Segmentation of unbalanced and in-homogeneous point clouds and its application to 3D scanned trees

Segmentation of 3D point clouds is still an open issue in the case of unbalanced and in-homogeneous data-sets. In the application context of the modeling of botanical trees, a fundamental challenge consists in separating the leaves from the wood. Based on deep learning and a class decision process,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Visual computer Ročník 36; číslo 10-12; s. 2419 - 2431
Hlavní autori: Morel, Jules, Bac, Alexandra, Kanai, Takashi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0178-2789, 1432-2315, 1432-8726
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Segmentation of 3D point clouds is still an open issue in the case of unbalanced and in-homogeneous data-sets. In the application context of the modeling of botanical trees, a fundamental challenge consists in separating the leaves from the wood. Based on deep learning and a class decision process, we propose an innovative method designed to separate leaf points from wood points in terrestrial LiDAR point clouds of trees. Although simple, our approach learns trees characteristic point patterns efficiently and robustly. To train our 3D deep learning model, we constructed a 3D labeled point cloud data-set of different tree species. Experiments show that our 3D deep representation together with our geometric approach leads to significant improvement over the state-of-the-art methods in segmentation task.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-2789
1432-2315
1432-8726
DOI:10.1007/s00371-020-01966-7