-observer variability analysis, the overall intra observer reproducibility was excellent: LAV (ICC = 0.995), LVEDV (ICC = 0.996), LVESV (ICC = 0.997), LV mass (ICC = 0.991) and EF (ICC = 0.984). The inter-observer reproducibility was slightly lower as compared to intraobserver agreement: LAV (ICC = 0.976), LVEDV (ICC = 0.982), LVESV (ICC = 0.970), LV mass (ICC = 0.971), and EF (ICC = 0.899). The three current prominent DL-based fully automated methods are able to reliably perform four-chamber segmentation and quantification of clinical indices. Furthermore, we were able to validate the four cardiac chamber ground-truth annotation and demonstrate an overall excellent reproducibility, but still with some degree of inter-observer variability.
We aimed to compare the segmentation performance of the current prominent deep learning (DL) algorithms with ground-truth segmentations and to validate the reproducibility of the manually created 2D echocardiographic four cardiac chamber ground-truth annotation. Recently emerged DL based fully-automated chamber segmentation and function assessment methods have shown great potential for future application in aiding image acquisition, quantification, and suggestion for diagnosis. However, the performance of current DL algorithms have not previously been compared with each other. In addition, the reproducibility of ground-truth annotations which are the basis of these algorithms have not yet been fully validated. We retrospectively enrolled 500 consecutive patients who underwent transthoracic echocardiogram (TTE) from December 2019 to December 2020. Simple U-net, Res-U-net, and Dense-U-net algorithms were compared for the segmentation performances and clinical indices such as left atrial volume (LAV), left ventricular end diastolic volume (LVEDV), left ventricular end systolic volume (LVESV), LV mass, and ejection fraction (EF) were evaluated. The inter- and intra-observer variability analysis was performed by two expert sonographers for a randomly selected echocardiographic view in 100 patients (apical 2-chamber, apical 4-chamber, and parasternal short axis views). The overall performance of all DL methods was excellent [average dice similarity coefficient (DSC) 0.91 to 0.95 and average Intersection over union (IOU) 0.83 to 0.90], with the exception of LV wall area on PSAX view (average DSC of 0.83, IOU 0.72). In addition, there were no significant difference in clinical indices between ground truth and automated DL measurements. For inter- and intra-observer variability analysis, the overall intra observer reproducibility was excellent: LAV (ICC = 0.995), LVEDV (ICC = 0.996), LVESV (ICC = 0.997), LV mass (ICC = 0.991) and EF (ICC = 0.984). The inter-observer reproducibility was slightly lower as compared to intraobserver agreement: LAV (ICC = 0.976), LVEDV (ICC = 0.982), LVESV (ICC = 0.970), LV mass (ICC = 0.971), and EF (ICC = 0.899). The three current prominent DL-based fully automated methods are able to reliably perform four-chamber segmentation and quantification of clinical indices. Furthermore, we were able to validate the four cardiac chamber ground-truth annotation and demonstrate an overall excellent reproducibility, but still with some degree of inter-observer variability.We aimed to compare the segmentation performance of the current prominent deep learning (DL) algorithms with ground-truth segmentations and to validate the reproducibility of the manually created 2D echocardiographic four cardiac chamber ground-truth annotation. Recently emerged DL based fully-automated chamber segmentation and function assessment methods have shown great potential for future application in aiding image acquisition, quantification, and suggestion for diagnosis. However, the performance of current DL algorithms have not previously been compared with each other. In addition, the reproducibility of ground-truth annotations which are the basis of these algorithms have not yet been fully validated. We retrospectively enrolled 500 consecutive patients who underwent transthoracic echocardiogram (TTE) from December 2019 to December 2020. Simple U-net, Res-U-net, and Dense-U-net algorithms were compared for the segmentation performances and clinical indices such as left atrial volume (LAV), left ventricular end diastolic volume (LVEDV), left ventricular end systolic volume (LVESV), LV mass, and ejection fraction (EF) were evaluated. The inter- and intra-observer variability analysis was performed by two expert sonographers for a randomly selected echocardiographic view in 100 patients (apical 2-chamber, apical 4-chamber, and parasternal short axis views). The overall performance of all DL methods was excellent [average dice similarity coefficient (DSC) 0.91 to 0.95 and average Intersection over union (IOU) 0.83 to 0.90], with the exception of LV wall area on PSAX view (average DSC of 0.83, IOU 0.72). In addition, there were no significant difference in clinical indices between ground truth and automated DL measurements. For inter- and intra-observer variability analysis, the overall intra observer reproducibility was excellent: LAV (ICC = 0.995), LVEDV (ICC = 0.996), LVESV (ICC = 0.997), LV mass (ICC = 0.991) and EF (ICC = 0.984). The inter-observer reproducibility was slightly lower as compared to intraobserver agreement: LAV (ICC = 0.976), LVEDV (ICC = 0.982), LVESV (ICC = 0.970), LV mass (ICC = 0.971), and EF (ICC = 0.899). The three current prominent DL-based fully automated methods are able to reliably perform four-chamber segmentation and quantification of clinical indices. Furthermore, we were able to validate the four cardiac chamber ground-truth annotation and demonstrate an overall excellent reproducibility, but still with some degree of inter-observer variability.
Author Arsanjani, Reza
Lee, Sang-Eun
Yoo, Sun Kook
Jeon, Jaeik
Heo, Ran
Moon, Inki
Chang, Hyuk-Jae
Kim, Sekeun
Park, Hyung-Bok
Author_xml – sequence: 1
  givenname: Sekeun
  surname: Kim
  fullname: Kim, Sekeun
  organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Graduate Program of Biomedical Engineering, Yonsei University College of Medicine
– sequence: 2
  givenname: Hyung-Bok
  surname: Park
  fullname: Park, Hyung-Bok
  organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Department of Cardiology, Catholic Kwandong University International St. Mary’s Hospital
– sequence: 3
  givenname: Jaeik
  surname: Jeon
  fullname: Jeon, Jaeik
  organization: CONNECT-AI Research Center, Yonsei University College of Medicine
– sequence: 4
  givenname: Reza
  surname: Arsanjani
  fullname: Arsanjani, Reza
  organization: Department of Cardiovascular Diseases, Mayo Clinic Arizona
– sequence: 5
  givenname: Ran
  surname: Heo
  fullname: Heo, Ran
  organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Department of Cardiology, Hanyang University Seoul Hospital, Hanyang University College of Medicine
– sequence: 6
  givenname: Sang-Eun
  surname: Lee
  fullname: Lee, Sang-Eun
  organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Department of Cardiology, Ewha Womans University Seoul Hospital
– sequence: 7
  givenname: Inki
  surname: Moon
  fullname: Moon, Inki
  organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Division of Cardiology, Department of Internal Medicine, Soonchunghyang University Bucheon Hospital
– sequence: 8
  givenname: Sun Kook
  surname: Yoo
  fullname: Yoo, Sun Kook
  email: sunkyoo@yuhs.ac
  organization: Department of Medical Engineering, Yonsei University College of Medicine
– sequence: 9
  givenname: Hyuk-Jae
  orcidid: 0000-0002-6139-7545
  surname: Chang
  fullname: Chang, Hyuk-Jae
  email: hjchang@yuhs.ac
  organization: CONNECT-AI Research Center, Yonsei University College of Medicine, Division of Cardiology, Department of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Ontact Health Co., Ltd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35152371$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3CAYRVGUKn_NC3RRIXXTjVv-bOzuqrRpK0XqJnv0GcMMEYYJ4IUfJW9bMpMoVRZZIJA454K-e46OQwwGoQ-UfKGEyK-ZkrYVDWG0LtGzZj1CZ7SXbdNzyo7_O5-i85zvCKGSD8MJOuUtbRmX9Aw9XC_erxiWEmcoZsL3C4TirNNQXAw4WqwhTQ401luYR5MwhAnbJej9PeRscp5NKNgFzJof2Oht3Ctxk2C3Xb9h7V2oeR5bA9mNzruyPgZPxuywN5CCC5tmhFyfB7-JyZXtnN-jdxZ8NpdP-wW6vf55e_W7ufn768_V95tGCzqUqg2t6GivGbPcCkKBC-DWdNz2uhu0EGKkZJzkaAc-MjNRQXqmuzoADdLwC_T5ELtL8X4xuajZZW28h2DikhXrWN_1Usquop9eoXdxSaF-rlJtN0gxSFKpj0_UMs5mUrvkZkirep55BfoDoFPMORmrtCv7aZcEzitK1GO96lCvqvWqfb1qrSp7pT6nvynxg5QrHDYmvXz7DesfCGe6YA
CitedBy_id crossref_primary_10_1016_j_ultrasmedbio_2025_03_015
crossref_primary_10_7717_peerj_cs_3161
crossref_primary_10_1007_s10554_024_03095_x
crossref_primary_10_1016_j_acvd_2025_04_051
crossref_primary_10_1016_j_artmed_2024_102866
crossref_primary_10_1111_echo_70290
crossref_primary_10_1117_1_JMI_12_2_024002
crossref_primary_10_3390_diagnostics14020150
crossref_primary_10_1007_s10554_022_02621_z
crossref_primary_10_1016_j_compmedimag_2025_102627
crossref_primary_10_1053_j_jvca_2024_06_022
Cites_doi 10.7863/ultra.33.2.297
10.3390/diagnostics11071288
10.1046/j.0140-7783.2003.00543.x
10.1093/ehjci/jev014
10.1016/j.jacc.2012.09.035
10.1016/j.echo.2010.12.008
10.1109/TUFFC.2020.3003403
10.1016/j.echo.2020.04.025
10.1002/clc.22810
10.1097/XCE.0000000000000241
10.1016/j.echo.2004.03.021
10.1161/CIRCULATIONAHA.118.034338
10.4250/jcvi.2021.0039
10.1016/j.jacc.2018.12.054
10.1002/clc.22754
10.1161/CIRCIMAGING.119.010222
10.1109/JBHI.2019.2912935
10.1016/j.jcmg.2018.11.038
10.1016/j.jacc.2016.12.012
10.1016/j.isprsjprs.2020.01.013
10.1016/j.jacc.2015.07.052
10.1161/CIRCULATIONAHA.117.026622
10.1093/ejechocard/jep188
10.1007/s12574-020-00496-4
10.1093/ehjci/jey137
10.1098/rsif.2020.0267
10.1007/978-3-319-24574-4_28
10.1109/ICMLA.2018.00078
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FR3
FYUFA
GHDGH
K9.
M0S
M1P
M7Z
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s10554-021-02482-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Biochemistry Abstracts 1
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1875-8312
1573-0743
EndPage 1059
ExternalDocumentID 35152371
10_1007_s10554_021_02482_y
Genre Journal Article
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KM
2LR
2P1
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AAWTL
AAYIU
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFRAH
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AOCGG
ARMRJ
ASPBG
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M1P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOR
QOS
R89
R9I
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S26
S27
S28
S37
S3B
SAP
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SSXJD
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z82
Z87
Z8O
Z8V
Z91
ZMTXR
ZOVNA
~A9
AAPKM
AAUYE
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ADHKG
AGQPQ
NPM
PHGZM
PHGZT
PJZUB
PPXIY
7XB
8FD
8FK
FR3
K9.
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c419t-ba954618c22f3f401a34a3fe63f8c69c444b10bd7bf93b2ed14082c6152ca7e3
IEDL.DBID 7X7
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000754518800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1875-8312
1569-5794
IngestDate Thu Sep 04 17:26:24 EDT 2025
Wed Nov 05 00:47:01 EST 2025
Mon Jul 21 05:27:36 EDT 2025
Tue Nov 18 22:33:31 EST 2025
Sat Nov 29 01:53:38 EST 2025
Fri Feb 21 02:42:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
Echocardiography
Fully automated
Language English
License 2022. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-ba954618c22f3f401a34a3fe63f8c69c444b10bd7bf93b2ed14082c6152ca7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6139-7545
OpenAccessLink https://link.springer.com/10.1007/s10554-021-02482-y
PMID 35152371
PQID 2656974970
PQPubID 43205
PageCount 13
ParticipantIDs proquest_miscellaneous_2628687776
proquest_journals_2656974970
pubmed_primary_35152371
crossref_citationtrail_10_1007_s10554_021_02482_y
crossref_primary_10_1007_s10554_021_02482_y
springer_journals_10_1007_s10554_021_02482_y
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: United States
PublicationSubtitle X-Ray Imaging, Intravascular Imaging, Echocardiography, Nuclear Cardiology, Computed Tomography and Magnetic Resonance Imaging
PublicationTitle The international journal of cardiovascular imaging
PublicationTitleAbbrev Int J Cardiovasc Imaging
PublicationTitleAlternate Int J Cardiovasc Imaging
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Bethge, Penciu, Baksh, Parve, Lobraico, Keller (CR27) 2017; 40
Narang (CR17) 2019; 20
Collier, Phelan, Klein (CR30) 2017; 69
Lang (CR11) 2015; 16
Diakogiannis, Waldner, Caccetta, Wu (CR14) 2020; 162
Kusunose (CR8) 2021; 19
Abdelrazk, El-Sehrawy, Ghoniem, Amer (CR29) 2021; 10
Leclerc (CR20) 2020; 67
CR12
Douglas (CR4) 2011; 24
Knackstedt (CR16) 2015; 66
Thavendiranathan, Grant, Negishi, Plana, Popović, Marwick (CR2) 2013; 61
Guan, Khan, Sikdar, Chitnis (CR13) 2020; 24
Nolan, Thavendiranathan (CR19) 2019; 12
Chamsi-Pasha, Sengupta, Zoghbi (CR32) 2017; 136
Grossgasteiger (CR10) 2014; 33
Arafati (CR18) 2020
Cullen, Geske, Anavekar, Askew, Lewis, Oh (CR33) 2017; 40
Zhang (CR15) 2018; 138
Yoon, Kim, Chang (CR6) 2021; 29
Krishnamurthy, Daum, Langford (CR24) 2019; 20
Leclerc (CR7) 2019; 38
Wabich, Zienciuk-Krajka, Nowak, Raczak, Daniłowicz-Szymanowicz (CR31) 2021; 11
CR26
Huffer, Bauch, Furgerson, Bulgrin, Boyd (CR34) 2004; 17
Thorstensen, Dalen, Amundsen, Aase, Stoylen (CR1) 2010; 11
CR25
CR23
CR22
CR21
Dey (CR9) 2019; 73
Chetboul (CR3) 2004; 27
Davis (CR5) 2020; 33
Liu (CR28) 2020; 13
MA Chamsi-Pasha (2482_CR32) 2017; 136
Y Yoon (2482_CR6) 2021; 29
K Kusunose (2482_CR8) 2021; 19
S Guan (2482_CR13) 2020; 24
RM Lang (2482_CR11) 2015; 16
M Grossgasteiger (2482_CR10) 2014; 33
2482_CR12
S Leclerc (2482_CR7) 2019; 38
J Zhang (2482_CR15) 2018; 138
A Arafati (2482_CR18) 2020
FI Diakogiannis (2482_CR14) 2020; 162
S Leclerc (2482_CR20) 2020; 67
A Bethge (2482_CR27) 2017; 40
S Liu (2482_CR28) 2020; 13
E Wabich (2482_CR31) 2021; 11
V Chetboul (2482_CR3) 2004; 27
MT Nolan (2482_CR19) 2019; 12
P Thavendiranathan (2482_CR2) 2013; 61
2482_CR25
A Davis (2482_CR5) 2020; 33
2482_CR26
P Collier (2482_CR30) 2017; 69
D Dey (2482_CR9) 2019; 73
2482_CR21
2482_CR22
MW Cullen (2482_CR33) 2017; 40
2482_CR23
A Thorstensen (2482_CR1) 2010; 11
C Knackstedt (2482_CR16) 2015; 66
RR Abdelrazk (2482_CR29) 2021; 10
LL Huffer (2482_CR34) 2004; 17
PS Douglas (2482_CR4) 2011; 24
A Narang (2482_CR17) 2019; 20
A Krishnamurthy (2482_CR24) 2019; 20
References_xml – ident: CR22
– volume: 33
  start-page: 297
  issue: 2
  year: 2014
  end-page: 306
  ident: CR10
  article-title: Image quality influences the assessment of left ventricular function: an intraoperative comparison of five 2-dimensional echocardiographic methods with real-time 3-dimensional echocardiography as a reference
  publication-title: J Ultrasound Med
  doi: 10.7863/ultra.33.2.297
– volume: 11
  start-page: 1288
  issue: 7
  year: 2021
  ident: CR31
  article-title: Comprehensive echocardiography of left atrium and left ventricle using modern techniques helps in better revealing atrial fibrillation in patients with hypertrophic cardiomyopathy
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11071288
– volume: 27
  start-page: 49
  issue: 1
  year: 2004
  end-page: 56
  ident: CR3
  article-title: Observer-dependent variability of quantitative clinical endpoints: the example of canine echocardiography
  publication-title: J Vet Pharmacol Ther
  doi: 10.1046/j.0140-7783.2003.00543.x
– volume: 16
  start-page: 233
  issue: 3
  year: 2015
  end-page: 271
  ident: CR11
  article-title: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging
  publication-title: Eur Hear Journal-Cardiovascular Imaging
  doi: 10.1093/ehjci/jev014
– volume: 61
  start-page: 77
  issue: 1
  year: 2013
  end-page: 84
  ident: CR2
  article-title: Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: Application to patients undergoing cancer chemotherapy
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2012.09.035
– ident: CR12
– volume: 24
  start-page: 229
  issue: 3
  year: 2011
  end-page: 267
  ident: CR4
  article-title: ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate use criteria for echocardiography
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2010.12.008
– volume: 20
  start-page: 1
  year: 2019
  end-page: 50
  ident: CR24
  article-title: Active learning for cost-sensitive classification
  publication-title: J Mach Learn Res
– volume: 67
  start-page: 2519
  issue: 12
  year: 2020
  end-page: 2530
  ident: CR20
  article-title: LU-Net: a multistage attention network to improve the robustness of segmentation of left ventricular structures in 2-D echocardiography
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/TUFFC.2020.3003403
– volume: 33
  start-page: 1061
  issue: 9
  year: 2020
  end-page: 1066
  ident: CR5
  article-title: Artificial intelligence and echocardiography: a primer for cardiac sonographers
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2020.04.025
– ident: CR25
– ident: CR23
– ident: CR21
– volume: 40
  start-page: 1212
  issue: 12
  year: 2017
  end-page: 1217
  ident: CR27
  article-title: Appropriateness vs value: echocardiography in primary care
  publication-title: Clin Cardiol
  doi: 10.1002/clc.22810
– volume: 10
  start-page: 182
  issue: 3
  year: 2021
  end-page: 185
  ident: CR29
  article-title: Speckle tracking echocardiographic assessment of left ventricular longitudinal strain in female patients with subclinical hyperthyroidism
  publication-title: Cardiovasc Endocrinol Metab
  doi: 10.1097/XCE.0000000000000241
– volume: 17
  start-page: 670
  issue: 6
  year: 2004
  end-page: 674
  ident: CR34
  article-title: Feasibility of remote echocardiography with satellite transmission and real-time interpretation to support medical activities in the austere medical environment
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2004.03.021
– volume: 138
  start-page: 1623
  issue: 16
  year: 2018
  end-page: 1635
  ident: CR15
  article-title: Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.034338
– volume: 29
  start-page: 193
  issue: 3
  year: 2021
  end-page: 204
  ident: CR6
  article-title: Artificial intelligence and echocardiography
  publication-title: J Cardiovasc Imaging
  doi: 10.4250/jcvi.2021.0039
– volume: 73
  start-page: 1317
  issue: 11
  year: 2019
  end-page: 1335
  ident: CR9
  article-title: Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.12.054
– volume: 40
  start-page: 993
  issue: 11
  year: 2017
  end-page: 999
  ident: CR33
  article-title: Handheld echocardiography during hospitalization for acute myocardial infarction
  publication-title: Clin Cardiol
  doi: 10.1002/clc.22754
– volume: 13
  start-page: 1
  issue: 6
  year: 2020
  end-page: 4
  ident: CR28
  article-title: Left ventricular thrombus and heart failure with preserved ejection fraction in a patient with rheumatoid arthritis: a comprehensive assessment using serial echocardiography
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.119.010222
– volume: 24
  start-page: 568
  issue: 2
  year: 2020
  end-page: 576
  ident: CR13
  article-title: Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2912935
– volume: 12
  start-page: 1073
  issue: 6
  year: 2019
  end-page: 1092
  ident: CR19
  article-title: Automated quantification in echocardiography
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2018.11.038
– volume: 69
  start-page: 1043
  issue: 8
  year: 2017
  end-page: 1056
  ident: CR30
  article-title: A test in context: myocardial strain measured by speckle-tracking echocardiography
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.12.012
– volume: 38
  start-page: 2019
  issue: 2198–210
  year: 2019
  ident: CR7
  article-title: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography
  publication-title: IEEE Trans Med Imaging
– volume: 162
  start-page: 94
  year: 2020
  end-page: 114
  ident: CR14
  article-title: ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2020.01.013
– volume: 66
  start-page: 1456
  issue: 13
  year: 2015
  end-page: 1466
  ident: CR16
  article-title: Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain the FAST-EFs multicenter study
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2015.07.052
– volume: 136
  start-page: 2178
  issue: 22
  year: 2017
  end-page: 2188
  ident: CR32
  article-title: Handheld echocardiography: current state and future perspectives
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.026622
– volume: 11
  start-page: 149
  issue: 2
  year: 2010
  end-page: 156
  ident: CR1
  article-title: Reproducibility in echocardiographic assessment of the left ventricular global and regional function, the HUNT study
  publication-title: Eur J Echocardiogr
  doi: 10.1093/ejechocard/jep188
– volume: 19
  start-page: 21
  issue: 1
  year: 2021
  end-page: 27
  ident: CR8
  article-title: Steps to use artificial intelligence in echocardiography
  publication-title: J Echocardiogr
  doi: 10.1007/s12574-020-00496-4
– volume: 20
  start-page: 541
  issue: 5
  year: 2019
  end-page: 549
  ident: CR17
  article-title: Machine learning based automated dynamic quantification of left heart chamber volumes
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jey137
– ident: CR26
– year: 2020
  ident: CR18
  article-title: Generalizable fully automated multi-label segmentation of four-chamber view echocardiograms based on deep convolutional adversarial networks
  publication-title: J R Soc Interfaces
  doi: 10.1098/rsif.2020.0267
– volume: 40
  start-page: 1212
  issue: 12
  year: 2017
  ident: 2482_CR27
  publication-title: Clin Cardiol
  doi: 10.1002/clc.22810
– volume: 69
  start-page: 1043
  issue: 8
  year: 2017
  ident: 2482_CR30
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.12.012
– volume: 13
  start-page: 1
  issue: 6
  year: 2020
  ident: 2482_CR28
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.119.010222
– volume: 12
  start-page: 1073
  issue: 6
  year: 2019
  ident: 2482_CR19
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2018.11.038
– ident: 2482_CR12
  doi: 10.1007/978-3-319-24574-4_28
– volume: 19
  start-page: 21
  issue: 1
  year: 2021
  ident: 2482_CR8
  publication-title: J Echocardiogr
  doi: 10.1007/s12574-020-00496-4
– volume: 67
  start-page: 2519
  issue: 12
  year: 2020
  ident: 2482_CR20
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/TUFFC.2020.3003403
– volume: 61
  start-page: 77
  issue: 1
  year: 2013
  ident: 2482_CR2
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2012.09.035
– volume: 11
  start-page: 149
  issue: 2
  year: 2010
  ident: 2482_CR1
  publication-title: Eur J Echocardiogr
  doi: 10.1093/ejechocard/jep188
– volume: 136
  start-page: 2178
  issue: 22
  year: 2017
  ident: 2482_CR32
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.026622
– ident: 2482_CR22
– volume: 29
  start-page: 193
  issue: 3
  year: 2021
  ident: 2482_CR6
  publication-title: J Cardiovasc Imaging
  doi: 10.4250/jcvi.2021.0039
– volume: 24
  start-page: 568
  issue: 2
  year: 2020
  ident: 2482_CR13
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2912935
– volume: 138
  start-page: 1623
  issue: 16
  year: 2018
  ident: 2482_CR15
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.034338
– volume: 33
  start-page: 1061
  issue: 9
  year: 2020
  ident: 2482_CR5
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2020.04.025
– volume: 33
  start-page: 297
  issue: 2
  year: 2014
  ident: 2482_CR10
  publication-title: J Ultrasound Med
  doi: 10.7863/ultra.33.2.297
– volume: 16
  start-page: 233
  issue: 3
  year: 2015
  ident: 2482_CR11
  publication-title: Eur Hear Journal-Cardiovascular Imaging
  doi: 10.1093/ehjci/jev014
– volume: 24
  start-page: 229
  issue: 3
  year: 2011
  ident: 2482_CR4
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2010.12.008
– volume: 20
  start-page: 541
  issue: 5
  year: 2019
  ident: 2482_CR17
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jey137
– volume: 162
  start-page: 94
  year: 2020
  ident: 2482_CR14
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2020.01.013
– year: 2020
  ident: 2482_CR18
  publication-title: J R Soc Interfaces
  doi: 10.1098/rsif.2020.0267
– ident: 2482_CR26
– volume: 27
  start-page: 49
  issue: 1
  year: 2004
  ident: 2482_CR3
  publication-title: J Vet Pharmacol Ther
  doi: 10.1046/j.0140-7783.2003.00543.x
– volume: 10
  start-page: 182
  issue: 3
  year: 2021
  ident: 2482_CR29
  publication-title: Cardiovasc Endocrinol Metab
  doi: 10.1097/XCE.0000000000000241
– volume: 17
  start-page: 670
  issue: 6
  year: 2004
  ident: 2482_CR34
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2004.03.021
– ident: 2482_CR25
– volume: 66
  start-page: 1456
  issue: 13
  year: 2015
  ident: 2482_CR16
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2015.07.052
– ident: 2482_CR21
– volume: 11
  start-page: 1288
  issue: 7
  year: 2021
  ident: 2482_CR31
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11071288
– volume: 20
  start-page: 1
  year: 2019
  ident: 2482_CR24
  publication-title: J Mach Learn Res
– volume: 73
  start-page: 1317
  issue: 11
  year: 2019
  ident: 2482_CR9
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.12.054
– volume: 40
  start-page: 993
  issue: 11
  year: 2017
  ident: 2482_CR33
  publication-title: Clin Cardiol
  doi: 10.1002/clc.22754
– volume: 38
  start-page: 2019
  issue: 2198–210
  year: 2019
  ident: 2482_CR7
  publication-title: IEEE Trans Med Imaging
– ident: 2482_CR23
  doi: 10.1109/ICMLA.2018.00078
SSID ssj0017399
Score 2.3597932
Snippet We aimed to compare the segmentation performance of the current prominent deep learning (DL) algorithms with ground-truth segmentations and to validate the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1047
SubjectTerms Algorithms
Annotations
Automation
Cardiac Imaging
Cardiology
Chambers
Deep learning
Echocardiography
Heart
Image acquisition
Image segmentation
Imaging
Machine learning
Medicine
Medicine & Public Health
Original Paper
Patients
Radiology
Reproducibility
Ventricle
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQagXyrMsLchI3MDSxvbGCTcEVBygQlCh3qLxq12pJGU3i7Q_hX_L2OukoAISnDN2LHs831gz8w3AU-s8amWnXGA540qbkpupURyRsMbbUCKmQuF3-vCwOj6uP-SisOWQ7T6EJJOl_qnYjaCPx5SCyMMl-PoqXCO4q2LDho-fPo-xA02Ym8tjfj_uVwi65FdeiokmqDnY-b9F3oKb2bVkLze6cBuu-PYO3Hifg-d34Xt8bq4ZrvqO3FTv2NcVblKF0umwLjCb9MUye4qxUQjD1rGIfOk7jiSebN4ywV8zT7YzDcm81y_YUGjJgseceLuOEzvvz1nuUHHCI3Q6hmcn3WLen35Z3oOjgzdHr97y3JmBW1XUPYnVM1UWlRUiyEBPNJQKZfClDJUta6uUMsXUOG1CLY3wroh9rS15T8Ki9vI-bLVd6x8A815JE4x2PgRVKEdWwEicVW4WarIv5QSK4awam1nLY_OMs-aCbzlueUNb3qQtb9YTeDaOOd9wdvxVen9QgSbf32UjyM2ll1atpxN4Mn6mmxfDKdj6bhVlRFVGOkVa5O5GdcbfSXIThdTFBJ4PenIx-Z_X8vDfxPdgW8RqjJR_uQ9b_WLlH8F1-62fLxeP0634ASIJDFE
  priority: 102
  providerName: Springer Nature
Title Fully automated quantification of cardiac chamber and function assessment in 2-D echocardiography: clinical feasibility of deep learning-based algorithms
URI https://link.springer.com/article/10.1007/s10554-021-02482-y
https://www.ncbi.nlm.nih.gov/pubmed/35152371
https://www.proquest.com/docview/2656974970
https://www.proquest.com/docview/2628687776
Volume 38
WOSCitedRecordID wos000754518800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1875-8312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017399
  issn: 1875-8312
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRYgL5VVYKJWRuIHFxnbihAtqSysOsKpKhfYW-dlWKsm2m0Xan8K_ZcbrZIUqeuESKfIjjmY8D3tmPkLeWue1knbMuC5yJpUpmBkbybQGXeNtKLSOicJf1WRSTqfVcTpwm6ewyl4mRkHtWotn5B84GB5g-1Zq_Gl2xRA1Cm9XE4TGXbKJsNnI52o6OFyZEhE_ElyUiuXAeClpJqXOgSJlGKCAVb04W_6tmG5YmzduSqMCOtr636U_Ig-T6Un3VrzymNzxzRNy_1u6XH9KfqM7uqR60bVgxnpHrxZ6FUoUqUfbQG3kJ0vtuUYgEaobR1EzxnY9FPmkFw3l7DP1IFvjkFQX-yPtEzFp8DoF5i5xYuf9jCYEizOGqtVRfXkGf9Gd_5w_I6dHh6cHX1hCbmBWZlUH3apcFllpOQ8igAunhdQi-EKE0haVlVKabGycMqEShnuXIe61BeuKW6282CYbTdv4F4R6L4UJRjkfgsykAylhhM5Ll4cK5E8xIllPtdqmquYIrnFZr-sxI6VroHQdKV0vR-TdMGa2qulxa--dnqp12t_zek3SEXkzNMPOxOsW3fh2gX14WWC5RVjk8xUTDZ8TYEZyobIRed9z1Xryf6_l5e1reUUecMzOiPGYO2Sju1741-Se_dVdzK93496Iz3KXbO4fTo5P4O3k-48_SyQbNQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQcCG92OggJFgRS0mthMnSAghStWq0xGLWcwu8rOtVJJpJwPKp_AR_CPXjpMRquiuC9Z-xLKP7yO-9x6E3mhjpeB6TKjMUsKFyogaK06kBF1jtcukDInCEzGd5vN58W0D_e5zYXxYZS8Tg6A2tfb_yN9TMDzA9i3E-NPijHjWKP-62lNodLA4sO1PcNmWH_d34HzfUrr7dfZlj0RWAaJ5UjREySLlWZJrSh1z4F5IxiVzNmMu11mhOecqGSsjlCuYotYknpNZg-anWgrLYNpr6DqIceF9PTEf_LtEsEBXCR5RQVLAeczRiZl6oLeJj4fwRcQoaf_WgxeM2wsPs0Hf7d79z3bqHroTDWv8ubsJ99GGrR6gm4cxdOAh-uWd7RbLVVODkW4NPlvJLlAqYBPXDutwWzTWx9LTpGBZGez1fmiXQwlTfFJhSnawBc0RhsSq3x9wn2aKnZUx7Lj1ExtrFzjycxwRbzgYLE-PYNOa4-_LR2h2FfvyGG1WdWWfImwtZ8opYaxzPOEGZKBiMs1N6gqQrtkIJT1ISh1rtnvqkNNyXW3aA6sEYJUBWGU7Qu-GMYuuYsmlvbd6EJVRei3LNYJG6PXQDHLHPybJytYr34fmmS8mCYt80mF2-BwDI5kykYzQdg_i9eT_Xsuzy9fyCt3amx1Oysn-9OA5uk19HkqIPN1Cm835yr5AN_SP5mR5_jJcS4zKKwb3Hw-xc2o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU1SxKc_CQAEjwQqsThznhYQQMB1RtYxGqIvuIj_bSiWZdjJF-RQ-hb_jOnEyQhXddcE2fsRyju89zn0BvFbaiISrEWUijihPZEzlSHIqBOoao2wsRBMofJBMp-nRUTZbg99dLIxzq-xkYiOodancP_IdhsQDuW-WjHasd4uYjScf5-fUVZByltaunEYLkX1T_8Tr2-LD3hi_9RvGJruHX75SX2GAKh5kFZUii3gcpIoxG1q8aoiQi9CaOLSpijPFOZfBSOpE2iyUzOjA1WdWyAKYEokJcdpbsJ4gx-ADWP-8O519700Y-DRrkrXGGY0Q9T5ix8ftoRanzjvCpRRjtP5bK16hulfMtI32m9z9j_ftHmx6yk0-tWfkPqyZ4gFsfPNOBQ_hl7uG10QsqxLpu9HkfClaF6oGtaS0RDXnSBF1IlwBFSIKTRwjaNpFn9yUnBaE0TExqFOaIT4f-HvSBaASa4R3SK7dxNqYOfGVO46poxSaiLNj3LTq5MfiERzexL5swaAoC_MEiDE8lFYm2ljLA65ROspQRKmObIZyNx5C0AEmVz6buysqcpav8lA7kOUIsrwBWV4P4W0_Zt7mMrm293YHqNzLtUW-QtMQXvXNKJGcmUkUply6PiyNXZpJXOTjFr_960KkzyxMgiG86wC9mvzfa3l6_VpewgZiOj_Ym-4_gzvMBag0LqnbMKguluY53FaX1eni4oU_owTyG0b3H9BNfYo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+automated+quantification+of+cardiac+chamber+and+function+assessment+in+2-D+echocardiography%3A+clinical+feasibility+of+deep+learning-based+algorithms&rft.jtitle=The+international+journal+of+cardiovascular+imaging&rft.au=Kim%2C+Sekeun&rft.au=Park%2C+Hyung-Bok&rft.au=Jeon%2C+Jaeik&rft.au=Arsanjani%2C+Reza&rft.date=2022-05-01&rft.issn=1875-8312&rft.eissn=1875-8312&rft.volume=38&rft.issue=5&rft.spage=1047&rft_id=info:doi/10.1007%2Fs10554-021-02482-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-8312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-8312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-8312&client=summon