Fatty Acid Uptake and Lipid Storage Induced by HIF-1α Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation

An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α)-de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cell reports (Cambridge) Ročník 9; číslo 1; s. 349 - 365
Hlavní autoři: Bensaad, Karim, Favaro, Elena, Lewis, Caroline A., Peck, Barrie, Lord, Simon, Collins, Jennifer M., Pinnick, Katherine E., Wigfield, Simon, Buffa, Francesca M., Li, Ji-Liang, Zhang, Qifeng, Wakelam, Michael J.O., Karpe, Fredrik, Schulze, Almut, Harris, Adrian L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier 09.10.2014
Témata:
ISSN:2211-1247, 2211-1247
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via β-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo.
AbstractList An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via β-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo.
An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via β-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo. : Bensaad et al. now show that FABP3 and FABP7 are induced by HIF-1α and lead to a significant lipid droplet (LD) accumulation in hypoxia. In hypoxia-reoxygenation, ATP production occurs via fatty acid β-oxidation or glycogen degradation in a cell-type-dependent manner, while inhibition of LD formation increases ROS toxicity and decreases cell survival in vitro and strongly impairs tumorigenesis in vivo.
An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via β-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo.An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via β-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo.
Author Pinnick, Katherine E.
Collins, Jennifer M.
Karpe, Fredrik
Wakelam, Michael J.O.
Harris, Adrian L.
Li, Ji-Liang
Peck, Barrie
Wigfield, Simon
Lewis, Caroline A.
Lord, Simon
Favaro, Elena
Bensaad, Karim
Buffa, Francesca M.
Zhang, Qifeng
Schulze, Almut
Author_xml – sequence: 1
  givenname: Karim
  surname: Bensaad
  fullname: Bensaad, Karim
– sequence: 2
  givenname: Elena
  surname: Favaro
  fullname: Favaro, Elena
– sequence: 3
  givenname: Caroline A.
  surname: Lewis
  fullname: Lewis, Caroline A.
– sequence: 4
  givenname: Barrie
  surname: Peck
  fullname: Peck, Barrie
– sequence: 5
  givenname: Simon
  surname: Lord
  fullname: Lord, Simon
– sequence: 6
  givenname: Jennifer M.
  surname: Collins
  fullname: Collins, Jennifer M.
– sequence: 7
  givenname: Katherine E.
  surname: Pinnick
  fullname: Pinnick, Katherine E.
– sequence: 8
  givenname: Simon
  surname: Wigfield
  fullname: Wigfield, Simon
– sequence: 9
  givenname: Francesca M.
  surname: Buffa
  fullname: Buffa, Francesca M.
– sequence: 10
  givenname: Ji-Liang
  surname: Li
  fullname: Li, Ji-Liang
– sequence: 11
  givenname: Qifeng
  surname: Zhang
  fullname: Zhang, Qifeng
– sequence: 12
  givenname: Michael J.O.
  surname: Wakelam
  fullname: Wakelam, Michael J.O.
– sequence: 13
  givenname: Fredrik
  surname: Karpe
  fullname: Karpe, Fredrik
– sequence: 14
  givenname: Almut
  surname: Schulze
  fullname: Schulze, Almut
– sequence: 15
  givenname: Adrian L.
  surname: Harris
  fullname: Harris, Adrian L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25263561$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhSNUREvpGyDkJZsMvo7jZNhVo05npJEqUbq2_HMzeMjEwXFK81i8CM-EO9NWiAXe2Lo-37nSOW-zk853mGXvgc6Agvi0mxlsA_YzRoHPaD2jpXiVnTEGkAPj1clf79PsYhh2NB1BAeb8TXbKSiaKUsBZNi1VjBO5NM6Suz6q70hUZ8nG9WlwG31QWyTrzo4GLdETWa2XOfz-RRa-i8HpMSKJniywbcl18D_jtwN-O4Z7d69aopqIgaym3j84lX9B_zBtsVPR-e5d9rpR7YAXT_d5dre8-rpY5Zub6_XicpMbDvOYa1YXhtZGQN2oxgoAVlNbMLBKoVZCg-UFoBGmELXmFTaN4Vqlj4rP9ZwX59n66Gu92sk-uL0Kk_TKycPAh61UITrTokRAJjital2aBAstTEqqxLIBZivaJK-PR68--B8jDlHu3ZCaaFWHfhwkCKCVgKKqk_TDk3TUe7Qvi5-jT4LPR4EJfhgCNtK4eEgmBuVaCVQ-Vi138li1fKxa0lqmqhPM_4Gf_f-L_QFEhK_V
CitedBy_id crossref_primary_10_1016_j_canlet_2022_215713
crossref_primary_10_1016_j_tcb_2017_10_006
crossref_primary_10_1134_S000629791910002X
crossref_primary_10_1016_j_phymed_2024_156224
crossref_primary_10_1007_s11010_021_04281_4
crossref_primary_10_3390_ijms252212137
crossref_primary_10_7554_eLife_64744
crossref_primary_10_1016_j_semcancer_2020_09_011
crossref_primary_10_1096_fj_201700235R
crossref_primary_10_1016_j_cell_2015_09_046
crossref_primary_10_3390_ijms21239125
crossref_primary_10_1038_ncb3330
crossref_primary_10_3390_ijms22157954
crossref_primary_10_1186_s13058_018_0980_4
crossref_primary_10_3390_cancers13030474
crossref_primary_10_1038_s41420_025_02390_3
crossref_primary_10_20517_cdr_2025_132
crossref_primary_10_1080_14737159_2023_2195553
crossref_primary_10_1016_j_nutos_2025_01_005
crossref_primary_10_1016_j_semcancer_2025_03_008
crossref_primary_10_3390_cells8030214
crossref_primary_10_1016_j_jtcme_2023_05_008
crossref_primary_10_1164_rccm_201910_2063OC
crossref_primary_10_3390_cells12131745
crossref_primary_10_1016_j_bbalip_2018_12_011
crossref_primary_10_1016_j_biopha_2023_114802
crossref_primary_10_3390_ijms22157841
crossref_primary_10_3390_bioengineering11080761
crossref_primary_10_1016_j_jbior_2018_09_006
crossref_primary_10_3390_ijms21010149
crossref_primary_10_1073_pnas_2104832118
crossref_primary_10_1007_s12035_021_02595_4
crossref_primary_10_1002_anie_202206074
crossref_primary_10_1038_s41598_019_49486_2
crossref_primary_10_1016_j_yexcr_2021_112768
crossref_primary_10_1186_s13046_019_1228_6
crossref_primary_10_1186_s12935_022_02645_4
crossref_primary_10_3390_cells10040758
crossref_primary_10_1016_j_bbcan_2023_188950
crossref_primary_10_1016_j_plipres_2021_101116
crossref_primary_10_1038_s41420_018_0127_5
crossref_primary_10_1038_s43018_024_00780_7
crossref_primary_10_1007_s00432_022_04212_w
crossref_primary_10_1245_s10434_022_12465_5
crossref_primary_10_1021_acschembio_4c00835
crossref_primary_10_1172_JCI182217
crossref_primary_10_3390_cancers17142341
crossref_primary_10_3390_lipidology2030016
crossref_primary_10_1016_j_xops_2025_100711
crossref_primary_10_1074_jbc_M116_768176
crossref_primary_10_1093_neuonc_nox152
crossref_primary_10_15252_embj_201898947
crossref_primary_10_3390_cancers15194857
crossref_primary_10_1111_febs_16181
crossref_primary_10_1016_j_tem_2023_05_004
crossref_primary_10_3390_ijms17091430
crossref_primary_10_1016_j_redox_2025_103705
crossref_primary_10_1002_cbdv_202401981
crossref_primary_10_3390_cancers12123823
crossref_primary_10_3389_fonc_2022_881252
crossref_primary_10_1016_j_jpha_2023_08_019
crossref_primary_10_1038_s41598_024_80874_5
crossref_primary_10_12688_wellcomeopenres_14839_1
crossref_primary_10_1007_s11914_018_0453_9
crossref_primary_10_1016_j_molcel_2025_08_009
crossref_primary_10_1124_molpharm_122_000607
crossref_primary_10_1186_s12885_018_5060_8
crossref_primary_10_3389_fgene_2019_01062
crossref_primary_10_1002_elsc_201800168
crossref_primary_10_1016_j_sjbs_2022_103426
crossref_primary_10_1016_j_procbio_2019_09_034
crossref_primary_10_3390_metabo12121280
crossref_primary_10_1007_s00018_020_03569_w
crossref_primary_10_1080_07853890_2024_2305308
crossref_primary_10_1016_j_bbcan_2025_189335
crossref_primary_10_2147_JHC_S450423
crossref_primary_10_1158_1541_7786_MCR_18_0315
crossref_primary_10_3390_ijms241813928
crossref_primary_10_3390_cells11050805
crossref_primary_10_3389_fmicb_2019_01398
crossref_primary_10_3390_nu16142257
crossref_primary_10_1007_s40291_023_00645_2
crossref_primary_10_1016_j_jhep_2022_01_009
crossref_primary_10_1016_j_pharmthera_2022_108274
crossref_primary_10_3390_metabo14050249
crossref_primary_10_1111_febs_70081
crossref_primary_10_3390_cancers15164100
crossref_primary_10_1016_j_bbadis_2023_166701
crossref_primary_10_1016_j_bbcan_2018_06_003
crossref_primary_10_1158_0008_5472_CAN_19_1169
crossref_primary_10_3390_cancers12061436
crossref_primary_10_1186_s40170_022_00290_z
crossref_primary_10_1038_s42003_020_01367_5
crossref_primary_10_1038_s41598_020_60384_w
crossref_primary_10_1016_j_cell_2015_09_020
crossref_primary_10_1186_s12943_023_01916_6
crossref_primary_10_3390_antiox11010022
crossref_primary_10_1007_s11095_021_03009_9
crossref_primary_10_1158_1541_7786_MCR_20_0560
crossref_primary_10_1242_dmm_032920
crossref_primary_10_1016_j_mce_2024_112200
crossref_primary_10_1186_s13046_022_02571_3
crossref_primary_10_1016_j_matpr_2023_03_769
crossref_primary_10_1002_lio2_22
crossref_primary_10_1002_ctd2_287
crossref_primary_10_3389_fnsys_2023_1212213
crossref_primary_10_3389_fimmu_2025_1524801
crossref_primary_10_1186_s40170_020_00219_4
crossref_primary_10_1155_2019_5702026
crossref_primary_10_3390_cancers12113147
crossref_primary_10_3390_ijms24010012
crossref_primary_10_1038_s41416_019_0451_4
crossref_primary_10_3389_fphar_2023_1108915
crossref_primary_10_3390_metabo13070875
crossref_primary_10_1186_s12885_019_5733_y
crossref_primary_10_1128_MCB_00374_18
crossref_primary_10_1158_0008_5472_CAN_16_0270
crossref_primary_10_1016_j_saa_2025_126275
crossref_primary_10_1080_2162402X_2024_2352179
crossref_primary_10_1016_j_immuni_2025_08_008
crossref_primary_10_1155_2022_2091791
crossref_primary_10_3892_ol_2025_14921
crossref_primary_10_1038_s41598_017_11035_0
crossref_primary_10_1097_PPO_0000000000000472
crossref_primary_10_1186_s12935_025_03805_y
crossref_primary_10_1007_s43152_024_00057_2
crossref_primary_10_3390_genes13091585
crossref_primary_10_1242_jcs_230169
crossref_primary_10_3390_cells8121602
crossref_primary_10_1074_jbc_RA120_015238
crossref_primary_10_3389_fcell_2021_826248
crossref_primary_10_1016_j_taap_2024_117079
crossref_primary_10_1016_j_bbrc_2017_01_018
crossref_primary_10_1038_s41598_020_58334_7
crossref_primary_10_1002_cam4_70687
crossref_primary_10_1111_1759_7714_13146
crossref_primary_10_3390_cancers13246302
crossref_primary_10_1194_jlr_M092379
crossref_primary_10_1038_nrc_2017_51
crossref_primary_10_1007_s12210_022_01100_w
crossref_primary_10_3390_ijms241814365
crossref_primary_10_1002_ctm2_1550
crossref_primary_10_3390_ijms25105482
crossref_primary_10_1186_s13046_023_02779_x
crossref_primary_10_1016_j_biopha_2022_113993
crossref_primary_10_1111_raq_12643
crossref_primary_10_1016_j_canlet_2017_05_002
crossref_primary_10_1038_nrc_2016_89
crossref_primary_10_3390_metabo13101103
crossref_primary_10_1177_1759091419892713
crossref_primary_10_1038_nrc_2016_84
crossref_primary_10_1101_gad_320481_118
crossref_primary_10_1016_j_bbcan_2025_189322
crossref_primary_10_1016_j_ebiom_2022_103872
crossref_primary_10_1155_2021_6629804
crossref_primary_10_1186_s12944_024_02369_6
crossref_primary_10_1016_j_semcancer_2022_03_004
crossref_primary_10_1016_j_jhep_2023_03_041
crossref_primary_10_3390_biomedicines11041009
crossref_primary_10_1016_j_bbcan_2016_12_004
crossref_primary_10_15252_emmm_201809034
crossref_primary_10_1016_j_ccell_2014_12_002
crossref_primary_10_3389_fcell_2021_736910
crossref_primary_10_1074_jbc_R117_799973
crossref_primary_10_1002_cac2_12257
crossref_primary_10_1038_s42255_022_00588_8
crossref_primary_10_1038_s42255_024_01118_4
crossref_primary_10_1016_j_tcb_2020_04_005
crossref_primary_10_1038_s41419_022_05121_z
crossref_primary_10_1016_j_bbcan_2024_189137
crossref_primary_10_1038_s41467_019_09643_7
crossref_primary_10_1016_j_cca_2024_119836
crossref_primary_10_1186_s13046_023_02940_6
crossref_primary_10_3389_fonc_2022_1085034
crossref_primary_10_1016_j_tmaid_2025_102815
crossref_primary_10_1016_j_chembiol_2023_08_011
crossref_primary_10_1002_1878_0261_12917
crossref_primary_10_1002_cbin_12114
crossref_primary_10_1016_j_bbcan_2023_189062
crossref_primary_10_1167_iovs_61_3_1
crossref_primary_10_1111_odi_13332
crossref_primary_10_1016_j_cellsig_2015_02_017
crossref_primary_10_1016_j_pharmthera_2023_108413
crossref_primary_10_4049_jimmunol_2100343
crossref_primary_10_1007_s12035_019_1489_2
crossref_primary_10_1016_j_clinre_2021_101632
crossref_primary_10_3390_molecules25071652
crossref_primary_10_3390_biology14091151
crossref_primary_10_1007_s10555_019_09786_5
crossref_primary_10_1038_s41419_020_2297_3
crossref_primary_10_15252_embj_201696150
crossref_primary_10_1016_j_cbi_2023_110808
crossref_primary_10_3390_metabo15030201
crossref_primary_10_1038_s41698_022_00299_z
crossref_primary_10_1038_bjc_2016_412
crossref_primary_10_3390_ijms22094419
crossref_primary_10_1002_jcsm_12203
crossref_primary_10_1002_ange_202206074
crossref_primary_10_1016_j_semcancer_2022_10_005
crossref_primary_10_1016_j_devcel_2021_04_013
crossref_primary_10_1016_j_jconrel_2023_09_034
crossref_primary_10_1002_1873_3468_14820
crossref_primary_10_1038_s41467_019_14262_3
crossref_primary_10_3389_fimmu_2025_1614815
crossref_primary_10_1002_nbm_4070
crossref_primary_10_1016_j_prp_2023_154722
crossref_primary_10_1093_pcmedi_pbz017
crossref_primary_10_1007_s13167_019_00189_8
crossref_primary_10_3389_fendo_2022_989523
crossref_primary_10_1016_j_pan_2019_03_001
crossref_primary_10_1093_neuped_wuaf002
crossref_primary_10_1002_jbm4_10173
crossref_primary_10_3389_fonc_2023_1034205
crossref_primary_10_1186_s12944_022_01693_z
crossref_primary_10_1101_gad_335166_119
crossref_primary_10_3390_cells8121601
crossref_primary_10_1002_jcb_27558
crossref_primary_10_1016_j_pharmthera_2023_108519
crossref_primary_10_1016_j_molmed_2021_07_011
crossref_primary_10_1158_0008_5472_CAN_15_2831
crossref_primary_10_3389_fcell_2022_863907
crossref_primary_10_3389_fvets_2021_764135
crossref_primary_10_1002_jcp_30276
crossref_primary_10_1016_j_canlet_2018_08_006
crossref_primary_10_1016_j_canlet_2021_04_023
crossref_primary_10_1016_j_ebiom_2019_02_015
crossref_primary_10_1007_s13105_021_00791_3
crossref_primary_10_1007_s00018_019_03092_7
crossref_primary_10_1016_j_bcp_2023_115800
crossref_primary_10_1038_s41388_019_0893_4
crossref_primary_10_3390_jcm11030497
crossref_primary_10_1016_j_biopha_2023_115591
crossref_primary_10_1242_dmm_050814
crossref_primary_10_1093_jas_skad157
crossref_primary_10_1007_s00018_019_03039_y
crossref_primary_10_26508_lsa_202201400
crossref_primary_10_4014_jmb_2211_11013
crossref_primary_10_1016_j_yexcr_2018_10_007
crossref_primary_10_1007_s10555_020_09934_2
crossref_primary_10_3390_cancers13092042
crossref_primary_10_1007_s11745_015_4075_z
crossref_primary_10_1186_s12864_021_07822_9
crossref_primary_10_1016_j_semcancer_2023_03_001
crossref_primary_10_1038_s12276_025_01396_2
crossref_primary_10_1016_j_xinn_2025_100918
crossref_primary_10_3390_ph17020195
crossref_primary_10_1371_journal_pone_0198985
crossref_primary_10_1016_j_exer_2019_107690
crossref_primary_10_1038_onc_2014_439
crossref_primary_10_1089_ars_2022_0088
crossref_primary_10_1371_journal_ppat_1006874
crossref_primary_10_3390_cancers11121870
crossref_primary_10_1186_s40170_025_00404_3
crossref_primary_10_3390_ijms20153624
crossref_primary_10_1038_s41420_025_02472_2
crossref_primary_10_1371_journal_pone_0215022
crossref_primary_10_1016_j_bbalip_2023_159398
crossref_primary_10_1111_jop_70042
crossref_primary_10_1002_ijc_32138
crossref_primary_10_1097_MOL_0000000000000201
crossref_primary_10_3390_cancers12071836
crossref_primary_10_1007_s00259_020_05074_5
crossref_primary_10_1016_j_neo_2024_100985
crossref_primary_10_1210_en_2018_00769
crossref_primary_10_3390_ijms22158144
crossref_primary_10_1111_imr_13013
crossref_primary_10_15252_emmm_201404271
crossref_primary_10_3390_cancers14246267
crossref_primary_10_1073_pnas_2310479121
crossref_primary_10_1016_j_biopha_2023_115565
crossref_primary_10_1021_acsptsci_5c00170
crossref_primary_10_1002_cac2_12413
crossref_primary_10_15252_embj_2020104415
crossref_primary_10_7554_eLife_21697
crossref_primary_10_3892_etm_2018_6048
crossref_primary_10_1016_j_trac_2024_117886
crossref_primary_10_1007_s11434_016_1129_4
crossref_primary_10_7554_eLife_31132
crossref_primary_10_3390_cells8050512
crossref_primary_10_1038_s41598_020_76904_7
crossref_primary_10_1016_j_drudis_2024_103980
crossref_primary_10_1016_j_isci_2023_108659
crossref_primary_10_1155_2020_6195050
crossref_primary_10_3390_ijms18061271
crossref_primary_10_1186_s13045_022_01349_6
crossref_primary_10_3389_fonc_2021_777273
crossref_primary_10_3389_fcell_2017_00043
crossref_primary_10_3389_fphar_2024_1355674
crossref_primary_10_3390_nu13082664
crossref_primary_10_1002_bies_202000205
crossref_primary_10_1371_journal_ppat_1006844
crossref_primary_10_1158_2159_8290_CD_14_1507
crossref_primary_10_1002_med_21868
crossref_primary_10_1016_j_pdpdt_2016_07_003
crossref_primary_10_1039_D1NR02128A
crossref_primary_10_3389_pore_2021_594705
crossref_primary_10_1111_1759_7714_14147
crossref_primary_10_3389_fgene_2021_691946
crossref_primary_10_3390_ijms25084559
crossref_primary_10_3390_ijms251810029
crossref_primary_10_3390_antiox11071282
crossref_primary_10_4103_RPS_RPS_209_23
crossref_primary_10_1016_j_semcancer_2022_03_023
crossref_primary_10_1080_14728222_2023_2255377
crossref_primary_10_1186_s40104_025_01174_0
crossref_primary_10_3389_fendo_2022_849279
crossref_primary_10_1002_advs_202404854
crossref_primary_10_2174_1381612826666200115095937
crossref_primary_10_1007_s00018_025_05736_3
crossref_primary_10_1186_s12943_024_02198_2
crossref_primary_10_1038_cddis_2016_132
crossref_primary_10_1016_j_cellsig_2024_111075
crossref_primary_10_1055_a_1816_8903
crossref_primary_10_3389_fonc_2020_00396
crossref_primary_10_1038_s42255_023_00963_z
crossref_primary_10_1016_j_cmet_2018_05_005
crossref_primary_10_1002_ski2_471
crossref_primary_10_1016_j_freeradbiomed_2023_06_015
crossref_primary_10_1111_pce_15290
crossref_primary_10_1038_s41419_024_06693_8
crossref_primary_10_1016_j_biopha_2023_115251
crossref_primary_10_3389_fonc_2016_00015
crossref_primary_10_3390_biology11020300
crossref_primary_10_1016_j_placenta_2020_04_013
crossref_primary_10_1016_j_plipres_2023_101233
crossref_primary_10_3390_ijms23020604
crossref_primary_10_1080_07853890_2024_2445774
crossref_primary_10_1159_000450721
crossref_primary_10_1038_s41467_024_52538_5
crossref_primary_10_1007_s11914_022_00721_2
crossref_primary_10_1016_j_ejmech_2022_114613
crossref_primary_10_1038_onc_2016_256
crossref_primary_10_1016_j_ijpharm_2019_04_038
crossref_primary_10_1016_j_bbalip_2017_07_006
crossref_primary_10_1016_j_ijbiomac_2024_134835
crossref_primary_10_1186_s12967_023_03938_6
crossref_primary_10_1038_s41388_025_03544_4
crossref_primary_10_1016_j_ccr_2020_213577
crossref_primary_10_1186_s13058_025_02039_0
crossref_primary_10_3390_ijms19041095
crossref_primary_10_3390_ijms22115703
crossref_primary_10_3389_fonc_2022_891018
crossref_primary_10_1038_cddis_2017_261
crossref_primary_10_3390_ijms17071061
crossref_primary_10_1007_s00424_022_02683_x
crossref_primary_10_1186_s12884_022_04423_6
crossref_primary_10_2478_jtim_2022_0022
crossref_primary_10_1038_cddis_2016_355
crossref_primary_10_3390_cancers10010003
crossref_primary_10_1016_j_cbi_2023_110672
crossref_primary_10_3390_biology9120474
crossref_primary_10_1007_s10528_025_11225_w
crossref_primary_10_3390_ijms25010323
crossref_primary_10_1038_s41416_022_01808_4
crossref_primary_10_1038_s41598_024_80160_4
crossref_primary_10_1038_s42003_023_04682_9
crossref_primary_10_1016_j_cancergen_2021_11_001
crossref_primary_10_1007_s12672_025_03090_1
crossref_primary_10_1016_j_pnmrs_2020_11_001
crossref_primary_10_1038_s41467_017_01965_8
crossref_primary_10_1002_jcp_27388
crossref_primary_10_3390_ijms24010589
crossref_primary_10_1007_s00441_020_03186_w
crossref_primary_10_1158_0008_5472_CAN_23_0969
crossref_primary_10_1007_s12032_021_01584_w
crossref_primary_10_1016_j_bbalip_2018_06_015
crossref_primary_10_3892_ijo_2025_5781
crossref_primary_10_1016_j_aca_2021_338342
crossref_primary_10_1038_s41388_018_0315_z
crossref_primary_10_1038_s41392_021_00714_0
crossref_primary_10_1038_s41401_021_00660_1
crossref_primary_10_3389_fcell_2021_648808
crossref_primary_10_2174_0929867325666180426165001
crossref_primary_10_1038_s41416_019_0650_z
crossref_primary_10_3390_cells9092081
crossref_primary_10_3892_ol_2023_14044
crossref_primary_10_1016_j_jbc_2025_108252
crossref_primary_10_1038_s41556_023_01207_8
crossref_primary_10_1016_j_drudis_2018_05_016
crossref_primary_10_1186_s13018_021_02861_0
crossref_primary_10_1016_j_bbalip_2017_12_006
crossref_primary_10_1007_s10555_021_09996_w
crossref_primary_10_1016_j_molcel_2025_08_021
crossref_primary_10_3390_ijerph18073575
crossref_primary_10_3389_fphar_2020_00736
crossref_primary_10_1016_j_canlet_2020_06_013
crossref_primary_10_1038_s42003_024_06478_x
crossref_primary_10_1186_s12929_020_00658_7
crossref_primary_10_1186_s12943_025_02267_0
crossref_primary_10_1038_s41420_023_01493_z
crossref_primary_10_3390_cancers13112599
crossref_primary_10_3390_ijms232214170
crossref_primary_10_1038_s41419_024_06956_4
crossref_primary_10_1021_acs_nanolett_5c02536
crossref_primary_10_3390_cells11142224
crossref_primary_10_1126_sciimmunol_abq3016
crossref_primary_10_1007_s11356_021_16701_5
crossref_primary_10_3390_ijms25158352
crossref_primary_10_1016_j_devcel_2020_06_018
crossref_primary_10_1016_j_biocel_2017_05_022
crossref_primary_10_1016_j_cclet_2021_06_024
crossref_primary_10_1002_1878_0261_13571
crossref_primary_10_1007_s00018_018_2985_7
crossref_primary_10_3390_ph13100292
crossref_primary_10_1016_j_addr_2020_07_013
crossref_primary_10_1016_j_gpb_2019_12_002
crossref_primary_10_1038_s41467_022_31331_2
crossref_primary_10_1093_rheumatology_keab788
crossref_primary_10_3390_ijms22031476
crossref_primary_10_3390_molecules23081941
crossref_primary_10_1016_j_semcancer_2025_06_008
crossref_primary_10_3390_ijms222212608
crossref_primary_10_1186_s10020_025_01212_7
crossref_primary_10_1111_pin_12831
crossref_primary_10_4251_wjgo_v15_i4_617
crossref_primary_10_1002_ctm2_37
crossref_primary_10_1007_s11033_024_10139_x
crossref_primary_10_1016_j_jpba_2020_113520
crossref_primary_10_3390_cells13100837
crossref_primary_10_3390_cells9102308
crossref_primary_10_3390_cancers14236004
crossref_primary_10_3390_metabo14060315
crossref_primary_10_1007_s11010_022_04459_4
crossref_primary_10_1016_j_tips_2017_05_002
crossref_primary_10_1016_j_tice_2024_102408
crossref_primary_10_1016_j_dci_2022_104598
crossref_primary_10_1186_s12860_021_00371_9
crossref_primary_10_1021_jacs_1c05103
crossref_primary_10_1016_j_jembe_2024_152010
crossref_primary_10_1016_j_talanta_2025_127805
crossref_primary_10_1038_s41556_020_00592_8
crossref_primary_10_1038_s41419_023_06299_6
crossref_primary_10_1186_s13045_023_01498_2
crossref_primary_10_4252_wjsc_v13_i9_1307
crossref_primary_10_1016_j_jbc_2025_108296
crossref_primary_10_1016_j_tranon_2019_10_015
crossref_primary_10_1371_journal_pone_0275725
crossref_primary_10_1038_s43018_023_00702_z
crossref_primary_10_3390_cancers13215484
crossref_primary_10_1038_ncomms12329
crossref_primary_10_3389_fonc_2023_1122789
crossref_primary_10_3390_cancers15154013
crossref_primary_10_1007_s40675_017_0062_7
crossref_primary_10_3390_antiox11071324
crossref_primary_10_3390_cells12172176
crossref_primary_10_1016_j_cbd_2021_100832
crossref_primary_10_1038_s41467_022_33138_7
crossref_primary_10_3389_fendo_2025_1630001
crossref_primary_10_1016_j_ccr_2023_215337
crossref_primary_10_1038_nm_4055
crossref_primary_10_1084_jem_20201606
crossref_primary_10_31083_j_fbl2708242
crossref_primary_10_1016_j_ajhg_2024_10_008
crossref_primary_10_1158_0008_5472_CAN_19_2306
crossref_primary_10_3390_ijms24010767
crossref_primary_10_1158_1541_7786_MCR_18_1343
crossref_primary_10_1530_JOE_17_0289
crossref_primary_10_1016_j_plipres_2021_101143
crossref_primary_10_1016_j_critrevonc_2015_10_011
crossref_primary_10_1007_s10495_022_01795_0
crossref_primary_10_1016_j_biochi_2020_08_020
crossref_primary_10_1186_s12943_025_02258_1
crossref_primary_10_1007_s12035_025_05071_5
crossref_primary_10_1016_j_plipres_2021_101141
crossref_primary_10_1093_neuonc_noad134
crossref_primary_10_1016_j_pan_2019_08_008
crossref_primary_10_1158_2159_8290_CD_15_0480
crossref_primary_10_1111_febs_15695
crossref_primary_10_15252_embj_201798772
Cites_doi 10.1038/onc.2009.441
10.1038/nrc2715
10.1126/science.1193494
10.1177/1087057106292763
10.1073/pnas.0802864106
10.1016/j.bcp.2011.02.016
10.1016/j.cell.2011.02.013
10.1194/jlr.R800084-JLR200
10.2217/fon.10.11
10.1042/BJ20111377
10.1194/jlr.M012195
10.1007/s00109-011-0735-5
10.1096/fj.10-159806
10.1096/fasebj.13.8.805
10.1016/j.cmet.2005.05.001
10.1038/nrc2981
10.1113/expphysiol.2006.033506
10.1074/jbc.274.24.16825
10.1016/S0092-8674(02)00872-3
10.1111/j.1742-4658.2008.06454.x
10.1073/pnas.89.15.6673
10.1016/j.ceb.2007.02.004
10.1073/pnas.0630588100
10.1021/jm2005805
10.1038/nature10602
10.1186/1471-2407-8-276
10.1016/j.cell.2009.11.027
10.1158/0008-5472.CAN-11-1704
10.1016/j.ejca.2010.02.020
10.1083/jcb.201109112
10.1126/science.1160809
10.1016/j.cell.2009.11.005
10.3858/emm.2009.41.12.103
10.1016/j.freeradbiomed.2008.04.029
10.1152/ajpendo.00646.2009
10.1016/j.resp.2010.08.022
10.1172/JCI38942
10.1016/j.cmet.2012.10.017
10.1016/S0070-2153(06)76007-0
10.1016/j.plefa.2010.02.005
10.1016/j.advenzreg.2009.10.027
10.1038/sj.bjc.6600837
10.1016/j.ccr.2007.07.006
10.1007/s11060-007-9377-4
10.1016/j.chembiol.2009.07.007
10.1016/S0014-5793(02)03475-0
10.1073/pnas.1307237110
10.1158/1535-7163.MCT-10-0802
10.1038/nrc3038
10.1002/jcb.22445
10.1038/sj.bjc.6604844
10.1016/j.bbabio.2010.10.022
10.1186/1479-7364-5-3-170
10.1002/jcb.23323
10.1101/gad.198630.112
10.1111/j.1600-0854.2009.00980.x
10.1074/jbc.271.40.24711
10.1038/nrc2222
10.1093/cvr/cvq045
ContentType Journal Article
Copyright Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2014.08.056
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 365
ExternalDocumentID oai_doaj_org_article_e1e264078b5c49b6b6c2525e5f12d70f
25263561
10_1016_j_celrep_2014_08_056
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/B/000C0415
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/B/000C0417
– fundername: Cancer Research UK
  grantid: 11359
GroupedDBID 0R~
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AAKRW
AALRI
AAMRU
AAXUO
AAYWO
AAYXX
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
HZ~
IPNFZ
IXB
KQ8
M41
M48
O-L
O9-
OK1
RIG
ROL
SSZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c419t-b283c08c618fafd611280d321daaeba6b1d431ec6c368b47effc4baa6b749b943
IEDL.DBID DOA
ISICitedReferencesCount 545
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344468100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Fri Oct 03 12:46:27 EDT 2025
Fri Jul 11 08:39:33 EDT 2025
Mon Jul 21 06:02:57 EDT 2025
Wed Nov 05 20:43:08 EST 2025
Tue Nov 18 21:46:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-b283c08c618fafd611280d321daaeba6b1d431ec6c368b47effc4baa6b749b943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/e1e264078b5c49b6b6c2525e5f12d70f
PMID 25263561
PQID 1610761378
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_e1e264078b5c49b6b6c2525e5f12d70f
proquest_miscellaneous_1610761378
pubmed_primary_25263561
crossref_citationtrail_10_1016_j_celrep_2014_08_056
crossref_primary_10_1016_j_celrep_2014_08_056
PublicationCentury 2000
PublicationDate 2014-10-09
PublicationDateYYYYMMDD 2014-10-09
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2014
Publisher Elsevier
Publisher_xml – name: Elsevier
References Bridges (10.1016/j.celrep.2014.08.056_bib6) 2011; 81
Azam (10.1016/j.celrep.2014.08.056_bib2) 2010; 46
Cairns (10.1016/j.celrep.2014.08.056_bib7) 2011; 11
Xu (10.1016/j.celrep.2014.08.056_bib61) 1996; 271
Yang (10.1016/j.celrep.2014.08.056_bib62) 2002; 110
Kamphorst (10.1016/j.celrep.2014.08.056_bib25) 2013; 110
Pinnick (10.1016/j.celrep.2014.08.056_bib40) 2010; 109
Smathers (10.1016/j.celrep.2014.08.056_bib50) 2011; 5
Pike (10.1016/j.celrep.2014.08.056_bib39) 2011; 1807
Rainero (10.1016/j.celrep.2014.08.056_bib42) 2012; 196
Abramson (10.1016/j.celrep.2014.08.056_bib1) 2011; 54
Lee (10.1016/j.celrep.2014.08.056_bib30) 1994; 266
Gao (10.1016/j.celrep.2014.08.056_bib14) 1999; 274
Gordan (10.1016/j.celrep.2014.08.056_bib16) 2007; 12
Guzy (10.1016/j.celrep.2014.08.056_bib17) 2006; 91
Storch (10.1016/j.celrep.2014.08.056_bib53) 2009; 50
Rey (10.1016/j.celrep.2014.08.056_bib43) 2010; 86
Semenza (10.1016/j.celrep.2014.08.056_bib47) 2010; 29
Slipicevic (10.1016/j.celrep.2014.08.056_bib49) 2008; 8
Faleck (10.1016/j.celrep.2014.08.056_bib10) 2010; 299
Guzy (10.1016/j.celrep.2014.08.056_bib18) 2005; 1
Flavin (10.1016/j.celrep.2014.08.056_bib13) 2010; 6
Prabhakar (10.1016/j.celrep.2014.08.056_bib41) 2010; 174
Bozza (10.1016/j.celrep.2014.08.056_bib5) 2010; 82
Levine (10.1016/j.celrep.2014.08.056_bib31) 2010; 330
Binas (10.1016/j.celrep.2014.08.056_bib4) 1999; 13
Khasawneh (10.1016/j.celrep.2014.08.056_bib26) 2009; 106
Mylonis (10.1016/j.celrep.2014.08.056_bib37) 2012; 125
Chen (10.1016/j.celrep.2014.08.056_bib8) 2009; 41
Farese (10.1016/j.celrep.2014.08.056_bib11) 2009; 139
Smeland (10.1016/j.celrep.2014.08.056_bib51) 1992; 89
Nomura (10.1016/j.celrep.2014.08.056_bib38) 2010; 140
Bengoechea-Alonso (10.1016/j.celrep.2014.08.056_bib3) 2007; 19
Spandl (10.1016/j.celrep.2014.08.056_bib52) 2009; 10
Maddocks (10.1016/j.celrep.2014.08.056_bib34) 2011; 89
Young (10.1016/j.celrep.2014.08.056_bib63) 2013; 27
Vander Heiden (10.1016/j.celrep.2014.08.056_bib58) 2009; 324
Hickey (10.1016/j.celrep.2014.08.056_bib20) 2006; 76
Samudio (10.1016/j.celrep.2014.08.056_bib45) 2010; 120
Ivascu (10.1016/j.celrep.2014.08.056_bib22) 2007; 31
Saarikoski (10.1016/j.celrep.2014.08.056_bib44) 2002; 530
Kuemmerle (10.1016/j.celrep.2014.08.056_bib28) 2011; 10
Laurenti (10.1016/j.celrep.2014.08.056_bib29) 2011; 112
Li (10.1016/j.celrep.2014.08.056_bib32) 2011; 71
Tan (10.1016/j.celrep.2014.08.056_bib56) 2009; 100
Schönfeld (10.1016/j.celrep.2014.08.056_bib46) 2008; 45
Kaloshi (10.1016/j.celrep.2014.08.056_bib23) 2007; 84
Gimm (10.1016/j.celrep.2014.08.056_bib15) 2010; 24
Koppenol (10.1016/j.celrep.2014.08.056_bib27) 2011; 11
Collins (10.1016/j.celrep.2014.08.056_bib9) 2011; 52
Wang (10.1016/j.celrep.2014.08.056_bib60) 2010; 2
Listenberger (10.1016/j.celrep.2014.08.056_bib33) 2003; 100
Toffoli (10.1016/j.celrep.2014.08.056_bib57) 2008; 275
Menendez (10.1016/j.celrep.2014.08.056_bib35) 2007; 7
Shen (10.1016/j.celrep.2014.08.056_bib48) 2012; 441
Zoula (10.1016/j.celrep.2014.08.056_bib64) 2003; 88
Ivascu (10.1016/j.celrep.2014.08.056_bib21) 2006; 11
Stubbs (10.1016/j.celrep.2014.08.056_bib54) 2010; 50
Hanahan (10.1016/j.celrep.2014.08.056_bib19) 2011; 144
Swinnen (10.1016/j.celrep.2014.08.056_bib55) 2006; 9
Favaro (10.1016/j.celrep.2014.08.056_bib12) 2012; 16
Kamisuki (10.1016/j.celrep.2014.08.056_bib24) 2009; 16
Metallo (10.1016/j.celrep.2014.08.056_bib36) 2012; 481
Vousden (10.1016/j.celrep.2014.08.056_bib59) 2009; 9
References_xml – volume: 29
  start-page: 625
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib47
  article-title: Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics
  publication-title: Oncogene
  doi: 10.1038/onc.2009.441
– volume: 125
  start-page: 3485
  year: 2012
  ident: 10.1016/j.celrep.2014.08.056_bib37
  article-title: Hypoxia causes triglyceride accumulation by HIF-1-mediated stimulation of lipin 1 expression
  publication-title: J. Cell Sci.
– volume: 9
  start-page: 691
  year: 2009
  ident: 10.1016/j.celrep.2014.08.056_bib59
  article-title: p53 and metabolism
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2715
– volume: 330
  start-page: 1340
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib31
  article-title: The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
  publication-title: Science
  doi: 10.1126/science.1193494
– volume: 11
  start-page: 922
  year: 2006
  ident: 10.1016/j.celrep.2014.08.056_bib21
  article-title: Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis
  publication-title: J. Biomol. Screen.
  doi: 10.1177/1087057106292763
– volume: 106
  start-page: 3354
  year: 2009
  ident: 10.1016/j.celrep.2014.08.056_bib26
  article-title: Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0802864106
– volume: 81
  start-page: 1183
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib6
  article-title: The angiogenic process as a therapeutic target in cancer
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2011.02.016
– volume: 144
  start-page: 646
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib19
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 50
  start-page: S126
  issue: Suppl
  year: 2009
  ident: 10.1016/j.celrep.2014.08.056_bib53
  article-title: Structural and functional analysis of fatty acid-binding proteins
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R800084-JLR200
– volume: 6
  start-page: 551
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib13
  article-title: Fatty acid synthase as a potential therapeutic target in cancer
  publication-title: Future Oncol.
  doi: 10.2217/fon.10.11
– volume: 441
  start-page: 675
  year: 2012
  ident: 10.1016/j.celrep.2014.08.056_bib48
  article-title: Hypoxia-inducible factor-1 (HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia
  publication-title: Biochem. J.
  doi: 10.1042/BJ20111377
– volume: 52
  start-page: 1683
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib9
  article-title: De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M012195
– volume: 89
  start-page: 237
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib34
  article-title: Metabolic regulation by p53
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-011-0735-5
– volume: 24
  start-page: 4443
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib15
  article-title: Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1
  publication-title: FASEB J.
  doi: 10.1096/fj.10-159806
– volume: 13
  start-page: 805
  year: 1999
  ident: 10.1016/j.celrep.2014.08.056_bib4
  article-title: Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization
  publication-title: FASEB J.
  doi: 10.1096/fasebj.13.8.805
– volume: 1
  start-page: 401
  year: 2005
  ident: 10.1016/j.celrep.2014.08.056_bib18
  article-title: Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.05.001
– volume: 11
  start-page: 85
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib7
  article-title: Regulation of cancer cell metabolism
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2981
– volume: 91
  start-page: 807
  year: 2006
  ident: 10.1016/j.celrep.2014.08.056_bib17
  article-title: Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.2006.033506
– volume: 274
  start-page: 16825
  year: 1999
  ident: 10.1016/j.celrep.2014.08.056_bib14
  article-title: Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.24.16825
– volume: 31
  start-page: 1403
  year: 2007
  ident: 10.1016/j.celrep.2014.08.056_bib22
  article-title: Diversity of cell-mediated adhesions in breast cancer spheroids
  publication-title: Int. J. Oncol.
– volume: 266
  start-page: E372
  year: 1994
  ident: 10.1016/j.celrep.2014.08.056_bib30
  article-title: Measurement of fractional lipid synthesis using deuterated water (2H2O) and mass isotopomer analysis
  publication-title: Am. J. Physiol.
– volume: 110
  start-page: 489
  year: 2002
  ident: 10.1016/j.celrep.2014.08.056_bib62
  article-title: Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00872-3
– volume: 275
  start-page: 2991
  year: 2008
  ident: 10.1016/j.celrep.2014.08.056_bib57
  article-title: Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2008.06454.x
– volume: 89
  start-page: 6673
  year: 1992
  ident: 10.1016/j.celrep.2014.08.056_bib51
  article-title: NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.15.6673
– volume: 19
  start-page: 215
  year: 2007
  ident: 10.1016/j.celrep.2014.08.056_bib3
  article-title: SREBP in signal transduction: cholesterol metabolism and beyond
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2007.02.004
– volume: 9
  start-page: 358
  year: 2006
  ident: 10.1016/j.celrep.2014.08.056_bib55
  article-title: Increased lipogenesis in cancer cells: new players, novel targets
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
– volume: 100
  start-page: 3077
  year: 2003
  ident: 10.1016/j.celrep.2014.08.056_bib33
  article-title: Triglyceride accumulation protects against fatty acid-induced lipotoxicity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0630588100
– volume: 54
  start-page: 5615
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib1
  article-title: The lipogenesis pathway as a cancer target
  publication-title: J. Med. Chem.
  doi: 10.1021/jm2005805
– volume: 481
  start-page: 380
  year: 2012
  ident: 10.1016/j.celrep.2014.08.056_bib36
  article-title: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
  publication-title: Nature
  doi: 10.1038/nature10602
– volume: 8
  start-page: 276
  year: 2008
  ident: 10.1016/j.celrep.2014.08.056_bib49
  article-title: The fatty acid binding protein 7 (FABP7) is involved in proliferation and invasion of melanoma cells
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-8-276
– volume: 140
  start-page: 49
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib38
  article-title: Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.027
– volume: 71
  start-page: 6073
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib32
  article-title: DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-1704
– volume: 46
  start-page: 1323
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib2
  article-title: Mechanisms of resistance to antiangiogenesis therapy
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2010.02.020
– volume: 196
  start-page: 277
  year: 2012
  ident: 10.1016/j.celrep.2014.08.056_bib42
  article-title: Diacylglycerol kinase α controls RCP-dependent integrin trafficking to promote invasive migration
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201109112
– volume: 324
  start-page: 1029
  year: 2009
  ident: 10.1016/j.celrep.2014.08.056_bib58
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 139
  start-page: 855
  year: 2009
  ident: 10.1016/j.celrep.2014.08.056_bib11
  article-title: Lipid droplets finally get a little R-E-S-P-E-C-T
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.005
– volume: 41
  start-page: 849
  year: 2009
  ident: 10.1016/j.celrep.2014.08.056_bib8
  article-title: Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors
  publication-title: Exp. Mol. Med.
  doi: 10.3858/emm.2009.41.12.103
– volume: 45
  start-page: 231
  year: 2008
  ident: 10.1016/j.celrep.2014.08.056_bib46
  article-title: Fatty acids as modulators of the cellular production of reactive oxygen species
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2008.04.029
– volume: 299
  start-page: E249
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib10
  article-title: Adipose differentiation-related protein regulates lipids and insulin in pancreatic islets
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00646.2009
– volume: 174
  start-page: 230
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib41
  article-title: Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2010.08.022
– volume: 120
  start-page: 142
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib45
  article-title: Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI38942
– volume: 2
  start-page: 515
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib60
  article-title: Acetyl-CoA carboxylase-a as a novel target for cancer therapy
  publication-title: Front. Biosci. (Schol. Ed.)
– volume: 16
  start-page: 751
  year: 2012
  ident: 10.1016/j.celrep.2014.08.056_bib12
  article-title: Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.10.017
– volume: 76
  start-page: 217
  year: 2006
  ident: 10.1016/j.celrep.2014.08.056_bib20
  article-title: Regulation of angiogenesis by hypoxia and hypoxia-inducible factors
  publication-title: Curr. Top. Dev. Biol.
  doi: 10.1016/S0070-2153(06)76007-0
– volume: 82
  start-page: 243
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib5
  article-title: Lipid droplets in inflammation and cancer
  publication-title: Prostaglandins Leukot. Essent. Fatty Acids
  doi: 10.1016/j.plefa.2010.02.005
– volume: 50
  start-page: 44
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib54
  article-title: The altered metabolism of tumors: HIF-1 and its role in the Warburg effect
  publication-title: Adv. Enzyme Regul.
  doi: 10.1016/j.advenzreg.2009.10.027
– volume: 88
  start-page: 1439
  year: 2003
  ident: 10.1016/j.celrep.2014.08.056_bib64
  article-title: Pimonidazole binding in C6 rat brain glioma: relation with lipid droplet detection
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6600837
– volume: 12
  start-page: 108
  year: 2007
  ident: 10.1016/j.celrep.2014.08.056_bib16
  article-title: HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2007.07.006
– volume: 84
  start-page: 245
  year: 2007
  ident: 10.1016/j.celrep.2014.08.056_bib23
  article-title: FABP7 expression in glioblastomas: relation to prognosis, invasion and EGFR status
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-007-9377-4
– volume: 16
  start-page: 882
  year: 2009
  ident: 10.1016/j.celrep.2014.08.056_bib24
  article-title: A small molecule that blocks fat synthesis by inhibiting the activation of SREBP
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2009.07.007
– volume: 530
  start-page: 186
  year: 2002
  ident: 10.1016/j.celrep.2014.08.056_bib44
  article-title: Mitogen-inducible gene 6 (MIG-6), adipophilin and tuftelin are inducible by hypoxia
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(02)03475-0
– volume: 110
  start-page: 8882
  year: 2013
  ident: 10.1016/j.celrep.2014.08.056_bib25
  article-title: Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1307237110
– volume: 10
  start-page: 427
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib28
  article-title: Lipoprotein lipase links dietary fat to solid tumor cell proliferation
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-10-0802
– volume: 11
  start-page: 325
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib27
  article-title: Otto Warburg’s contributions to current concepts of cancer metabolism
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3038
– volume: 109
  start-page: 683
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib40
  article-title: Reversibility of metabolic and morphological changes associated with chronic exposure of pancreatic islet beta-cells to fatty acids
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.22445
– volume: 100
  start-page: 405
  year: 2009
  ident: 10.1016/j.celrep.2014.08.056_bib56
  article-title: The key hypoxia regulated gene CAIX is upregulated in basal-like breast tumours and is associated with resistance to chemotherapy
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6604844
– volume: 1807
  start-page: 726
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib39
  article-title: Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2010.10.022
– volume: 5
  start-page: 170
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib50
  article-title: The human fatty acid-binding protein family: evolutionary divergences and functions
  publication-title: Hum. Genomics
  doi: 10.1186/1479-7364-5-3-170
– volume: 112
  start-page: 3891
  year: 2011
  ident: 10.1016/j.celrep.2014.08.056_bib29
  article-title: Hypoxia induces peroxisome proliferator-activated receptor α (PPARα) and lipid metabolism peroxisomal enzymes in human glioblastoma cells
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.23323
– volume: 27
  start-page: 1115
  year: 2013
  ident: 10.1016/j.celrep.2014.08.056_bib63
  article-title: Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress
  publication-title: Genes Dev.
  doi: 10.1101/gad.198630.112
– volume: 10
  start-page: 1579
  year: 2009
  ident: 10.1016/j.celrep.2014.08.056_bib52
  article-title: Live cell multicolor imaging of lipid droplets with a new dye, LD540
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2009.00980.x
– volume: 271
  start-page: 24711
  year: 1996
  ident: 10.1016/j.celrep.2014.08.056_bib61
  article-title: Ligand specificity of brain lipid-binding protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.40.24711
– volume: 7
  start-page: 763
  year: 2007
  ident: 10.1016/j.celrep.2014.08.056_bib35
  article-title: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2222
– volume: 86
  start-page: 236
  year: 2010
  ident: 10.1016/j.celrep.2014.08.056_bib43
  article-title: Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvq045
SSID ssj0000601194
Score 2.5910938
Snippet An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3)...
An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3)...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 349
SubjectTerms Cell Hypoxia - physiology
Cell Line, Tumor
Cell Proliferation - physiology
Fatty Acids - metabolism
Glioblastoma
Humans
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Lipid Metabolism
Oxidation-Reduction
Oxygen - metabolism
Title Fatty Acid Uptake and Lipid Storage Induced by HIF-1α Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation
URI https://www.ncbi.nlm.nih.gov/pubmed/25263561
https://www.proquest.com/docview/1610761378
https://doaj.org/article/e1e264078b5c49b6b6c2525e5f12d70f
Volume 9
WOSCitedRecordID wos000344468100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgAokLonwu0MpIXCPWSew4x7ZiWSRUIUrR3ix_jMWWVbLaZlHzs_gj_KbOOLurvaBeuCa243jG9pt48h5j76UrpI4K53cUOQYousicdDqrajkOwUft0un5jy_V-bmezeqve1JflBM20AMPA_cBBOTpsMlJX9ZOOeVzmUuQ2HaoxpFWX0Q9e8HUsAYTlxkdKec55WzlZbX9by4ld3lYrIDoKkWZGDxJv3pvX0r0_f_GnGnvmTxhjzegkZ8MnT1k96B5yh4OMpL9M9ZPbNf1_MTPA79cdvYXcNsETrLUgV9gUI1rBieNDg-Bu55PP08y8fcPJ2aqpHcFvGv5GSwW_BNG5d3PVP1ijasI-iFPMuJ82i_bm7nNvkF706PXJYs-Z5eTj9_PptlGUiHzpai7zCGa8GPtldDRxqAQbelxKHIRrAVnlRMBEQV45QulXVlBjL50Fm9UOPh1WbxgB03bwCvGg5JR-oiQz0LpvEOk4BxYDb4ItQt-xIrtgBq_4Rsn2YuF2SaWXZnBDIbMYEgNU6oRy3a1lgPfxh3lT8lWu7LElp0uoA-ZjQ-Zu3xoxN5tLW1wdtGRiW2gXV8bxMP0oaeo9Ii9HFxg9yhsgsj9xOv_0YU37BG9VUoTrN-yg261hiP2wP_u5terY3a_munj5OK3GP3-vQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatty+acid+uptake+and+lipid+storage+induced+by+HIF-1%CE%B1+contribute+to+cell+growth+and+survival+after+hypoxia-reoxygenation&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Bensaad%2C+Karim&rft.au=Favaro%2C+Elena&rft.au=Lewis%2C+Caroline+A&rft.au=Peck%2C+Barrie&rft.date=2014-10-09&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=9&rft.issue=1&rft.spage=349&rft_id=info:doi/10.1016%2Fj.celrep.2014.08.056&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon