Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics
When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepa...
Saved in:
| Published in: | Bulletin of mathematical biology Vol. 86; no. 1; p. 2 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0092-8240, 1522-9602, 1522-9602 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises—models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures (
protocols
) are used to produce data used to train models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments that investigate the properties of hERG potassium channels. Here, ‘information-rich’ protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. In this case, we simulate data with one model and fit it with a different (discrepant) one. For any individual experimental protocol, parameter estimates vary little under repeated samples from the assumed additive independent Gaussian noise model. Yet parameter sets arising from the same model applied to different experiments conflict—highlighting model discrepancy. Our methods will help select more suitable ion channel models for future studies, and will be widely applicable to a range of biological modelling problems. |
|---|---|
| AbstractList | When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises—models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures (
protocols
) are used to produce data used to train models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments that investigate the properties of hERG potassium channels. Here, ‘information-rich’ protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. In this case, we simulate data with one model and fit it with a different (discrepant) one. For any individual experimental protocol, parameter estimates vary little under repeated samples from the assumed additive independent Gaussian noise model. Yet parameter sets arising from the same model applied to different experiments conflict—highlighting model discrepancy. Our methods will help select more suitable ion channel models for future studies, and will be widely applicable to a range of biological modelling problems. When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises-models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures (protocols) are used to produce data used to train models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments that investigate the properties of hERG potassium channels. Here, 'information-rich' protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. In this case, we simulate data with one model and fit it with a different (discrepant) one. For any individual experimental protocol, parameter estimates vary little under repeated samples from the assumed additive independent Gaussian noise model. Yet parameter sets arising from the same model applied to different experiments conflict-highlighting model discrepancy. Our methods will help select more suitable ion channel models for future studies, and will be widely applicable to a range of biological modelling problems. When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises-models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures (protocols) are used to produce data used to train models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments that investigate the properties of hERG potassium channels. Here, 'information-rich' protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. In this case, we simulate data with one model and fit it with a different (discrepant) one. For any individual experimental protocol, parameter estimates vary little under repeated samples from the assumed additive independent Gaussian noise model. Yet parameter sets arising from the same model applied to different experiments conflict-highlighting model discrepancy. Our methods will help select more suitable ion channel models for future studies, and will be widely applicable to a range of biological modelling problems.When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises-models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures (protocols) are used to produce data used to train models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments that investigate the properties of hERG potassium channels. Here, 'information-rich' protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. In this case, we simulate data with one model and fit it with a different (discrepant) one. For any individual experimental protocol, parameter estimates vary little under repeated samples from the assumed additive independent Gaussian noise model. Yet parameter sets arising from the same model applied to different experiments conflict-highlighting model discrepancy. Our methods will help select more suitable ion channel models for future studies, and will be widely applicable to a range of biological modelling problems. |
| ArticleNumber | 2 |
| Author | Whittaker, Dominic G. Mirams, Gary R. Hill, Adam P. Windley, Monique J. Lei, Chon Lok Preston, Simon P. Shuttleworth, Joseph G. |
| Author_xml | – sequence: 1 givenname: Joseph G. orcidid: 0000-0003-4884-6526 surname: Shuttleworth fullname: Shuttleworth, Joseph G. organization: Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham – sequence: 2 givenname: Chon Lok orcidid: 0000-0003-0904-554X surname: Lei fullname: Lei, Chon Lok organization: Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau – sequence: 3 givenname: Dominic G. orcidid: 0000-0002-2757-5491 surname: Whittaker fullname: Whittaker, Dominic G. organization: Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, 4 Systems Modeling & Translational Biology – sequence: 4 givenname: Monique J. orcidid: 0000-0001-6829-3856 surname: Windley fullname: Windley, Monique J. organization: Computational Cardiology Laboratory, Victor Chang Cardiac Research Institute, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales – sequence: 5 givenname: Adam P. orcidid: 0000-0002-6403-1282 surname: Hill fullname: Hill, Adam P. organization: Computational Cardiology Laboratory, Victor Chang Cardiac Research Institute, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales – sequence: 6 givenname: Simon P. orcidid: 0000-0002-1910-4227 surname: Preston fullname: Preston, Simon P. organization: Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham – sequence: 7 givenname: Gary R. orcidid: 0000-0002-4569-4312 surname: Mirams fullname: Mirams, Gary R. email: gary.mirams@nottingham.ac.uk organization: Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37999811$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS3Uik4LL8ACWWLTTaj_konZjWYGqCgCpHZtOc7N1FXmJtgOMG_EY-J2OkLqoqvrxXfOvT7nlBzhgEDIG87ec8bmF5HzUtYFE7JgXAhVVC_IjJdCFLpi4ojMGNOiqIViJ-Q0xjuWRVrql-REzrXWNecz8ne9HX3wzvb0x2Qx-S6_kx-QDh39HqD1LvlfQG_QQUjWY9rR1QQ0DfTr0EJPVz66AKNFt6PNjl6HzHjc0N8-3VKLdI0Rtk0P937rPyMEvwVMed0Kot9g_EAXSBfj2B_2ZufLPJa3FjH7f_EIybv4ihx3to_w-nGekZuP6-vl5-Lq26fL5eKqcIrrVNiuVKKTUpdcKyZU2Thg2oq64ZJnoqqcbpUtRdN1ildS1Z2SLRPN3OoK5k6ekfO97xiGnxPEZLb5h9D3FmGYohG1lrWsVSky-u4JejdMAfN1RopSSa651pl6-0hNzRZaM-YEbNiZQwcZqPeAC0OMATrjfHrIIuUwe8OZua_b7Os2uW7zULepslQ8kR7cnxXJvShmGDcQ_p_9jOofuAS9KA |
| CitedBy_id | crossref_primary_10_1016_j_bpj_2024_10_018 crossref_primary_10_12688_wellcomeopenres_23319_1 crossref_primary_10_1016_j_agsy_2024_104147 crossref_primary_10_12688_wellcomeopenres_23319_2 crossref_primary_10_1371_journal_pcbi_1013319 crossref_primary_10_1016_j_techfore_2025_124077 crossref_primary_10_1098_rsta_2024_0227 crossref_primary_10_1088_1478_3975_adda85 crossref_primary_10_1098_rsta_2024_0232 crossref_primary_10_1098_rsos_240733 crossref_primary_10_1098_rsta_2024_0211 |
| Cites_doi | 10.1016/j.yjmcc.2015.11.018 10.1161/CIRCEP.116.004628 10.1016/j.jfineco.2008.11.001 10.3389/fphys.2021.708944 10.1016/j.coisb.2021.03.005 10.1111/j.1469-7793.1997.045bl.x 10.1137/1.9781611973228 10.1016/j.bpj.2019.07.030 10.1152/ajpheart.00794.2003 10.1113/JP275733 10.1016/j.bpj.2019.08.001 10.1103/PhysRevE.83.041908 10.1201/b16018 10.1080/01621459.2016.1229197 10.5334/jors.252 10.1007/3-540-32494-1_4 10.1111/1467-9868.00294 10.1085/jgp.202112923 10.1002/wsbm.1482 10.1017/S0033583506004227 10.1038/s41586-020-2649-2 10.1016/j.jhydrol.2005.07.007 10.1029/JC090iC05p08995 10.1371/journal.pcbi.1008932 10.1098/rsta.2019.0349 10.1007/978-1-4612-1694-0_15 10.1371/journal.pcbi.1005234 10.1098/rsta.2019.0348 10.1016/j.bpj.2019.07.029 10.1098/rsta.2008.0301 10.7555/JBR.34.20200119 10.1113/JP271671 10.1111/rssb.12356 10.1007/BF01023679 10.1016/j.jtbi.2022.111351 10.1002/9780470316757 10.48550/arXiv.2210.01592 10.1101/2022.11.01.514669 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7SS 7TK 7X7 7XB 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L6V LK8 M0S M1P M2P M7P M7S P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
| DOI | 10.1007/s11538-023-01224-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Computer Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Mathematics |
| EISSN | 1522-9602 |
| ExternalDocumentID | 37999811 10_1007_s11538_023_01224_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/R014604/1 funderid: http://dx.doi.org/10.13039/501100000266 – fundername: Wellcome Trust grantid: 212203/Z/18/Z funderid: http://dx.doi.org/10.13039/100010269 – fundername: Science and Technology Development Fund grantid: 0048/2022/A – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 212203/Z/18/Z |
| GroupedDBID | --- --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .GJ .VR 06D 0R~ 0VY 199 1B1 1N0 1RT 1~5 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3O- 3V. 4.4 406 408 40D 40E 4G. 53G 5GY 5RE 5VS 67Z 6J9 6NX 7-5 71M 78A 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AACTN AAEDT AAHNG AAIAL AAJBT AAJKR AALCJ AALRI AANZL AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMAC ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACRPL ACZOJ ADBBV ADFGL ADHIR ADINQ ADKNI ADKPE ADMUD ADNMO ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHHHB AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AITUG AJBLW AJRNO AJZVZ AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DM4 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FIRID FNLPD FRRFC FSGXE FWDCC FYUFA G-2 GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HLV HMCUK HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K6V K7- KDC KOV L6V LG5 LK8 LLZTM LW8 M0L M1P M4Y M7P M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O-L O9- O93 O9G O9I O9J OZT P19 P2P P62 P9R PF0 PKN PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R2- R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAB SAP SCLPG SDD SDH SDM SEW SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSZ STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 WUQ XPP XSW YLTOR Z45 Z7U Z83 ZGI ZMT ZMTXR ZWQNP ZXP ~A9 ~EX ~KM 9DU AAPKM AAYWO AAYXX ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIGII AIXLP AMVHM ATHPR AYFIA AZQEC CITATION DWQXO GNUQQ M2P PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7SS 7TK 7XB 8FK JQ2 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c419t-af542f33951940245bce09a28b13141966c9d4a52bff416348f43d02b7a96e7c3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001105013900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0092-8240 1522-9602 |
| IngestDate | Thu Oct 02 16:24:34 EDT 2025 Sat Nov 29 14:46:40 EST 2025 Mon Jul 21 05:56:08 EDT 2025 Sat Nov 29 03:48:45 EST 2025 Tue Nov 18 22:23:27 EST 2025 Fri Feb 21 02:40:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Uncertainty quantification Discrepancy Mathematical model Ion channel Experimental design Misspecification |
| Language | English |
| License | 2023. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-af542f33951940245bce09a28b13141966c9d4a52bff416348f43d02b7a96e7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0904-554X 0000-0001-6829-3856 0000-0003-4884-6526 0000-0002-1910-4227 0000-0002-2757-5491 0000-0002-4569-4312 0000-0002-6403-1282 |
| OpenAccessLink | https://link.springer.com/10.1007/s11538-023-01224-6 |
| PMID | 37999811 |
| PQID | 3254319199 |
| PQPubID | 55445 |
| ParticipantIDs | proquest_miscellaneous_2893838452 proquest_journals_3254319199 pubmed_primary_37999811 crossref_citationtrail_10_1007_s11538_023_01224_6 crossref_primary_10_1007_s11538_023_01224_6 springer_journals_10_1007_s11538_023_01224_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | A journal devoted to research at the interface of the life and mathematical sciences |
| PublicationTitle | Bulletin of mathematical biology |
| PublicationTitleAbbrev | Bull Math Biol |
| PublicationTitleAlternate | Bull Math Biol |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Lei, Clerx, Beattie (CR27) 2019; 117 Rudy, Silva (CR35) 2006; 39 Harris, Millman, Van Der Walt (CR18) 2020; 585 Kemp, Whittaker, Venkateshappa (CR22) 2021; 153 ten Tusscher, Noble, Noble (CR39) 2004; 286 Lei, Ghosh, Whittaker (CR30) 2020; 378 Willmott, Ackleson, Davis (CR43) 1985; 90 Creswell, Robinson, Gavaghan (CR11) 2023; 558 Whittaker, Clerx, Lei (CR41) 2020; 12 CR38 Beven (CR6) 2006; 320 Lei, Mirams (CR26) 2021; 12 Guan, Wei, Zhao (CR16) 2020; 34 Akaike, Parzen, Tanabe, Kitagawa (CR1) 1998 Anderson, Ghysels, Juergens (CR2) 2009; 94 Clerx, Beattie, Gavaghan (CR8) 2019; 117 Klimovskaia, Ganscha, Claassen (CR24) 2016; 12 CR10 Clerx, Robinson, Lambert (CR9) 2019; 7 CR31 Li, Dutta, Sheng (CR32) 2017; 10 Beattie, Hill, Bardenet (CR5) 2018; 596 Mangold, Wang, Johnson (CR33) 2021; 17 Frazier, Robert, Rousseau (CR13) 2020; 82 Fink, Noble (CR12) 2009; 367 Gelman, Carlin, Stern (CR14) 2013 Seber, Wild (CR36) 2005 Lei, Clerx, Whittaker (CR29) 2020; 378 CR4 Chen, Shojaie, Witten (CR7) 2017; 112 CR3 Kennedy, O’Hagan (CR23) 2001; 63 Hille (CR19) 2001 Smith (CR37) 2013 Goldwyn, Imennov, Famulare (CR15) 2011; 83 CR25 Wieland, Hauber, Rosenblatt (CR42) 2021; 25 Lei, Clerx, Gavaghan (CR28) 2019; 117 Johnstone, Chang, Bardenet (CR20) 2016; 96 Keizer (CR21) 1972; 6 Mirams, Pathmanathan, Gray (CR34) 2016; 594 Hansen, Lozano, Larrañaga, Inza (CR17) 2006 Wang, Liu, Morales (CR40) 1997; 502 G Seber (1224_CR36) 2005 K Beven (1224_CR6) 2006; 320 CL Lei (1224_CR26) 2021; 12 CL Lei (1224_CR29) 2020; 378 1224_CR31 CL Lei (1224_CR28) 2019; 117 H Akaike (1224_CR1) 1998 1224_CR10 S Wang (1224_CR40) 1997; 502 KE Mangold (1224_CR33) 2021; 17 A Gelman (1224_CR14) 2013 S Chen (1224_CR7) 2017; 112 J Guan (1224_CR16) 2020; 34 N Hansen (1224_CR17) 2006 1224_CR38 JH Goldwyn (1224_CR15) 2011; 83 EW Anderson (1224_CR2) 2009; 94 FG Wieland (1224_CR42) 2021; 25 MC Kennedy (1224_CR23) 2001; 63 J Keizer (1224_CR21) 1972; 6 M Clerx (1224_CR8) 2019; 117 A Klimovskaia (1224_CR24) 2016; 12 KA Beattie (1224_CR5) 2018; 596 GR Mirams (1224_CR34) 2016; 594 DT Frazier (1224_CR13) 2020; 82 Y Rudy (1224_CR35) 2006; 39 1224_CR3 M Fink (1224_CR12) 2009; 367 1224_CR4 CL Lei (1224_CR30) 2020; 378 B Hille (1224_CR19) 2001 R Creswell (1224_CR11) 2023; 558 M Clerx (1224_CR9) 2019; 7 CR Harris (1224_CR18) 2020; 585 1224_CR25 DG Whittaker (1224_CR41) 2020; 12 CJ Willmott (1224_CR43) 1985; 90 JM Kemp (1224_CR22) 2021; 153 CL Lei (1224_CR27) 2019; 117 Z Li (1224_CR32) 2017; 10 RC Smith (1224_CR37) 2013 KHWJ ten Tusscher (1224_CR39) 2004; 286 RH Johnstone (1224_CR20) 2016; 96 |
| References_xml | – volume: 96 start-page: 49 year: 2016 end-page: 62 ident: CR20 article-title: Uncertainty and variability in models of the cardiac action potential: can we build trustworthy models? publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2015.11.018 – volume: 10 start-page: e004,628 issue: 2 year: 2017 ident: CR32 article-title: Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel-Drug Binding Kinetics and Multichannel Pharmacology publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.116.004628 – volume: 94 start-page: 233 issue: 2 year: 2009 end-page: 263 ident: CR2 article-title: The impact of risk and uncertainty on expected returns publication-title: J Financ Econ doi: 10.1016/j.jfineco.2008.11.001 – volume: 12 start-page: 1166 year: 2021 ident: CR26 article-title: Neural network differential equations for ion channel modelling publication-title: Front Physiol doi: 10.3389/fphys.2021.708944 – volume: 25 start-page: 60 year: 2021 end-page: 69 ident: CR42 article-title: On structural and practical identifiability publication-title: Curr Opin Syst Biol doi: 10.1016/j.coisb.2021.03.005 – ident: CR4 – volume: 502 start-page: 45 issue: 1 year: 1997 end-page: 60 ident: CR40 article-title: A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes publication-title: J Physiol doi: 10.1111/j.1469-7793.1997.045bl.x – year: 2013 ident: CR37 publication-title: Uncertainty quantification: theory, implementation, and applications doi: 10.1137/1.9781611973228 – volume: 117 start-page: 2455 issue: 12 year: 2019 end-page: 2470 ident: CR27 article-title: Rapid characterization of hERG channel kinetics II: temperature dependence publication-title: Biophys J doi: 10.1016/j.bpj.2019.07.030 – volume: 286 start-page: H1573 issue: 4 year: 2004 end-page: H1589 ident: CR39 article-title: A model for human ventricular tissue publication-title: Am J Physiol Heart Circul Physiol doi: 10.1152/ajpheart.00794.2003 – volume: 596 start-page: 1813 issue: 10 year: 2018 end-page: 1828 ident: CR5 article-title: Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics publication-title: J Physiol doi: 10.1113/JP275733 – volume: 117 start-page: 2420 issue: 12 year: 2019 end-page: 2437 ident: CR8 article-title: Four ways to fit an ion channel model publication-title: Biophys J doi: 10.1016/j.bpj.2019.08.001 – ident: CR10 – volume: 83 start-page: 908 issue: 041 year: 2011 ident: CR15 article-title: Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons publication-title: Phys Rev E doi: 10.1103/PhysRevE.83.041908 – year: 2013 ident: CR14 publication-title: Bayesian data analysis doi: 10.1201/b16018 – volume: 112 start-page: 1697 issue: 520 year: 2017 end-page: 1707 ident: CR7 article-title: Network reconstruction from high-dimensional ordinary differential equations publication-title: J Am Stat Assoc doi: 10.1080/01621459.2016.1229197 – volume: 7 start-page: 23 issue: 1 year: 2019 ident: CR9 article-title: Probabilistic inference on noisy time series (PINTS) publication-title: J Open Res Softw doi: 10.5334/jors.252 – start-page: 75 year: 2006 end-page: 102 ident: CR17 article-title: The CMA evolution strategy: a comparing review publication-title: Towards a new evolutionary computation: advances in the estimation of distribution algorithms doi: 10.1007/3-540-32494-1_4 – ident: CR25 – volume: 63 start-page: 425 issue: 3 year: 2001 end-page: 464 ident: CR23 article-title: Bayesian calibration of computer models publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/1467-9868.00294 – volume: 153 start-page: e202112,923 issue: 10 year: 2021 ident: CR22 article-title: Electrophysiological characterization of the hERG R56Q LQTS variant and targeted rescue by the activator RPR260243 publication-title: J Gen Physiol doi: 10.1085/jgp.202112923 – volume: 12 issue: 4 year: 2020 ident: CR41 article-title: Calibration of ionic and cellular cardiac electrophysiology models publication-title: WIREs Syst Biol Med doi: 10.1002/wsbm.1482 – volume: 39 start-page: 57 issue: 1 year: 2006 end-page: 116 ident: CR35 article-title: Computational biology in the study of cardiac ion channels and cell electrophysiology publication-title: Q Rev Biophys doi: 10.1017/S0033583506004227 – ident: CR3 – volume: 585 start-page: 357 issue: 7825 year: 2020 end-page: 362 ident: CR18 article-title: Array programming with numpy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – ident: CR38 – volume: 320 start-page: 18 issue: 1 year: 2006 end-page: 36 ident: CR6 article-title: A manifesto for the equifinality thesis publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.07.007 – volume: 90 start-page: 8995 issue: C5 year: 1985 end-page: 9005 ident: CR43 article-title: Statistics for the evaluation and comparison of models publication-title: J Geophys Res Oceans doi: 10.1029/JC090iC05p08995 – year: 2001 ident: CR19 publication-title: Ion channels of excitable membranes – volume: 17 start-page: e1008,932 issue: 8 year: 2021 ident: CR33 article-title: Identification of structures for ion channel kinetic models publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008932 – year: 2005 ident: CR36 publication-title: Nonlinear regression. Wiley series in probability and statistics – volume: 378 start-page: 20190,349 issue: 2173 year: 2020 ident: CR30 article-title: Considering discrepancy when calibrating a mechanistic electrophysiology model publication-title: Philos Trans R Soc A: Math Phys Eng Sci doi: 10.1098/rsta.2019.0349 – ident: CR31 – start-page: 199 year: 1998 end-page: 213 ident: CR1 article-title: Information theory and an extension of the maximum likelihood principle publication-title: Selected papers of Hirotugu Akaike. Springer series in statistics doi: 10.1007/978-1-4612-1694-0_15 – volume: 12 start-page: e1005,234 issue: 12 year: 2016 ident: CR24 article-title: Sparse Regression Based Structure Learning of Stochastic Reaction Networks from Single Cell Snapshot Time Series publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005234 – volume: 378 start-page: 20190,348 issue: 2173 year: 2020 ident: CR29 article-title: Accounting for variability in ion current recordings using a mathematical model of artefacts in voltage-clamp experiments publication-title: Philos Trans R Soc A: Math Phys Eng Sci doi: 10.1098/rsta.2019.0348 – volume: 117 start-page: 2438 issue: 12 year: 2019 end-page: 2454 ident: CR28 article-title: Rapid characterization of hERG channel kinetics I: using an automated high-throughput system publication-title: Biophys J doi: 10.1016/j.bpj.2019.07.029 – volume: 367 start-page: 2161 issue: 1896 year: 2009 end-page: 2179 ident: CR12 article-title: Markov models for ion channels: versatility versus identifiability and speed publication-title: Philos Trans R Soc A: Math Phys Eng Sci doi: 10.1098/rsta.2008.0301 – volume: 34 start-page: 422 issue: 6 year: 2020 end-page: 430 ident: CR16 article-title: Modeling the transmission dynamics of COVID-19 epidemic: a systematic review publication-title: J Biomed Res doi: 10.7555/JBR.34.20200119 – volume: 594 start-page: 6833 issue: 23 year: 2016 end-page: 6847 ident: CR34 article-title: Uncertainty and variability in computational and mathematical models of cardiac physiology publication-title: J Physiol doi: 10.1113/JP271671 – volume: 82 start-page: 421 issue: 2 year: 2020 end-page: 444 ident: CR13 article-title: Model misspecification in approximate Bayesian computation: consequences and diagnostics publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/rssb.12356 – volume: 6 start-page: 67 year: 1972 end-page: 72 ident: CR21 article-title: On the solutions and the steady states of a master equation publication-title: J Stat Phys doi: 10.1007/BF01023679 – volume: 558 start-page: 351 issue: 111 year: 2023 ident: CR11 article-title: A Bayesian nonparametric method for detecting rapid changes in disease transmission publication-title: J Theor Biol doi: 10.1016/j.jtbi.2022.111351 – volume: 83 start-page: 908 issue: 041 year: 2011 ident: 1224_CR15 publication-title: Phys Rev E doi: 10.1103/PhysRevE.83.041908 – ident: 1224_CR3 doi: 10.1002/9780470316757 – volume: 117 start-page: 2420 issue: 12 year: 2019 ident: 1224_CR8 publication-title: Biophys J doi: 10.1016/j.bpj.2019.08.001 – volume: 34 start-page: 422 issue: 6 year: 2020 ident: 1224_CR16 publication-title: J Biomed Res doi: 10.7555/JBR.34.20200119 – volume: 367 start-page: 2161 issue: 1896 year: 2009 ident: 1224_CR12 publication-title: Philos Trans R Soc A: Math Phys Eng Sci doi: 10.1098/rsta.2008.0301 – volume: 594 start-page: 6833 issue: 23 year: 2016 ident: 1224_CR34 publication-title: J Physiol doi: 10.1113/JP271671 – volume: 320 start-page: 18 issue: 1 year: 2006 ident: 1224_CR6 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.07.007 – ident: 1224_CR38 – start-page: 75 volume-title: Towards a new evolutionary computation: advances in the estimation of distribution algorithms year: 2006 ident: 1224_CR17 doi: 10.1007/3-540-32494-1_4 – volume: 90 start-page: 8995 issue: C5 year: 1985 ident: 1224_CR43 publication-title: J Geophys Res Oceans doi: 10.1029/JC090iC05p08995 – volume: 25 start-page: 60 year: 2021 ident: 1224_CR42 publication-title: Curr Opin Syst Biol doi: 10.1016/j.coisb.2021.03.005 – volume: 39 start-page: 57 issue: 1 year: 2006 ident: 1224_CR35 publication-title: Q Rev Biophys doi: 10.1017/S0033583506004227 – ident: 1224_CR25 doi: 10.48550/arXiv.2210.01592 – volume: 585 start-page: 357 issue: 7825 year: 2020 ident: 1224_CR18 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 378 start-page: 20190,349 issue: 2173 year: 2020 ident: 1224_CR30 publication-title: Philos Trans R Soc A: Math Phys Eng Sci doi: 10.1098/rsta.2019.0349 – volume: 153 start-page: e202112,923 issue: 10 year: 2021 ident: 1224_CR22 publication-title: J Gen Physiol doi: 10.1085/jgp.202112923 – start-page: 199 volume-title: Selected papers of Hirotugu Akaike. Springer series in statistics year: 1998 ident: 1224_CR1 doi: 10.1007/978-1-4612-1694-0_15 – volume: 17 start-page: e1008,932 issue: 8 year: 2021 ident: 1224_CR33 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008932 – volume: 558 start-page: 351 issue: 111 year: 2023 ident: 1224_CR11 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2022.111351 – volume: 378 start-page: 20190,348 issue: 2173 year: 2020 ident: 1224_CR29 publication-title: Philos Trans R Soc A: Math Phys Eng Sci doi: 10.1098/rsta.2019.0348 – volume: 63 start-page: 425 issue: 3 year: 2001 ident: 1224_CR23 publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/1467-9868.00294 – volume: 7 start-page: 23 issue: 1 year: 2019 ident: 1224_CR9 publication-title: J Open Res Softw doi: 10.5334/jors.252 – volume: 596 start-page: 1813 issue: 10 year: 2018 ident: 1224_CR5 publication-title: J Physiol doi: 10.1113/JP275733 – ident: 1224_CR4 – volume: 502 start-page: 45 issue: 1 year: 1997 ident: 1224_CR40 publication-title: J Physiol doi: 10.1111/j.1469-7793.1997.045bl.x – volume: 94 start-page: 233 issue: 2 year: 2009 ident: 1224_CR2 publication-title: J Financ Econ doi: 10.1016/j.jfineco.2008.11.001 – volume: 6 start-page: 67 year: 1972 ident: 1224_CR21 publication-title: J Stat Phys doi: 10.1007/BF01023679 – ident: 1224_CR31 doi: 10.1101/2022.11.01.514669 – volume: 117 start-page: 2455 issue: 12 year: 2019 ident: 1224_CR27 publication-title: Biophys J doi: 10.1016/j.bpj.2019.07.030 – volume: 286 start-page: H1573 issue: 4 year: 2004 ident: 1224_CR39 publication-title: Am J Physiol Heart Circul Physiol doi: 10.1152/ajpheart.00794.2003 – volume-title: Ion channels of excitable membranes year: 2001 ident: 1224_CR19 – volume: 12 start-page: e1005,234 issue: 12 year: 2016 ident: 1224_CR24 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005234 – volume-title: Uncertainty quantification: theory, implementation, and applications year: 2013 ident: 1224_CR37 doi: 10.1137/1.9781611973228 – volume: 112 start-page: 1697 issue: 520 year: 2017 ident: 1224_CR7 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2016.1229197 – volume: 10 start-page: e004,628 issue: 2 year: 2017 ident: 1224_CR32 publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.116.004628 – volume: 12 start-page: 1166 year: 2021 ident: 1224_CR26 publication-title: Front Physiol doi: 10.3389/fphys.2021.708944 – volume-title: Bayesian data analysis year: 2013 ident: 1224_CR14 doi: 10.1201/b16018 – volume: 82 start-page: 421 issue: 2 year: 2020 ident: 1224_CR13 publication-title: J R Stat Soc Ser B (Stat Methodol) doi: 10.1111/rssb.12356 – volume: 12 issue: 4 year: 2020 ident: 1224_CR41 publication-title: WIREs Syst Biol Med doi: 10.1002/wsbm.1482 – volume: 96 start-page: 49 year: 2016 ident: 1224_CR20 publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2015.11.018 – volume-title: Nonlinear regression. Wiley series in probability and statistics year: 2005 ident: 1224_CR36 – ident: 1224_CR10 – volume: 117 start-page: 2438 issue: 12 year: 2019 ident: 1224_CR28 publication-title: Biophys J doi: 10.1016/j.bpj.2019.07.029 |
| SSID | ssj0007939 |
| Score | 2.4570782 |
| Snippet | When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2 |
| SubjectTerms | Cell Biology Electrophysiology Estimates Industrial applications Ion Channels Kinetics Life Sciences Mathematical and Computational Biology Mathematical Concepts Mathematical models Mathematics Mathematics and Statistics Models, Biological Models, Theoretical Original Article Parameter estimation Pharmacovigilance Potassium channels Predictions Product safety Random noise Random variables Uncertainty |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6iBSQ4sJQtUJCRuJVIcWwnNrcRMxUIURVoq94i23GkkaaZapJBmn_Ez-TZWQZUQKKnHOK8WHlr_JYP4I1NSk6TSsWidDzmQshYizyNmRVGljLNtdIBbCI_OpLn5-q4bwprhmr3ISUZLPW22S0oJ_qYOKSD4mwHbqK7kx6w4eu3s9H-osR1Qa9CXUeH1bfK_JnG7-7oSox5JT8a3M7h_ett-AHc68NMMunk4iHccPUe3O6AJzd7cPfzOK21eQQ_ZheX8zAqhHxZ6656KDCMLCtyvPKpHG8UySkKSCggaDdkunakXRIPpbYg0zkaH_RraKiJ2ZCTHnaC-ENeomsyqxt3YRbO05v9AilApqF-pHlHJjWZbFPpnvJHvPjWhxrpf8JQ2G_1MZwezk7ef4h7BIfYcqraWFeCpxVjGMYp7pO8xrpE6VQayiiuyDKrSq5FaqrKR4ZcVpyVSWpQRDKXW_YEdutl7Z4BETbRhgonmbUcf7O0qXRuaYJLtcpVGQEdGFnYfry5R9lYFNvBzJ4fBfKjCPwosggOxmcuu-Ee_1y9P8hH0St6U7AwTEBRpSJ4Pd5GFfV5F1275bop8J-WSSa5SCN42snV-DqWY4QuKY3g7SBEW-J_38vz_1v-Au6k-Pm7o6N92G1Xa_cSbtnv7bxZvQrq8xOl7RNh priority: 102 providerName: Springer Nature |
| Title | Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics |
| URI | https://link.springer.com/article/10.1007/s11538-023-01224-6 https://www.ncbi.nlm.nih.gov/pubmed/37999811 https://www.proquest.com/docview/3254319199 https://www.proquest.com/docview/2893838452 |
| Volume | 86 |
| WOSCitedRecordID | wos001105013900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1522-9602 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1522-9602 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1522-9602 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1522-9602 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: 7X7 dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1522-9602 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1522-9602 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1522-9602 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1522-9602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYBhI8cBkwCqMyEm9gEcd2bfOCCu0EmlaVXVC1l8hxHKlSl3ZNitR_xM_k2ElT0MReeDlVVde16u9c4nN8PoTe2ijjNMo1EZnjhAuhiBEyJsyKVGUqlkabQDYhRyM1mehxc-BWNmWVG5sYDHU2t_6M_AMLt7Y11frT4pp41iifXW0oNHbQHkQ21Jd0ncTj1hID9urwV4PWg-tqLs3UV-eCqoPHIiG5RHp_O6Yb0eaNTGlwQEeP_nfpj9HDJvTE_RorT9AdV-yjezUZ5XofPThpO7iWT9Gv4dViGtqH4O8rU1cUhU3E8xyPlz694w0lvgDQhKKCao0HK4erOfb0ajM8mIJBAl8Hxhuna3zeUFFgf_CLTYGHRemu0pnz8w3_oBnAg1BTUn7E_QL3t-l1P_M3ePHXIQqY_xjCY7_UZ-jiaHj-5StpWB2I5VRXxOSCxzljENpp7hO_qXWRNrFKKaMwotezOuNGxGme-2iRq5yzLIpTgE3PScueo91iXrgXCAsbmZQKp5i1HB69TJobaWkEQ42WOusgutnSxDYtzz3zxizZNmv2MEgABkmAQdLroHftdxZ1w49bRx9utjxplL9MtvvdQW_aj0FtfS7GFG6-KhN4zmWKKS7iDjqoEdb-HJMQtStKO-j9BnLbyf-9lpe3r-UVuh_D310fHx2i3Wq5cq_RXfuzmpbLLtqRExmk6qK9z8PR-BTeHUvSDSrlpazlGcixuAR5evbjN4uwJcE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tCwg48FhegQWMBKclIrGdh5EQqmhXW3W3KlJX2ltwHEeq1E1K04L6jzjxGxk7j4JW7G0PnHKoO7GczzNjz-MDeKO8jPteLtwg09zlQRC7Moioy1SQxllMIymkJZuIxuP47ExMduBXWwtj0ipbnWgVdVYqc0f-ntmqbeEL8WnxzTWsUSa62lJo1LAY6c0PPLJVH4d9_L5vKT0cTD8fuQ2rgKu4L1auzANOc8bQtRDcBB5TpT0haZz6zMcRYahExmVA0zw33gqPc84yj6Y47VBHiqHca3Cdm85iJlWQTjrNj1iv3W2BWgZNZVOkU5fqWdWCFtK1wSw3_NsQXvBuL0RmrcE7vPe_LdV9uNu41qRX74UHsKOLPbhZk21u9uDOSdehtnoIPwfni5ltj0K-rGWdMWVBSsqcTJYmfGUMATnFTWGTJlYb0l9rsiqJoY-bk_4MFS7acjROJN2QaUO1QczFNpEFGRSVPk_n2sgb_EGjQPo2Z6b6QHoF6W3TB4zkIT5MuUeB8kfo_pupPoLTK1m0x7BblIV-CiRQnkz9QMdMKY5HS5nmMlK-h0OliETmgN9CKFFNS3fDLDJPts2oDewShF1iYZeEDhx0_1nUDU0uHb3fQixplFuVbPHlwOvuZ1RLJtYkC12uqwTP8SxmMQ-oA09qRHevYxGeSmLfd-BdC_Gt8H_P5dnlc3kFt46mJ8fJ8XA8eg63KS59fVW2D7ur5Vq_gBvq-2pWLV_aTUvg61VD_zfIwXfZ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3bbtMw9AjGRfDAZdwCA4zEG4sWx3Zi81bRVkyDqogN7S1yHEeq1KVVkyL1j_hMjp00HRogIZ7ykJMTS-fucwN4a6KC06hUoSgsD7kQMtQijUNmRC4LGadaab9sIp1M5Pm5ml7q4vfV7tuUZNvT4KY0Vc3RsiiPdo1vXlDR3oQ-NRQm1-EGd4X0Ll7_-q3Xxch9rQOsUO7ReHVtM7_H8atpuuJvXsmVehM0vv__h38A9zr3kwxafnkI12y1D7fahZSbfbj7uZ_iWj-CH6OL5cyPECFf1rqtKvKEJIuSTFcuxeOUJTlDxvGFBc2GDNeWNAviVqzNyXCGSgntHSpwkm_IabeOgrjLX6IrMqpqe5HPrcM3urRqgAx9XUn9ngwqMtil2B3mY3y4logK8Z-gi-yO-hjOxqPTDx_DbrNDaDhVTahLweOSMXTvFHfJ39zYSOlY5pRRhEgSowquRZyXpfMYuSw5K6I4R9ZJbGrYE9irFpV9BkSYSOdUWMmM4Rh-6bzUqaERgmqVqiIAuiVqZrqx5277xjzbDWx29MiQHpmnR5YE8K7_ZtkO_fgr9MGWV7JOAdQZ80MGFFUqgDf9axRdl4_RlV2s6wxjXSaZ5CIO4GnLY_3vWIqeu6Q0gMMtQ-2Q__ksz_8N_DXcng7H2afjyckLuBMjJdrbpQPYa1Zr-xJumu_NrF698lL1E6UBHyk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+Quantification+of+Predictive+Uncertainty+Due+to+Model+Discrepancy+by+Training+with+an+Ensemble+of+Experimental+Designs%3A+An+Application+to+Ion+Channel+Kinetics&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Shuttleworth%2C+Joseph+G.&rft.au=Lei%2C+Chon+Lok&rft.au=Whittaker%2C+Dominic+G.&rft.au=Windley%2C+Monique+J.&rft.date=2024-01-01&rft.issn=0092-8240&rft.eissn=1522-9602&rft.volume=86&rft.issue=1&rft_id=info:doi/10.1007%2Fs11538-023-01224-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11538_023_01224_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon |