Semi-classical states for the Choquard equation

We study the nonlocal equation - ε 2 Δ u ε + V u ε = ε - α ( I α ∗ | u ε | p ) | u ε | p - 2 u ε in R N , where N ≥ 1 , α ∈ ( 0 , N ) , I α ( x ) = A α / | x | N - α is the Riesz potential and ε > 0 is a small parameter. We show that if the external potential V ∈ C ( R N ; [ 0 , ∞ ) ) has a local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations Jg. 52; H. 1-2; S. 199 - 235
Hauptverfasser: Moroz, Vitaly, Van Schaftingen, Jean
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2015
Springer Nature B.V
Schlagworte:
ISSN:0944-2669, 1432-0835
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study the nonlocal equation - ε 2 Δ u ε + V u ε = ε - α ( I α ∗ | u ε | p ) | u ε | p - 2 u ε in R N , where N ≥ 1 , α ∈ ( 0 , N ) , I α ( x ) = A α / | x | N - α is the Riesz potential and ε > 0 is a small parameter. We show that if the external potential V ∈ C ( R N ; [ 0 , ∞ ) ) has a local minimum and p ∈ [ 2 , ( N + α ) / ( N - 2 ) + ) then for all small ε > 0 the problem has a family of solutions concentrating to the local minimum of V provided that: either p > 1 + max ( α , α + 2 2 ) / ( N - 2 ) + , or p > 2 and lim inf | x | → ∞ V ( x ) | x | 2 > 0 , or p = 2 and inf x ∈ R N V ( x ) ( 1 + | x | N - α ) > 0 . Our assumptions on the decay of V and admissible range of p ≥ 2 are optimal. The proof uses variational methods and a novel nonlocal penalization technique that we develop in this work.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We study the nonlocal equation ... ...where ..., ..., ... is the Riesz potential and ... is a small parameter. We show that if the external potential ... has a local minimum and ... then for all small ... the problem has a family of solutions concentrating to the local minimum of ... provided that: either ..., or ... and ..., or ... and ... Our assumptions on the decay of ... and admissible range of ... are optimal. The proof uses variational methods and a novel nonlocal penalization technique that we develop in this work.
We study the nonlocal equation - ε 2 Δ u ε + V u ε = ε - α ( I α ∗ | u ε | p ) | u ε | p - 2 u ε in R N , where N ≥ 1 , α ∈ ( 0 , N ) , I α ( x ) = A α / | x | N - α is the Riesz potential and ε > 0 is a small parameter. We show that if the external potential V ∈ C ( R N ; [ 0 , ∞ ) ) has a local minimum and p ∈ [ 2 , ( N + α ) / ( N - 2 ) + ) then for all small ε > 0 the problem has a family of solutions concentrating to the local minimum of V provided that: either p > 1 + max ( α , α + 2 2 ) / ( N - 2 ) + , or p > 2 and lim inf | x | → ∞ V ( x ) | x | 2 > 0 , or p = 2 and inf x ∈ R N V ( x ) ( 1 + | x | N - α ) > 0 . Our assumptions on the decay of V and admissible range of p ≥ 2 are optimal. The proof uses variational methods and a novel nonlocal penalization technique that we develop in this work.
Author Van Schaftingen, Jean
Moroz, Vitaly
Author_xml – sequence: 1
  givenname: Vitaly
  surname: Moroz
  fullname: Moroz, Vitaly
  organization: Department of Mathematics, Swansea University
– sequence: 2
  givenname: Jean
  surname: Van Schaftingen
  fullname: Van Schaftingen, Jean
  email: Jean.VanSchaftingen@uclouvain.be
  organization: Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain
BookMark eNp9kE1LAzEQhoNUsK3-AG8LXrzEZvK1m6MUv6DgQT2HJJu1W7a7NUmh_ntT60EKeprL886880zQqB96j9AlkBsgpJxFQgSVmADHpCQK707QGDijmFRMjNCYKM4xlVKdoUmMK0JAVJSP0ezFr1vsOhNj60xXxGSSj0UzhCItfTFfDh9bE-rC55HaoT9Hp43por_4mVP0dn_3On_Ei-eHp_ntAjsOKmGrJEirqkZYpsCBNa4m4CmrHNSWUFPVtZQglLBWmRp8U3LlmXGVVazyik3R9WHvJuQGPia9bqPzXWd6P2yjBinz21wwyOjVEboatqHP7TLFuVCSlDRTcKBcGGIMvtGb0K5N-NRA9F6hPijUWaHeK9S7nCmPMq5N3xpSMG33b5IekjFf6d99-NXpz9AXNpaGvg
CitedBy_id crossref_primary_10_1002_mana_202000121
crossref_primary_10_1007_s00605_016_0889_x
crossref_primary_10_1007_s00009_019_1316_z
crossref_primary_10_1016_j_aml_2019_106142
crossref_primary_10_1016_j_cnsns_2024_107834
crossref_primary_10_1007_s13398_019_00768_4
crossref_primary_10_1063_5_0174872
crossref_primary_10_1002_mma_5820
crossref_primary_10_1007_s00229_021_01362_y
crossref_primary_10_1007_s12220_023_01367_x
crossref_primary_10_1080_00036811_2024_2339273
crossref_primary_10_1080_17476933_2020_1736052
crossref_primary_10_1016_j_jmaa_2021_125143
crossref_primary_10_1186_s13661_016_0697_1
crossref_primary_10_1007_s00526_014_0797_7
crossref_primary_10_3934_dcds_2025099
crossref_primary_10_1007_s10255_024_1097_4
crossref_primary_10_1007_s11784_025_01206_2
crossref_primary_10_1016_j_camwa_2019_04_001
crossref_primary_10_1007_s00033_019_1172_5
crossref_primary_10_3233_ASY_151337
crossref_primary_10_1007_s11425_017_9287_6
crossref_primary_10_1080_17476933_2025_2543399
crossref_primary_10_1186_s13661_019_1223_z
crossref_primary_10_1007_s12220_024_01621_w
crossref_primary_10_1016_j_jmaa_2016_11_015
crossref_primary_10_1016_j_jmaa_2018_04_065
crossref_primary_10_1016_j_jde_2021_03_011
crossref_primary_10_1007_s00025_020_01332_y
crossref_primary_10_1016_j_jmaa_2019_123457
crossref_primary_10_1007_s11425_016_9067_5
crossref_primary_10_1016_j_jde_2016_03_004
crossref_primary_10_1016_j_jmaa_2021_125848
crossref_primary_10_1016_j_jmaa_2021_125726
crossref_primary_10_1007_s13324_022_00693_7
crossref_primary_10_1142_S0219199724500469
crossref_primary_10_1007_s00033_020_01370_0
crossref_primary_10_1016_j_jde_2016_04_021
crossref_primary_10_1155_2015_760157
crossref_primary_10_1155_2020_6430104
crossref_primary_10_1016_j_jde_2022_11_033
crossref_primary_10_1016_j_na_2017_05_014
crossref_primary_10_1002_mma_9320
crossref_primary_10_1016_j_jmaa_2023_128079
crossref_primary_10_1016_j_jmaa_2021_124985
crossref_primary_10_1016_j_jmaa_2021_125799
crossref_primary_10_1007_s00033_018_1015_9
crossref_primary_10_1016_j_jmaa_2022_126426
crossref_primary_10_1016_j_jde_2017_05_009
crossref_primary_10_1007_s10231_022_01297_5
crossref_primary_10_1007_s00526_022_02340_2
crossref_primary_10_1080_17476933_2022_2107633
crossref_primary_10_1007_s12220_021_00740_y
crossref_primary_10_1007_s10473_022_0411_6
crossref_primary_10_1080_00036811_2025_2496284
crossref_primary_10_3390_fractalfract7120840
crossref_primary_10_1088_1361_6544_ae0084
crossref_primary_10_1177_09217134251335461
crossref_primary_10_1080_00036811_2016_1260708
crossref_primary_10_1016_j_na_2020_111817
crossref_primary_10_1002_mma_7244
crossref_primary_10_1088_1361_6544_aba88d
crossref_primary_10_1186_s13661_021_01573_y
crossref_primary_10_1007_s00033_024_02318_4
crossref_primary_10_1016_j_cnsns_2023_107190
crossref_primary_10_1007_s00033_014_0412_y
crossref_primary_10_1007_s00033_017_0806_8
crossref_primary_10_1016_j_jde_2021_05_047
crossref_primary_10_3233_ASY_221799
crossref_primary_10_1007_s11856_023_2485_9
crossref_primary_10_1007_s00032_021_00334_x
crossref_primary_10_1016_j_jmaa_2018_03_060
crossref_primary_10_1007_s00526_016_0984_9
crossref_primary_10_1007_s10473_023_0117_4
crossref_primary_10_1007_s12346_024_01194_7
crossref_primary_10_1088_0951_7715_29_6_1827
crossref_primary_10_3390_fractalfract7070555
crossref_primary_10_1016_j_jmaa_2022_126332
crossref_primary_10_1007_s00033_018_1016_8
crossref_primary_10_1016_j_na_2018_11_012
crossref_primary_10_1007_s00209_024_03520_w
crossref_primary_10_1017_prm_2018_131
crossref_primary_10_1080_00036811_2022_2037571
crossref_primary_10_1017_prm_2020_17
crossref_primary_10_1016_j_na_2020_111872
crossref_primary_10_1007_s12220_022_01129_1
crossref_primary_10_1007_s41980_023_00846_9
crossref_primary_10_1016_j_jde_2020_11_021
crossref_primary_10_3233_ASY_241916
crossref_primary_10_1007_s11784_016_0373_1
crossref_primary_10_1016_j_jmaa_2019_03_039
crossref_primary_10_1007_s00009_016_0802_9
crossref_primary_10_1186_s13660_018_1632_z
crossref_primary_10_1080_00036811_2019_1597058
crossref_primary_10_1007_s42985_021_00142_3
crossref_primary_10_1016_j_jde_2025_01_011
crossref_primary_10_1007_s12220_022_00892_5
crossref_primary_10_1007_s11784_025_01187_2
crossref_primary_10_3233_ASY_191561
crossref_primary_10_1007_s12220_021_00853_4
crossref_primary_10_1007_s00009_018_1287_5
crossref_primary_10_1007_s41980_021_00624_5
crossref_primary_10_1007_s00033_020_01381_x
crossref_primary_10_1016_j_jde_2018_07_058
crossref_primary_10_1016_j_na_2020_111863
crossref_primary_10_1155_2023_3025513
crossref_primary_10_1002_mma_8275
crossref_primary_10_1007_s00033_024_02351_3
crossref_primary_10_1007_s12220_020_00441_y
crossref_primary_10_1016_j_na_2019_05_016
crossref_primary_10_1016_j_camwa_2017_02_026
crossref_primary_10_1002_mma_9517
crossref_primary_10_1080_17476933_2021_1931152
crossref_primary_10_1016_j_jde_2015_01_029
crossref_primary_10_1007_s10440_016_0069_y
Cites_doi 10.1090/conm/446/08624
10.1515/9783112649305
10.1016/j.jmaa.2013.04.081
10.1007/s00033-011-0166-8
10.1017/S0308210509000584
10.1007/s002050050067
10.1007/s00526-009-0249-y
10.1016/j.jfa.2013.04.007
10.1016/j.crma.2006.04.011
10.1088/0264-9381/15/9/019
10.1007/BF02105068
10.1016/0362-546X(80)90016-4
10.4171/RMI/537
10.1016/0022-1236(86)90096-0
10.1007/3-7643-7396-2
10.1088/0951-7715/12/2/002
10.1007/s00205-008-0208-3
10.1016/j.na.2010.01.021
10.1071/PH951055
10.1007/s00205-002-0225-6
10.1007/BF01609852
10.1016/j.jde.2012.12.019
10.1016/j.jde.2009.03.002
10.3934/dcdss.2012.5.903
10.1017/S0308210500012191
10.1063/1.3060169
10.1016/j.jmaa.2011.09.050
10.1016/S0294-1449(97)89296-7
10.1007/s00526-012-0518-z
10.1007/BF02395016
10.1016/j.jde.2011.10.004
10.1090/cbms/065
10.1016/0022-1236(73)90051-7
10.4171/JEMS/24
10.1051/cocv:2008055
10.1007/978-1-4614-7004-5
10.1002/sapm197757293
10.1515/9781400853076
10.1006/jfan.1996.3085
10.1016/j.crma.2009.05.009
10.1016/j.jfa.2005.05.015
10.1090/gsm/014
10.1017/CBO9780511897450
10.1007/s00526-002-0191-8
10.1142/S0217732395000703
10.1016/S0294-1449(16)30428-0
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
– notice: Springer-Verlag Berlin Heidelberg 2015
DBID AAYXX
CITATION
3V.
7XB
88I
8AO
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7TB
7U5
8FD
FR3
H8D
KR7
L7M
DOI 10.1007/s00526-014-0709-x
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0835
EndPage 235
ExternalDocumentID 3555452541
10_1007_s00526_014_0709_x
Genre Feature
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7Z
Z88
Z8T
Z92
ZMTXR
ZWQNP
~EX
88I
8AO
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABUWG
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
3V.
7XB
8FE
8FG
8FK
JQ2
L6V
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
7TB
7U5
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c419t-b9616b98f5b391c1bacd01e238c1db02a8dd661595bb9ad1ef749e3ac8b938e93
IEDL.DBID RSV
ISICitedReferencesCount 175
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348145900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0944-2669
IngestDate Sun Nov 09 10:16:35 EST 2025
Wed Sep 17 23:55:11 EDT 2025
Sat Nov 29 06:45:33 EST 2025
Tue Nov 18 22:08:47 EST 2025
Fri Feb 21 02:35:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 35B25
35B33
35Q55
Secondary 35B09
45K05
35B40
Primary 35J61
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-b9616b98f5b391c1bacd01e238c1db02a8dd661595bb9ad1ef749e3ac8b938e93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1644596072
PQPubID 32028
PageCount 37
ParticipantIDs proquest_miscellaneous_1660074531
proquest_journals_1644596072
crossref_primary_10_1007_s00526_014_0709_x
crossref_citationtrail_10_1007_s00526_014_0709_x
springer_journals_10_1007_s00526_014_0709_x
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Calculus of variations and partial differential equations
PublicationTitleAbbrev Calc. Var
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)
MorozVVan SchaftingenJExistence and concentration for nonlinear Schrödinger equations with fast decaying potentialsC. R. Math. Acad. Sci. Paris200934715–1692192610.1016/j.crma.2009.05.0091177.352272542895
LionsP.-L.The concentration-compactness principle in the calculus of variations. The locally compact case. IAnn. Inst. H. Poincaré Anal. Non Linéaire198412109145
CingolaniSSecchiSSquassinaMSemi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearitiesProc. R. Soc. Edinb. Sect. A20101405973100910.1017/S03082105090005841215.351462726117
AmbrosettiABadialeMCingolaniSSemiclassical states of nonlinear Schrödinger equationsArch. Ration. Mech. Anal.1997140328530010.1007/s0020500500670896.350421486895
LionsP-LThe Choquard equation and related questionsNonlinear Anal.1980461063107210.1016/0362-546X(80)90016-40453.47042591299
BonheureD.SchaftingenJ.Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinityAnn. Mat. Pura Appl. (4)20101892273301
MorozV.SchaftingenJ.Nonlocal Hardy type inequalities with optimal constants and remainder termsAnn. Univ. Buchar. Math. Ser.20123LXI)(2187200
MorozVVan SchaftingenJGroundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptoticsJ. Funct. Anal.2013265215318410.1016/j.jfa.2013.04.0071285.350483056699
Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{n}$$\end{document}. Progress in Mathematics, vol. 240. Birkhäuser Verlag, Basel (2006)
Agmon, S.: On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds. In: Methods of Functional Analysis and Theory of Elliptic Equations (Naples, 1982), Liguori, Naples, pp. 19–52 (1983)
CingolaniSSecchiSMultiple S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{1}$$\end{document}-orbits for the Schrödinger-Newton systemDiffer. Integral Equ.2013269/108678841299.352813100069
BonheureDVan SchaftingenJNonlinear Schrödinger equations with potentials vanishing at infinityC. R. Math. Acad. Sci. Paris20063421290390810.1016/j.crma.2006.04.0111099.351272235608
CingolaniSClappMSecchiSMultiple solutions to a magnetic nonlinear Choquard equationZ. Angew. Math. Phys.201263223324810.1007/s00033-011-0166-81247.351412912346
PinoM.FelmerP.L.Multi-peak bound states for nonlinear Schrödinger equationsAnn. Inst. H. Poincaré Anal. Non Linéaire1998152127149
Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, vol. 34. Cambridge University Press, Cambridge (1993)
FloerAWeinsteinANonspreading wave packets for the cubic Schrödinger equation with a bounded potentialJ. Funct. Anal.198669339740810.1016/0022-1236(86)90096-00613.35076867665
MorozVVan SchaftingenJNonexistence and optimal decay of supersolutions to Choquard equations in exterior domainsJ. Differ. Equ.201325483089314510.1016/j.jde.2012.12.0191266.35083
AmbrosettiARabinowitzPHDual variational methods in critical point theory and applicationsJ. Funct. Anal.19731434938110.1016/0022-1236(73)90051-70273.49063370183
MenzalaGPOn regular solutions of a nonlinear equation of Choquard’s typeProc. R. Soc. Edinb. Sect. A1980863–429130110.1017/S03082105000121910449.35034592556
Di CosmoJVan SchaftingenJStationary solutions of the nonlinear Schrödinger equation with fast-decay potentials concentrating around local maximaCalc. Var. Partial Differ. Equ.2013471–224327110.1007/s00526-012-0518-z1264.35213
ByeonJWangZ-QStanding waves with a critical frequency for nonlinear Schrödinger equations. IICalc. Var. Partial Differ. Equ.200318220721910.1007/s00526-002-0191-81073.351992010966
Struwe, M.: Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems, 4th edn. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 34. Springer, Berlin (2008)
PinchoverYTintarevKA ground state alternative for singular Schrödinger operatorsJ. Funct. Anal.20062301657710.1016/j.jfa.2005.05.0151086.350252184184
SchwartzJTNonlinear Functional Analysis1969New YorkGordon and Breach0203.14501
PekarSUntersuchung über die Elektronentheorie der Kristalle1954BerlinAkademie Verlag
RieszML’intégrale de Riemann-Liouville et le problème de CauchyActa Math.194981122310.1007/BF023950160033.2760130102
JonesKRWNewtonian quantum gravityAust. J. Phys.19954861055108110.1071/PH951055
WeiJ.WinterM.Strongly interacting bumps for the Schrödinger–Newton equationsJ. Math. Phys.200950122
CingolaniSJeanjeanLSecchiSMulti-peak solutions for magnetic NLS equations without non-degeneracy conditionsESAIM Control Optim. Calc. Var.200915365367510.1051/cocv:20080551221.353932542577
MenzalaGPOn the nonexistence of solutions for an elliptic problem in unbounded domainsFunkc. Ekvacio19832632312350557.35046748014
del PinoMFelmerPLSemi-classical states for nonlinear Schrödinger equationsJ. Funct. Anal.1997149124526510.1006/jfan.1996.30850887.350581471107
MorozIMPenroseRTodPSpherically-symmetric solutions of the Schrödinger–Newton equationsClass. Quantum Gravity19981592733274210.1088/0264-9381/15/9/0190936.830371649671
SecchiSA note on Schrödinger–Newton systems with decaying electric potentialNonlinear Anal.2010729–103842385610.1016/j.na.2010.01.0211187.352542606826
YinHZhangPBound states of nonlinear Schrödinger equations with potentials tending to zero at infinityJ. Differ. Equ.2009247261864710.1016/j.jde.2009.03.0021178.353532523695
JonesKRWGravitational self-energy as the litmus of realityMod. Phys. Lett. A199510865766810.1142/S0217732395000703
Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996)
LiebE.H.Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equationStud. Appl. Math.197657293105
BonheureDDi CosmoJVan SchaftingenJNonlinear Schrödinger equation with unbounded or vanishing potentials: solutions concentrating on lower dimensional spheresJ. Differ. Equ.2012252294196810.1016/j.jde.2011.10.0041232.35057
KwonOExistence of standing waves of nonlinear Schrödinger equations with potentials vanishing at infinityJ. Math. Anal. Appl.2012387292093010.1016/j.jmaa.2011.09.0501273.352522853185
Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. arXiv:1212.2027
BonheureDVan SchaftingenJBound state solutions for a class of nonlinear Schrödinger equationsRev. Mat. Iberoam.200824129735110.4171/RMI/5371156.350842435974
Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)
MorozVVan SchaftingenJSemiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentialsCalc. Var. Partial Differ. Equ.2010371–212710.1007/s00526-009-0249-y1186.35038
SteinEMWeissGFractional integrals on n-dimensional Euclidean spaceJ. Math. Mech.195875035140082.2720198285
ClappMSalazarDPositive and sign changing solutions to a nonlinear Choquard equationJ. Math. Anal. Appl.2013407111510.1016/j.jmaa.2013.04.0813063100
GenevHVenkovGSoliton and blow-up solutions to the time-dependent Schrödinger–Hartree equationDiscrete Contin. Dyn. Syst. Ser. S20125590392310.3934/dcdss.2012.5.9031247.351432877355
Willem, M.: Functional Analysis: Fundamentals and Applications. Cornerstones, vol. XIV. Birkhäuser, Basel (2013)
MaLZhaoLClassification of positive solitary solutions of the nonlinear Choquard equationArch. Ration. Mech. Anal.2010195245546710.1007/s00205-008-0208-31185.352602592284
TodPMorozIMAn analytical approach to the Schrödinger–Newton equationsNonlinearity199912220121610.1088/0951-7715/12/2/0020942.350771677740
AmbrosettiAFelliVMalchiodiAGround states of nonlinear Schrödinger equations with potentials vanishing at infinityJ. Eur. Math. Soc.20057111714410.4171/JEMS/241064.351752120993
PenroseROn gravity’s role in quantum state reductionGen. Relativ. Gravitat.199628558160010.1007/BF021050680855.530461386305
Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge Tracts in Mathematics, vol. 95. Cambridge University Press, Cambridge (1990)
HerbstIWSpectral theory of the operator (p2+m2)1/2-Ze2/r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{2}+m^{2})^{1/2}-Ze^{2}/r$$\end{document}Commun. Math. Phys.197753328529410.1007/BF016098520375.35047436854
Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC (1986)
Ambrosetti, A., Malchiodi, A.: Concentration phenomena for nonlinear Schrödinger equations: recent results and new perspectives. In: Berestycki, H., Bertsch, M., Browder, F.E., Nirenberg, L., Peletier, L.A., Véron, L. (eds.) Perspectives in Nonlinear Partial Differential Equations. Contemporary Mathematics, vol. 446, pp. 19–30. American Mathematical Society, Providence (2007)
ByeonJWangZ-QStanding waves with a critical frequency for nonlinear Schrödinger equationsArch. Ration. Mech. Anal.2002165429531610.1007/s00205-002-0225-61022.350641939214
709_CR52
D Bonheure (709_CR12) 2008; 24
709_CR55
709_CR56
H Genev (709_CR25) 2012; 5
709_CR54
V Moroz (709_CR42) 2013; 265
A Ambrosetti (709_CR3) 1997; 140
L Ma (709_CR34) 2010; 195
IM Moroz (709_CR37) 1998; 15
S Cingolani (709_CR16) 2012; 63
GP Menzala (709_CR36) 1983; 26
S Cingolani (709_CR19) 2010; 140
A Floer (709_CR24) 1986; 69
709_CR13
709_CR40
KRW Jones (709_CR28) 1995; 48
KRW Jones (709_CR27) 1995; 10
J Byeon (709_CR14) 2002; 165
709_CR43
A Ambrosetti (709_CR8) 1973; 14
Y Pinchover (709_CR46) 2006; 230
JT Schwartz (709_CR49) 1969
M Clapp (709_CR20) 2013; 407
M Pino del (709_CR21) 1997; 149
S Secchi (709_CR50) 2010; 72
O Kwon (709_CR29) 2012; 387
V Moroz (709_CR41) 2013; 254
709_CR47
J Byeon (709_CR15) 2003; 18
S Cingolani (709_CR18) 2013; 26
S Pekar (709_CR44) 1954
A Ambrosetti (709_CR4) 2005; 7
IW Herbst (709_CR26) 1977; 53
EM Stein (709_CR51) 1958; 7
709_CR30
V Moroz (709_CR39) 2010; 37
J Cosmo Di (709_CR23) 2013; 47
709_CR33
709_CR9
709_CR6
709_CR31
709_CR7
709_CR5
709_CR2
709_CR1
P-L Lions (709_CR32) 1980; 4
P Tod (709_CR53) 1999; 12
D Bonheure (709_CR10) 2012; 252
V Moroz (709_CR38) 2009; 347
709_CR22
H Yin (709_CR57) 2009; 247
R Penrose (709_CR45) 1996; 28
D Bonheure (709_CR11) 2006; 342
S Cingolani (709_CR17) 2009; 15
M Riesz (709_CR48) 1949; 81
GP Menzala (709_CR35) 1980; 86
References_xml – reference: JonesKRWNewtonian quantum gravityAust. J. Phys.19954861055108110.1071/PH951055
– reference: LionsP.-L.The concentration-compactness principle in the calculus of variations. The locally compact case. IAnn. Inst. H. Poincaré Anal. Non Linéaire198412109145
– reference: TodPMorozIMAn analytical approach to the Schrödinger–Newton equationsNonlinearity199912220121610.1088/0951-7715/12/2/0020942.350771677740
– reference: AmbrosettiARabinowitzPHDual variational methods in critical point theory and applicationsJ. Funct. Anal.19731434938110.1016/0022-1236(73)90051-70273.49063370183
– reference: HerbstIWSpectral theory of the operator (p2+m2)1/2-Ze2/r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{2}+m^{2})^{1/2}-Ze^{2}/r$$\end{document}Commun. Math. Phys.197753328529410.1007/BF016098520375.35047436854
– reference: CingolaniSSecchiSSquassinaMSemi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearitiesProc. R. Soc. Edinb. Sect. A20101405973100910.1017/S03082105090005841215.351462726117
– reference: BonheureD.SchaftingenJ.Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinityAnn. Mat. Pura Appl. (4)20101892273301
– reference: Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996)
– reference: Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{n}$$\end{document}. Progress in Mathematics, vol. 240. Birkhäuser Verlag, Basel (2006)
– reference: MorozVVan SchaftingenJGroundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptoticsJ. Funct. Anal.2013265215318410.1016/j.jfa.2013.04.0071285.350483056699
– reference: MenzalaGPOn the nonexistence of solutions for an elliptic problem in unbounded domainsFunkc. Ekvacio19832632312350557.35046748014
– reference: RieszML’intégrale de Riemann-Liouville et le problème de CauchyActa Math.194981122310.1007/BF023950160033.2760130102
– reference: CingolaniSSecchiSMultiple S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{1}$$\end{document}-orbits for the Schrödinger-Newton systemDiffer. Integral Equ.2013269/108678841299.352813100069
– reference: GenevHVenkovGSoliton and blow-up solutions to the time-dependent Schrödinger–Hartree equationDiscrete Contin. Dyn. Syst. Ser. S20125590392310.3934/dcdss.2012.5.9031247.351432877355
– reference: CingolaniSClappMSecchiSMultiple solutions to a magnetic nonlinear Choquard equationZ. Angew. Math. Phys.201263223324810.1007/s00033-011-0166-81247.351412912346
– reference: ClappMSalazarDPositive and sign changing solutions to a nonlinear Choquard equationJ. Math. Anal. Appl.2013407111510.1016/j.jmaa.2013.04.0813063100
– reference: AmbrosettiAFelliVMalchiodiAGround states of nonlinear Schrödinger equations with potentials vanishing at infinityJ. Eur. Math. Soc.20057111714410.4171/JEMS/241064.351752120993
– reference: JonesKRWGravitational self-energy as the litmus of realityMod. Phys. Lett. A199510865766810.1142/S0217732395000703
– reference: ByeonJWangZ-QStanding waves with a critical frequency for nonlinear Schrödinger equationsArch. Ration. Mech. Anal.2002165429531610.1007/s00205-002-0225-61022.350641939214
– reference: BonheureDVan SchaftingenJBound state solutions for a class of nonlinear Schrödinger equationsRev. Mat. Iberoam.200824129735110.4171/RMI/5371156.350842435974
– reference: AmbrosettiABadialeMCingolaniSSemiclassical states of nonlinear Schrödinger equationsArch. Ration. Mech. Anal.1997140328530010.1007/s0020500500670896.350421486895
– reference: PinchoverYTintarevKA ground state alternative for singular Schrödinger operatorsJ. Funct. Anal.20062301657710.1016/j.jfa.2005.05.0151086.350252184184
– reference: Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge Tracts in Mathematics, vol. 95. Cambridge University Press, Cambridge (1990)
– reference: BonheureDVan SchaftingenJNonlinear Schrödinger equations with potentials vanishing at infinityC. R. Math. Acad. Sci. Paris20063421290390810.1016/j.crma.2006.04.0111099.351272235608
– reference: WeiJ.WinterM.Strongly interacting bumps for the Schrödinger–Newton equationsJ. Math. Phys.200950122
– reference: Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, vol. 34. Cambridge University Press, Cambridge (1993)
– reference: SecchiSA note on Schrödinger–Newton systems with decaying electric potentialNonlinear Anal.2010729–103842385610.1016/j.na.2010.01.0211187.352542606826
– reference: PinoM.FelmerP.L.Multi-peak bound states for nonlinear Schrödinger equationsAnn. Inst. H. Poincaré Anal. Non Linéaire1998152127149
– reference: Willem, M.: Functional Analysis: Fundamentals and Applications. Cornerstones, vol. XIV. Birkhäuser, Basel (2013)
– reference: YinHZhangPBound states of nonlinear Schrödinger equations with potentials tending to zero at infinityJ. Differ. Equ.2009247261864710.1016/j.jde.2009.03.0021178.353532523695
– reference: MorozVVan SchaftingenJSemiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentialsCalc. Var. Partial Differ. Equ.2010371–212710.1007/s00526-009-0249-y1186.35038
– reference: FloerAWeinsteinANonspreading wave packets for the cubic Schrödinger equation with a bounded potentialJ. Funct. Anal.198669339740810.1016/0022-1236(86)90096-00613.35076867665
– reference: Ambrosetti, A., Malchiodi, A.: Concentration phenomena for nonlinear Schrödinger equations: recent results and new perspectives. In: Berestycki, H., Bertsch, M., Browder, F.E., Nirenberg, L., Peletier, L.A., Véron, L. (eds.) Perspectives in Nonlinear Partial Differential Equations. Contemporary Mathematics, vol. 446, pp. 19–30. American Mathematical Society, Providence (2007)
– reference: Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. arXiv:1212.2027
– reference: Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)
– reference: SchwartzJTNonlinear Functional Analysis1969New YorkGordon and Breach0203.14501
– reference: Agmon, S.: On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds. In: Methods of Functional Analysis and Theory of Elliptic Equations (Naples, 1982), Liguori, Naples, pp. 19–52 (1983)
– reference: del PinoMFelmerPLSemi-classical states for nonlinear Schrödinger equationsJ. Funct. Anal.1997149124526510.1006/jfan.1996.30850887.350581471107
– reference: KwonOExistence of standing waves of nonlinear Schrödinger equations with potentials vanishing at infinityJ. Math. Anal. Appl.2012387292093010.1016/j.jmaa.2011.09.0501273.352522853185
– reference: MenzalaGPOn regular solutions of a nonlinear equation of Choquard’s typeProc. R. Soc. Edinb. Sect. A1980863–429130110.1017/S03082105000121910449.35034592556
– reference: Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC (1986)
– reference: MorozIMPenroseRTodPSpherically-symmetric solutions of the Schrödinger–Newton equationsClass. Quantum Gravity19981592733274210.1088/0264-9381/15/9/0190936.830371649671
– reference: MorozVVan SchaftingenJNonexistence and optimal decay of supersolutions to Choquard equations in exterior domainsJ. Differ. Equ.201325483089314510.1016/j.jde.2012.12.0191266.35083
– reference: LionsP-LThe Choquard equation and related questionsNonlinear Anal.1980461063107210.1016/0362-546X(80)90016-40453.47042591299
– reference: Struwe, M.: Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems, 4th edn. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 34. Springer, Berlin (2008)
– reference: MaLZhaoLClassification of positive solitary solutions of the nonlinear Choquard equationArch. Ration. Mech. Anal.2010195245546710.1007/s00205-008-0208-31185.352602592284
– reference: LiebE.H.Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equationStud. Appl. Math.197657293105
– reference: Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)
– reference: BonheureDDi CosmoJVan SchaftingenJNonlinear Schrödinger equation with unbounded or vanishing potentials: solutions concentrating on lower dimensional spheresJ. Differ. Equ.2012252294196810.1016/j.jde.2011.10.0041232.35057
– reference: CingolaniSJeanjeanLSecchiSMulti-peak solutions for magnetic NLS equations without non-degeneracy conditionsESAIM Control Optim. Calc. Var.200915365367510.1051/cocv:20080551221.353932542577
– reference: SteinEMWeissGFractional integrals on n-dimensional Euclidean spaceJ. Math. Mech.195875035140082.2720198285
– reference: MorozVVan SchaftingenJExistence and concentration for nonlinear Schrödinger equations with fast decaying potentialsC. R. Math. Acad. Sci. Paris200934715–1692192610.1016/j.crma.2009.05.0091177.352272542895
– reference: Di CosmoJVan SchaftingenJStationary solutions of the nonlinear Schrödinger equation with fast-decay potentials concentrating around local maximaCalc. Var. Partial Differ. Equ.2013471–224327110.1007/s00526-012-0518-z1264.35213
– reference: PekarSUntersuchung über die Elektronentheorie der Kristalle1954BerlinAkademie Verlag
– reference: ByeonJWangZ-QStanding waves with a critical frequency for nonlinear Schrödinger equations. IICalc. Var. Partial Differ. Equ.200318220721910.1007/s00526-002-0191-81073.351992010966
– reference: MorozV.SchaftingenJ.Nonlocal Hardy type inequalities with optimal constants and remainder termsAnn. Univ. Buchar. Math. Ser.20123LXI)(2187200
– reference: PenroseROn gravity’s role in quantum state reductionGen. Relativ. Gravitat.199628558160010.1007/BF021050680855.530461386305
– ident: 709_CR6
  doi: 10.1090/conm/446/08624
– volume-title: Untersuchung über die Elektronentheorie der Kristalle
  year: 1954
  ident: 709_CR44
  doi: 10.1515/9783112649305
– volume: 407
  start-page: 1
  issue: 1
  year: 2013
  ident: 709_CR20
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.04.081
– volume: 63
  start-page: 233
  issue: 2
  year: 2012
  ident: 709_CR16
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-011-0166-8
– volume: 140
  start-page: 973
  issue: 5
  year: 2010
  ident: 709_CR19
  publication-title: Proc. R. Soc. Edinb. Sect. A
  doi: 10.1017/S0308210509000584
– ident: 709_CR13
– volume: 140
  start-page: 285
  issue: 3
  year: 1997
  ident: 709_CR3
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s002050050067
– volume: 37
  start-page: 1
  issue: 1–2
  year: 2010
  ident: 709_CR39
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/s00526-009-0249-y
– ident: 709_CR52
– ident: 709_CR55
– volume: 265
  start-page: 153
  issue: 2
  year: 2013
  ident: 709_CR42
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2013.04.007
– volume: 342
  start-page: 903
  issue: 12
  year: 2006
  ident: 709_CR11
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2006.04.011
– volume: 15
  start-page: 2733
  issue: 9
  year: 1998
  ident: 709_CR37
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/15/9/019
– volume: 28
  start-page: 581
  issue: 5
  year: 1996
  ident: 709_CR45
  publication-title: Gen. Relativ. Gravitat.
  doi: 10.1007/BF02105068
– volume: 26
  start-page: 867
  issue: 9/10
  year: 2013
  ident: 709_CR18
  publication-title: Differ. Integral Equ.
– volume-title: Nonlinear Functional Analysis
  year: 1969
  ident: 709_CR49
– ident: 709_CR43
– volume: 4
  start-page: 1063
  issue: 6
  year: 1980
  ident: 709_CR32
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(80)90016-4
– volume: 24
  start-page: 297
  issue: 1
  year: 2008
  ident: 709_CR12
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/RMI/537
– volume: 69
  start-page: 397
  issue: 3
  year: 1986
  ident: 709_CR24
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(86)90096-0
– ident: 709_CR5
  doi: 10.1007/3-7643-7396-2
– volume: 7
  start-page: 503
  year: 1958
  ident: 709_CR51
  publication-title: J. Math. Mech.
– volume: 12
  start-page: 201
  issue: 2
  year: 1999
  ident: 709_CR53
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/12/2/002
– volume: 195
  start-page: 455
  issue: 2
  year: 2010
  ident: 709_CR34
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-008-0208-3
– volume: 72
  start-page: 3842
  issue: 9–10
  year: 2010
  ident: 709_CR50
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2010.01.021
– ident: 709_CR1
– volume: 48
  start-page: 1055
  issue: 6
  year: 1995
  ident: 709_CR28
  publication-title: Aust. J. Phys.
  doi: 10.1071/PH951055
– volume: 165
  start-page: 295
  issue: 4
  year: 2002
  ident: 709_CR14
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-002-0225-6
– volume: 53
  start-page: 285
  issue: 3
  year: 1977
  ident: 709_CR26
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01609852
– volume: 254
  start-page: 3089
  issue: 8
  year: 2013
  ident: 709_CR41
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2012.12.019
– volume: 247
  start-page: 618
  issue: 2
  year: 2009
  ident: 709_CR57
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2009.03.002
– ident: 709_CR40
– volume: 5
  start-page: 903
  issue: 5
  year: 2012
  ident: 709_CR25
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
  doi: 10.3934/dcdss.2012.5.903
– volume: 86
  start-page: 291
  issue: 3–4
  year: 1980
  ident: 709_CR35
  publication-title: Proc. R. Soc. Edinb. Sect. A
  doi: 10.1017/S0308210500012191
– ident: 709_CR54
  doi: 10.1063/1.3060169
– volume: 387
  start-page: 920
  issue: 2
  year: 2012
  ident: 709_CR29
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.09.050
– ident: 709_CR22
  doi: 10.1016/S0294-1449(97)89296-7
– volume: 47
  start-page: 243
  issue: 1–2
  year: 2013
  ident: 709_CR23
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/s00526-012-0518-z
– volume: 81
  start-page: 1
  year: 1949
  ident: 709_CR48
  publication-title: Acta Math.
  doi: 10.1007/BF02395016
– volume: 252
  start-page: 941
  issue: 2
  year: 2012
  ident: 709_CR10
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2011.10.004
– ident: 709_CR47
  doi: 10.1090/cbms/065
– volume: 14
  start-page: 349
  year: 1973
  ident: 709_CR8
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(73)90051-7
– volume: 7
  start-page: 117
  issue: 1
  year: 2005
  ident: 709_CR4
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/JEMS/24
– volume: 15
  start-page: 653
  issue: 3
  year: 2009
  ident: 709_CR17
  publication-title: ESAIM Control Optim. Calc. Var.
  doi: 10.1051/cocv:2008055
– ident: 709_CR56
  doi: 10.1007/978-1-4614-7004-5
– ident: 709_CR30
  doi: 10.1002/sapm197757293
– ident: 709_CR2
  doi: 10.1515/9781400853076
– volume: 149
  start-page: 245
  issue: 1
  year: 1997
  ident: 709_CR21
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1996.3085
– ident: 709_CR7
– volume: 347
  start-page: 921
  issue: 15–16
  year: 2009
  ident: 709_CR38
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2009.05.009
– volume: 230
  start-page: 65
  issue: 1
  year: 2006
  ident: 709_CR46
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2005.05.015
– ident: 709_CR31
  doi: 10.1090/gsm/014
– ident: 709_CR9
  doi: 10.1017/CBO9780511897450
– volume: 18
  start-page: 207
  issue: 2
  year: 2003
  ident: 709_CR15
  publication-title: Calc. Var. Partial Differ. Equ.
  doi: 10.1007/s00526-002-0191-8
– volume: 10
  start-page: 657
  issue: 8
  year: 1995
  ident: 709_CR27
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732395000703
– volume: 26
  start-page: 231
  issue: 3
  year: 1983
  ident: 709_CR36
  publication-title: Funkc. Ekvacio
– ident: 709_CR33
  doi: 10.1016/S0294-1449(16)30428-0
SSID ssj0015824
Score 2.4865882
Snippet We study the nonlocal equation - ε 2 Δ u ε + V u ε = ε - α ( I α ∗ | u ε | p ) | u ε | p - 2 u ε in R N , where N ≥ 1 , α ∈ ( 0 , N ) , I α ( x ) = A α / | x |...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We study the nonlocal equation ...where ..., ..., ... is the Riesz potential and...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We study the nonlocal equation ... ...where ..., ..., ... is the Riesz potential...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 199
SubjectTerms Analysis
Calculus of variations
Calculus of Variations and Optimal Control; Optimization
Control
Decay
Euclidean space
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Optimization
Partial differential equations
Proving
Schrodinger equation
Systems Theory
Texts
Theoretical
Variational methods
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW6yuUsGTErZpkyY5iSwugg8EFbyVvIoLuqvbXfHnm_TlA_TiuWmnTCYz32SSbwAONZc2T2OOtIooIoxJJBOiEcuJiS3ziVB5UfiSXV_zhwdxU2-4FfWxysYnlo7ajLTfI-86WE-og9ssPnl5Rb5rlK-u1i00ZmEexzH2dn7BUFtFoLxsausyGIJcIBJNVTMqSURp7HNpgpzRC_T-PS59gs0f9dEy7PRX_vvDq7BcA87wtLKQNZixw3VYumrZWosN6N7a5wHSHkf7KQvLS0ZF6OBs6EaFvUcn1xlSaF8rXvBNuO-f3fXOUd1IAWmCxQQpkeJUCZ5TlQissZLaRNi6aK2xUVEsuTEuTlNBlRLSYJszImwiNVci4VYkWzA3HA3tNoS5YZSmfjpNRDSxgsfGM8ikUrhkN40CiBo1ZrpmGffNLp6ylh-51HzmNJ95zWfvARy1r7xUFBt_De402s7q1VZkn6oO4KB97NaJL37IoR1N_RjPxE-cywnguJnTL5_4TeDO3wJ3YdFBKFptynRgbjKe2j1Y0G-TQTHeL83xA5Cx5BE
  priority: 102
  providerName: ProQuest
Title Semi-classical states for the Choquard equation
URI https://link.springer.com/article/10.1007/s00526-014-0709-x
https://www.proquest.com/docview/1644596072
https://www.proquest.com/docview/1660074531
Volume 52
WOSCitedRecordID wos000348145900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: P5Z
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: K7-
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: M7S
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: BENPR
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 20151231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: M2P
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7x6AEOlJZWLN2uUolTkdU87Ng-0tWukGBXq11AiEvkV1SkNjyyIH4-42wS2gqQ4OJLJo41M_bMeDLfAOwaoVyexoIYHTJCOVdEJdQQnlMbO-4DoapQ-IiPx-LsTE7qOu6y-du9SUlWJ3Vb7FZBk2DoSwmqqSToOK6itRN-N05np23qgImqky2GLZSg9ZFNKvOpKf41Ro8e5n9J0crWDN-_aZWbsFG7lsH-Qhc-wJIrPsL6qMVlLbfgx8z9uSDGe8xeOEFVTlQG6LgGSBX0f-HSUGUCd71AAP8EJ8PBcf-A1C0TiKGRnBMt0yjVUuRMJzIykVbGhpFDu2wiq8NYCWvRIjPJtJbKRi7nVLpEGaFlIpxMPsNKcVm4bQhyyxlLveBsSA11UsTWY8WkSmJYm4YdCBveZabGE_dtLX5nLRJyxYsMeZF5XmT3HfjevnK1ANN4ibjbCCSr91WZYXBHGQZdPO7At_Yx7gif5lCFu7z1NB5zn-Lh0oG9Rkh_TfHcB3deRf0F1tB3YovbmC6szG9u3Vd4Z-7mF-VND1Z_DsaTaQ-WDznBcRRP_MhnOE7Yea9S2Qc-uN_M
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD4haCI8eAPiKkpN5AUyoZeZzsyDMQYlkF02JkLCW5lbA4nswnZX8U_5Gz2n3RY1gTcefO600853rnM63wF455QJZZ4q5mwsGJfSMJNxx2TJfRokJUL1QeGBHA7VyYn-sgC_2rMw9FtlaxNrQ-3HjvbIdzCs5wLDbZl-uLxi1DWKqqttC41GLPrh5w9M2ar3B58Q38003ft8tLvP5l0FmOOJnjKr8yS3WpXCZjpxiTXOx0lA1-USb-PUKO_RaQktrNXGJ6GUXIfMOGV1pgKRL6HJf8AzJYmrvy9ZV7UQqm6iixkTZ-j4dFtFjWvSUpFS7s4ZKplm13_7wZvg9p96bO3m9p78bwv0FB7PA-roY6MBz2AhjJ7D8mHHRlutwM7XcHHOHOUJJJJRfYiqijBcj3BUtHuG34mKEoWrhvd8FY7v5Y3XYHE0HoUXEJVeCpGTuPqYOx60Sj0x5ORGYzKfxz2IW9gKN2dRp2Ye34qO_7lGukCkC0K6uO7BVnfLZUMhctfg9RbdYm5NquIG2h687S6jHaDijhmF8YzGUKcBjia1B9utDP3xiNsmfHn3hBvwaP_ocFAMDob9V7CE4aJoNqDWYXE6mYXX8NB9n55Xkze1KkRwet-i9RssFUKY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8VADA6iInpwF59rBU_K8LrMtDNHUR-K-hBc8FZmKwpalz7Fn2-mmwsqiOem0yHJNPma5gvApubSZnHIiVY-IzRJJJER1STJqAlt4oBQ2Sh8nPT7_OpKnNZzTovmb_emJFn1NDiWpnzQfTBZt218K2lKEAZTgi4rCCaRI9TNDHJw_eyyLSMwXk61RQhDCUYi0ZQ1v1vic2B6zza_FEjLuNOb-veOp2GyTjm9ncpHZmDI5rMwcdLytRZz0D2zdzdEu0zaGc0r24wKDxNaD6W83WvcJrqSZx8rZvB5uOjtn-8ekHqUAtE0EAOiRBzESvCMqUgEOlBSGz-wGK91YJQfSm4MRmommFJCmsBmCRU2kporEXErogUYzu9zuwheZhLGYmdQ41NNreChcRwysRQId2O_A36jx1TXPONu3MVt2jIkl7pIURep00X62oGt9paHimTjN-GVxjhpfd6KFEEfZQjGkrADG-1lPCmu_CFze__sZBwXP8WXTge2G4N9WOKnBy79SXodxk73eunxYf9oGcYxvWLVB5sVGB48PdtVGNUvg5viaa301DcMoOZC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-classical+states+for+the+Choquard+equation&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Moroz%2C+Vitaly&rft.au=Van+Schaftingen%2C+Jean&rft.date=2015-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=52&rft.issue=1-2&rft.spage=199&rft.epage=235&rft_id=info:doi/10.1007%2Fs00526-014-0709-x&rft.externalDocID=10_1007_s00526_014_0709_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon