Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics

When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepa...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of mathematical biology Vol. 86; no. 1; p. 2
Main Authors: Shuttleworth, Joseph G., Lei, Chon Lok, Whittaker, Dominic G., Windley, Monique J., Hill, Adam P., Preston, Simon P., Mirams, Gary R.
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2024
Springer Nature B.V
Subjects:
ISSN:0092-8240, 1522-9602, 1522-9602
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises—models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures ( protocols ) are used to produce data used to train models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments that investigate the properties of hERG potassium channels. Here, ‘information-rich’ protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. In this case, we simulate data with one model and fit it with a different (discrepant) one. For any individual experimental protocol, parameter estimates vary little under repeated samples from the assumed additive independent Gaussian noise model. Yet parameter sets arising from the same model applied to different experiments conflict—highlighting model discrepancy. Our methods will help select more suitable ion channel models for future studies, and will be widely applicable to a range of biological modelling problems.
AbstractList When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises—models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures ( protocols ) are used to produce data used to train models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments that investigate the properties of hERG potassium channels. Here, ‘information-rich’ protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. In this case, we simulate data with one model and fit it with a different (discrepant) one. For any individual experimental protocol, parameter estimates vary little under repeated samples from the assumed additive independent Gaussian noise model. Yet parameter sets arising from the same model applied to different experiments conflict—highlighting model discrepancy. Our methods will help select more suitable ion channel models for future studies, and will be widely applicable to a range of biological modelling problems.
When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises-models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures (protocols) are used to produce data used to train models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments that investigate the properties of hERG potassium channels. Here, 'information-rich' protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. In this case, we simulate data with one model and fit it with a different (discrepant) one. For any individual experimental protocol, parameter estimates vary little under repeated samples from the assumed additive independent Gaussian noise model. Yet parameter sets arising from the same model applied to different experiments conflict-highlighting model discrepancy. Our methods will help select more suitable ion channel models for future studies, and will be widely applicable to a range of biological modelling problems.
When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises-models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures (protocols) are used to produce data used to train models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments that investigate the properties of hERG potassium channels. Here, 'information-rich' protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. In this case, we simulate data with one model and fit it with a different (discrepant) one. For any individual experimental protocol, parameter estimates vary little under repeated samples from the assumed additive independent Gaussian noise model. Yet parameter sets arising from the same model applied to different experiments conflict-highlighting model discrepancy. Our methods will help select more suitable ion channel models for future studies, and will be widely applicable to a range of biological modelling problems.When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises-models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions. Experimentalists and modellers must choose which experimental procedures (protocols) are used to produce data used to train models. We propose to characterise uncertainty owing to model discrepancy with an ensemble of parameter sets, each of which results from training to data from a different protocol. The variability in predictions from this ensemble provides an empirical estimate of predictive uncertainty owing to model discrepancy, even for unseen protocols. We use the example of electrophysiology experiments that investigate the properties of hERG potassium channels. Here, 'information-rich' protocols allow mathematical models to be trained using numerous short experiments performed on the same cell. In this case, we simulate data with one model and fit it with a different (discrepant) one. For any individual experimental protocol, parameter estimates vary little under repeated samples from the assumed additive independent Gaussian noise model. Yet parameter sets arising from the same model applied to different experiments conflict-highlighting model discrepancy. Our methods will help select more suitable ion channel models for future studies, and will be widely applicable to a range of biological modelling problems.
ArticleNumber 2
Author Whittaker, Dominic G.
Mirams, Gary R.
Hill, Adam P.
Windley, Monique J.
Lei, Chon Lok
Preston, Simon P.
Shuttleworth, Joseph G.
Author_xml – sequence: 1
  givenname: Joseph G.
  orcidid: 0000-0003-4884-6526
  surname: Shuttleworth
  fullname: Shuttleworth, Joseph G.
  organization: Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham
– sequence: 2
  givenname: Chon Lok
  orcidid: 0000-0003-0904-554X
  surname: Lei
  fullname: Lei, Chon Lok
  organization: Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau
– sequence: 3
  givenname: Dominic G.
  orcidid: 0000-0002-2757-5491
  surname: Whittaker
  fullname: Whittaker, Dominic G.
  organization: Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, 4 Systems Modeling & Translational Biology
– sequence: 4
  givenname: Monique J.
  orcidid: 0000-0001-6829-3856
  surname: Windley
  fullname: Windley, Monique J.
  organization: Computational Cardiology Laboratory, Victor Chang Cardiac Research Institute, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales
– sequence: 5
  givenname: Adam P.
  orcidid: 0000-0002-6403-1282
  surname: Hill
  fullname: Hill, Adam P.
  organization: Computational Cardiology Laboratory, Victor Chang Cardiac Research Institute, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales
– sequence: 6
  givenname: Simon P.
  orcidid: 0000-0002-1910-4227
  surname: Preston
  fullname: Preston, Simon P.
  organization: Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham
– sequence: 7
  givenname: Gary R.
  orcidid: 0000-0002-4569-4312
  surname: Mirams
  fullname: Mirams, Gary R.
  email: gary.mirams@nottingham.ac.uk
  organization: Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37999811$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS3Uik4LL8ACWWLTTaj_konZjWYGqCgCpHZtOc7N1FXmJtgOMG_EY-J2OkLqoqvrxXfOvT7nlBzhgEDIG87ec8bmF5HzUtYFE7JgXAhVVC_IjJdCFLpi4ojMGNOiqIViJ-Q0xjuWRVrql-REzrXWNecz8ne9HX3wzvb0x2Qx-S6_kx-QDh39HqD1LvlfQG_QQUjWY9rR1QQ0DfTr0EJPVz66AKNFt6PNjl6HzHjc0N8-3VKLdI0Rtk0P937rPyMEvwVMed0Kot9g_EAXSBfj2B_2ZufLPJa3FjH7f_EIybv4ihx3to_w-nGekZuP6-vl5-Lq26fL5eKqcIrrVNiuVKKTUpdcKyZU2Thg2oq64ZJnoqqcbpUtRdN1ildS1Z2SLRPN3OoK5k6ekfO97xiGnxPEZLb5h9D3FmGYohG1lrWsVSky-u4JejdMAfN1RopSSa651pl6-0hNzRZaM-YEbNiZQwcZqPeAC0OMATrjfHrIIuUwe8OZua_b7Os2uW7zULepslQ8kR7cnxXJvShmGDcQ_p_9jOofuAS9KA
CitedBy_id crossref_primary_10_1016_j_bpj_2024_10_018
crossref_primary_10_12688_wellcomeopenres_23319_1
crossref_primary_10_1016_j_agsy_2024_104147
crossref_primary_10_12688_wellcomeopenres_23319_2
crossref_primary_10_1371_journal_pcbi_1013319
crossref_primary_10_1016_j_techfore_2025_124077
crossref_primary_10_1098_rsta_2024_0227
crossref_primary_10_1088_1478_3975_adda85
crossref_primary_10_1098_rsta_2024_0232
crossref_primary_10_1098_rsos_240733
crossref_primary_10_1098_rsta_2024_0211
Cites_doi 10.1016/j.yjmcc.2015.11.018
10.1161/CIRCEP.116.004628
10.1016/j.jfineco.2008.11.001
10.3389/fphys.2021.708944
10.1016/j.coisb.2021.03.005
10.1111/j.1469-7793.1997.045bl.x
10.1137/1.9781611973228
10.1016/j.bpj.2019.07.030
10.1152/ajpheart.00794.2003
10.1113/JP275733
10.1016/j.bpj.2019.08.001
10.1103/PhysRevE.83.041908
10.1201/b16018
10.1080/01621459.2016.1229197
10.5334/jors.252
10.1007/3-540-32494-1_4
10.1111/1467-9868.00294
10.1085/jgp.202112923
10.1002/wsbm.1482
10.1017/S0033583506004227
10.1038/s41586-020-2649-2
10.1016/j.jhydrol.2005.07.007
10.1029/JC090iC05p08995
10.1371/journal.pcbi.1008932
10.1098/rsta.2019.0349
10.1007/978-1-4612-1694-0_15
10.1371/journal.pcbi.1005234
10.1098/rsta.2019.0348
10.1016/j.bpj.2019.07.029
10.1098/rsta.2008.0301
10.7555/JBR.34.20200119
10.1113/JP271671
10.1111/rssb.12356
10.1007/BF01023679
10.1016/j.jtbi.2022.111351
10.1002/9780470316757
10.48550/arXiv.2210.01592
10.1101/2022.11.01.514669
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7SS
7TK
7X7
7XB
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1007/s11538-023-01224-6
DatabaseName Springer Nature Link
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Computer Science Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1522-9602
ExternalDocumentID 37999811
10_1007_s11538_023_01224_6
Genre Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/R014604/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Wellcome Trust
  grantid: 212203/Z/18/Z
  funderid: http://dx.doi.org/10.13039/100010269
– fundername: Science and Technology Development Fund
  grantid: 0048/2022/A
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 212203/Z/18/Z
GroupedDBID ---
--K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06D
0R~
0VY
199
1B1
1N0
1RT
1~5
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3O-
3V.
4.4
406
408
40D
40E
4G.
53G
5GY
5RE
5VS
67Z
6J9
6NX
7-5
71M
78A
7X7
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AACTN
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALCJ
AALRI
AANZL
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMAC
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACRPL
ACZOJ
ADBBV
ADFGL
ADHIR
ADINQ
ADKNI
ADKPE
ADMUD
ADNMO
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHHHB
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AITUG
AJBLW
AJRNO
AJZVZ
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DM4
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FIRID
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-2
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HLV
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K6V
K7-
KDC
KOV
L6V
LG5
LK8
LLZTM
LW8
M0L
M1P
M4Y
M7P
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O-L
O9-
O93
O9G
O9I
O9J
OZT
P19
P2P
P62
P9R
PF0
PKN
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
R2-
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAB
SAP
SCLPG
SDD
SDH
SDM
SEW
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSZ
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
WUQ
XPP
XSW
YLTOR
Z45
Z7U
Z83
ZGI
ZMT
ZMTXR
ZWQNP
ZXP
~A9
~EX
~KM
9DU
AAPKM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIGII
AIXLP
AMVHM
ATHPR
AYFIA
AZQEC
CITATION
DWQXO
GNUQQ
M2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
7XB
8FK
JQ2
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c419t-af542f33951940245bce09a28b13141966c9d4a52bff416348f43d02b7a96e7c3
IEDL.DBID M2P
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001105013900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0092-8240
1522-9602
IngestDate Thu Oct 02 16:24:34 EDT 2025
Sat Nov 29 14:46:40 EST 2025
Mon Jul 21 05:56:08 EDT 2025
Sat Nov 29 03:48:45 EST 2025
Tue Nov 18 22:23:27 EST 2025
Fri Feb 21 02:40:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Uncertainty quantification
Discrepancy
Mathematical model
Ion channel
Experimental design
Misspecification
Language English
License 2023. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-af542f33951940245bce09a28b13141966c9d4a52bff416348f43d02b7a96e7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0904-554X
0000-0001-6829-3856
0000-0003-4884-6526
0000-0002-1910-4227
0000-0002-2757-5491
0000-0002-4569-4312
0000-0002-6403-1282
OpenAccessLink https://link.springer.com/10.1007/s11538-023-01224-6
PMID 37999811
PQID 3254319199
PQPubID 55445
ParticipantIDs proquest_miscellaneous_2893838452
proquest_journals_3254319199
pubmed_primary_37999811
crossref_citationtrail_10_1007_s11538_023_01224_6
crossref_primary_10_1007_s11538_023_01224_6
springer_journals_10_1007_s11538_023_01224_6
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle A journal devoted to research at the interface of the life and mathematical sciences
PublicationTitle Bulletin of mathematical biology
PublicationTitleAbbrev Bull Math Biol
PublicationTitleAlternate Bull Math Biol
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Lei, Clerx, Beattie (CR27) 2019; 117
Rudy, Silva (CR35) 2006; 39
Harris, Millman, Van Der Walt (CR18) 2020; 585
Kemp, Whittaker, Venkateshappa (CR22) 2021; 153
ten Tusscher, Noble, Noble (CR39) 2004; 286
Lei, Ghosh, Whittaker (CR30) 2020; 378
Willmott, Ackleson, Davis (CR43) 1985; 90
Creswell, Robinson, Gavaghan (CR11) 2023; 558
Whittaker, Clerx, Lei (CR41) 2020; 12
CR38
Beven (CR6) 2006; 320
Lei, Mirams (CR26) 2021; 12
Guan, Wei, Zhao (CR16) 2020; 34
Akaike, Parzen, Tanabe, Kitagawa (CR1) 1998
Anderson, Ghysels, Juergens (CR2) 2009; 94
Clerx, Beattie, Gavaghan (CR8) 2019; 117
Klimovskaia, Ganscha, Claassen (CR24) 2016; 12
CR10
Clerx, Robinson, Lambert (CR9) 2019; 7
CR31
Li, Dutta, Sheng (CR32) 2017; 10
Beattie, Hill, Bardenet (CR5) 2018; 596
Mangold, Wang, Johnson (CR33) 2021; 17
Frazier, Robert, Rousseau (CR13) 2020; 82
Fink, Noble (CR12) 2009; 367
Gelman, Carlin, Stern (CR14) 2013
Seber, Wild (CR36) 2005
Lei, Clerx, Whittaker (CR29) 2020; 378
CR4
Chen, Shojaie, Witten (CR7) 2017; 112
CR3
Kennedy, O’Hagan (CR23) 2001; 63
Hille (CR19) 2001
Smith (CR37) 2013
Goldwyn, Imennov, Famulare (CR15) 2011; 83
CR25
Wieland, Hauber, Rosenblatt (CR42) 2021; 25
Lei, Clerx, Gavaghan (CR28) 2019; 117
Johnstone, Chang, Bardenet (CR20) 2016; 96
Keizer (CR21) 1972; 6
Mirams, Pathmanathan, Gray (CR34) 2016; 594
Hansen, Lozano, Larrañaga, Inza (CR17) 2006
Wang, Liu, Morales (CR40) 1997; 502
G Seber (1224_CR36) 2005
K Beven (1224_CR6) 2006; 320
CL Lei (1224_CR26) 2021; 12
CL Lei (1224_CR29) 2020; 378
1224_CR31
CL Lei (1224_CR28) 2019; 117
H Akaike (1224_CR1) 1998
1224_CR10
S Wang (1224_CR40) 1997; 502
KE Mangold (1224_CR33) 2021; 17
A Gelman (1224_CR14) 2013
S Chen (1224_CR7) 2017; 112
J Guan (1224_CR16) 2020; 34
N Hansen (1224_CR17) 2006
1224_CR38
JH Goldwyn (1224_CR15) 2011; 83
EW Anderson (1224_CR2) 2009; 94
FG Wieland (1224_CR42) 2021; 25
MC Kennedy (1224_CR23) 2001; 63
J Keizer (1224_CR21) 1972; 6
M Clerx (1224_CR8) 2019; 117
A Klimovskaia (1224_CR24) 2016; 12
KA Beattie (1224_CR5) 2018; 596
GR Mirams (1224_CR34) 2016; 594
DT Frazier (1224_CR13) 2020; 82
Y Rudy (1224_CR35) 2006; 39
1224_CR3
M Fink (1224_CR12) 2009; 367
1224_CR4
CL Lei (1224_CR30) 2020; 378
B Hille (1224_CR19) 2001
R Creswell (1224_CR11) 2023; 558
M Clerx (1224_CR9) 2019; 7
CR Harris (1224_CR18) 2020; 585
1224_CR25
DG Whittaker (1224_CR41) 2020; 12
CJ Willmott (1224_CR43) 1985; 90
JM Kemp (1224_CR22) 2021; 153
CL Lei (1224_CR27) 2019; 117
Z Li (1224_CR32) 2017; 10
RC Smith (1224_CR37) 2013
KHWJ ten Tusscher (1224_CR39) 2004; 286
RH Johnstone (1224_CR20) 2016; 96
References_xml – volume: 96
  start-page: 49
  year: 2016
  end-page: 62
  ident: CR20
  article-title: Uncertainty and variability in models of the cardiac action potential: can we build trustworthy models?
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2015.11.018
– volume: 10
  start-page: e004,628
  issue: 2
  year: 2017
  ident: CR32
  article-title: Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel-Drug Binding Kinetics and Multichannel Pharmacology
  publication-title: Circ Arrhythm Electrophysiol
  doi: 10.1161/CIRCEP.116.004628
– volume: 94
  start-page: 233
  issue: 2
  year: 2009
  end-page: 263
  ident: CR2
  article-title: The impact of risk and uncertainty on expected returns
  publication-title: J Financ Econ
  doi: 10.1016/j.jfineco.2008.11.001
– volume: 12
  start-page: 1166
  year: 2021
  ident: CR26
  article-title: Neural network differential equations for ion channel modelling
  publication-title: Front Physiol
  doi: 10.3389/fphys.2021.708944
– volume: 25
  start-page: 60
  year: 2021
  end-page: 69
  ident: CR42
  article-title: On structural and practical identifiability
  publication-title: Curr Opin Syst Biol
  doi: 10.1016/j.coisb.2021.03.005
– ident: CR4
– volume: 502
  start-page: 45
  issue: 1
  year: 1997
  end-page: 60
  ident: CR40
  article-title: A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.1997.045bl.x
– year: 2013
  ident: CR37
  publication-title: Uncertainty quantification: theory, implementation, and applications
  doi: 10.1137/1.9781611973228
– volume: 117
  start-page: 2455
  issue: 12
  year: 2019
  end-page: 2470
  ident: CR27
  article-title: Rapid characterization of hERG channel kinetics II: temperature dependence
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2019.07.030
– volume: 286
  start-page: H1573
  issue: 4
  year: 2004
  end-page: H1589
  ident: CR39
  article-title: A model for human ventricular tissue
  publication-title: Am J Physiol Heart Circul Physiol
  doi: 10.1152/ajpheart.00794.2003
– volume: 596
  start-page: 1813
  issue: 10
  year: 2018
  end-page: 1828
  ident: CR5
  article-title: Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics
  publication-title: J Physiol
  doi: 10.1113/JP275733
– volume: 117
  start-page: 2420
  issue: 12
  year: 2019
  end-page: 2437
  ident: CR8
  article-title: Four ways to fit an ion channel model
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2019.08.001
– ident: CR10
– volume: 83
  start-page: 908
  issue: 041
  year: 2011
  ident: CR15
  article-title: Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.83.041908
– year: 2013
  ident: CR14
  publication-title: Bayesian data analysis
  doi: 10.1201/b16018
– volume: 112
  start-page: 1697
  issue: 520
  year: 2017
  end-page: 1707
  ident: CR7
  article-title: Network reconstruction from high-dimensional ordinary differential equations
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2016.1229197
– volume: 7
  start-page: 23
  issue: 1
  year: 2019
  ident: CR9
  article-title: Probabilistic inference on noisy time series (PINTS)
  publication-title: J Open Res Softw
  doi: 10.5334/jors.252
– start-page: 75
  year: 2006
  end-page: 102
  ident: CR17
  article-title: The CMA evolution strategy: a comparing review
  publication-title: Towards a new evolutionary computation: advances in the estimation of distribution algorithms
  doi: 10.1007/3-540-32494-1_4
– ident: CR25
– volume: 63
  start-page: 425
  issue: 3
  year: 2001
  end-page: 464
  ident: CR23
  article-title: Bayesian calibration of computer models
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/1467-9868.00294
– volume: 153
  start-page: e202112,923
  issue: 10
  year: 2021
  ident: CR22
  article-title: Electrophysiological characterization of the hERG R56Q LQTS variant and targeted rescue by the activator RPR260243
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.202112923
– volume: 12
  issue: 4
  year: 2020
  ident: CR41
  article-title: Calibration of ionic and cellular cardiac electrophysiology models
  publication-title: WIREs Syst Biol Med
  doi: 10.1002/wsbm.1482
– volume: 39
  start-page: 57
  issue: 1
  year: 2006
  end-page: 116
  ident: CR35
  article-title: Computational biology in the study of cardiac ion channels and cell electrophysiology
  publication-title: Q Rev Biophys
  doi: 10.1017/S0033583506004227
– ident: CR3
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  end-page: 362
  ident: CR18
  article-title: Array programming with numpy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: CR38
– volume: 320
  start-page: 18
  issue: 1
  year: 2006
  end-page: 36
  ident: CR6
  article-title: A manifesto for the equifinality thesis
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.07.007
– volume: 90
  start-page: 8995
  issue: C5
  year: 1985
  end-page: 9005
  ident: CR43
  article-title: Statistics for the evaluation and comparison of models
  publication-title: J Geophys Res Oceans
  doi: 10.1029/JC090iC05p08995
– year: 2001
  ident: CR19
  publication-title: Ion channels of excitable membranes
– volume: 17
  start-page: e1008,932
  issue: 8
  year: 2021
  ident: CR33
  article-title: Identification of structures for ion channel kinetic models
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008932
– year: 2005
  ident: CR36
  publication-title: Nonlinear regression. Wiley series in probability and statistics
– volume: 378
  start-page: 20190,349
  issue: 2173
  year: 2020
  ident: CR30
  article-title: Considering discrepancy when calibrating a mechanistic electrophysiology model
  publication-title: Philos Trans R Soc A: Math Phys Eng Sci
  doi: 10.1098/rsta.2019.0349
– ident: CR31
– start-page: 199
  year: 1998
  end-page: 213
  ident: CR1
  article-title: Information theory and an extension of the maximum likelihood principle
  publication-title: Selected papers of Hirotugu Akaike. Springer series in statistics
  doi: 10.1007/978-1-4612-1694-0_15
– volume: 12
  start-page: e1005,234
  issue: 12
  year: 2016
  ident: CR24
  article-title: Sparse Regression Based Structure Learning of Stochastic Reaction Networks from Single Cell Snapshot Time Series
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005234
– volume: 378
  start-page: 20190,348
  issue: 2173
  year: 2020
  ident: CR29
  article-title: Accounting for variability in ion current recordings using a mathematical model of artefacts in voltage-clamp experiments
  publication-title: Philos Trans R Soc A: Math Phys Eng Sci
  doi: 10.1098/rsta.2019.0348
– volume: 117
  start-page: 2438
  issue: 12
  year: 2019
  end-page: 2454
  ident: CR28
  article-title: Rapid characterization of hERG channel kinetics I: using an automated high-throughput system
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2019.07.029
– volume: 367
  start-page: 2161
  issue: 1896
  year: 2009
  end-page: 2179
  ident: CR12
  article-title: Markov models for ion channels: versatility versus identifiability and speed
  publication-title: Philos Trans R Soc A: Math Phys Eng Sci
  doi: 10.1098/rsta.2008.0301
– volume: 34
  start-page: 422
  issue: 6
  year: 2020
  end-page: 430
  ident: CR16
  article-title: Modeling the transmission dynamics of COVID-19 epidemic: a systematic review
  publication-title: J Biomed Res
  doi: 10.7555/JBR.34.20200119
– volume: 594
  start-page: 6833
  issue: 23
  year: 2016
  end-page: 6847
  ident: CR34
  article-title: Uncertainty and variability in computational and mathematical models of cardiac physiology
  publication-title: J Physiol
  doi: 10.1113/JP271671
– volume: 82
  start-page: 421
  issue: 2
  year: 2020
  end-page: 444
  ident: CR13
  article-title: Model misspecification in approximate Bayesian computation: consequences and diagnostics
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/rssb.12356
– volume: 6
  start-page: 67
  year: 1972
  end-page: 72
  ident: CR21
  article-title: On the solutions and the steady states of a master equation
  publication-title: J Stat Phys
  doi: 10.1007/BF01023679
– volume: 558
  start-page: 351
  issue: 111
  year: 2023
  ident: CR11
  article-title: A Bayesian nonparametric method for detecting rapid changes in disease transmission
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2022.111351
– volume: 83
  start-page: 908
  issue: 041
  year: 2011
  ident: 1224_CR15
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.83.041908
– ident: 1224_CR3
  doi: 10.1002/9780470316757
– volume: 117
  start-page: 2420
  issue: 12
  year: 2019
  ident: 1224_CR8
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2019.08.001
– volume: 34
  start-page: 422
  issue: 6
  year: 2020
  ident: 1224_CR16
  publication-title: J Biomed Res
  doi: 10.7555/JBR.34.20200119
– volume: 367
  start-page: 2161
  issue: 1896
  year: 2009
  ident: 1224_CR12
  publication-title: Philos Trans R Soc A: Math Phys Eng Sci
  doi: 10.1098/rsta.2008.0301
– volume: 594
  start-page: 6833
  issue: 23
  year: 2016
  ident: 1224_CR34
  publication-title: J Physiol
  doi: 10.1113/JP271671
– volume: 320
  start-page: 18
  issue: 1
  year: 2006
  ident: 1224_CR6
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.07.007
– ident: 1224_CR38
– start-page: 75
  volume-title: Towards a new evolutionary computation: advances in the estimation of distribution algorithms
  year: 2006
  ident: 1224_CR17
  doi: 10.1007/3-540-32494-1_4
– volume: 90
  start-page: 8995
  issue: C5
  year: 1985
  ident: 1224_CR43
  publication-title: J Geophys Res Oceans
  doi: 10.1029/JC090iC05p08995
– volume: 25
  start-page: 60
  year: 2021
  ident: 1224_CR42
  publication-title: Curr Opin Syst Biol
  doi: 10.1016/j.coisb.2021.03.005
– volume: 39
  start-page: 57
  issue: 1
  year: 2006
  ident: 1224_CR35
  publication-title: Q Rev Biophys
  doi: 10.1017/S0033583506004227
– ident: 1224_CR25
  doi: 10.48550/arXiv.2210.01592
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 1224_CR18
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 378
  start-page: 20190,349
  issue: 2173
  year: 2020
  ident: 1224_CR30
  publication-title: Philos Trans R Soc A: Math Phys Eng Sci
  doi: 10.1098/rsta.2019.0349
– volume: 153
  start-page: e202112,923
  issue: 10
  year: 2021
  ident: 1224_CR22
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.202112923
– start-page: 199
  volume-title: Selected papers of Hirotugu Akaike. Springer series in statistics
  year: 1998
  ident: 1224_CR1
  doi: 10.1007/978-1-4612-1694-0_15
– volume: 17
  start-page: e1008,932
  issue: 8
  year: 2021
  ident: 1224_CR33
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008932
– volume: 558
  start-page: 351
  issue: 111
  year: 2023
  ident: 1224_CR11
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2022.111351
– volume: 378
  start-page: 20190,348
  issue: 2173
  year: 2020
  ident: 1224_CR29
  publication-title: Philos Trans R Soc A: Math Phys Eng Sci
  doi: 10.1098/rsta.2019.0348
– volume: 63
  start-page: 425
  issue: 3
  year: 2001
  ident: 1224_CR23
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/1467-9868.00294
– volume: 7
  start-page: 23
  issue: 1
  year: 2019
  ident: 1224_CR9
  publication-title: J Open Res Softw
  doi: 10.5334/jors.252
– volume: 596
  start-page: 1813
  issue: 10
  year: 2018
  ident: 1224_CR5
  publication-title: J Physiol
  doi: 10.1113/JP275733
– ident: 1224_CR4
– volume: 502
  start-page: 45
  issue: 1
  year: 1997
  ident: 1224_CR40
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.1997.045bl.x
– volume: 94
  start-page: 233
  issue: 2
  year: 2009
  ident: 1224_CR2
  publication-title: J Financ Econ
  doi: 10.1016/j.jfineco.2008.11.001
– volume: 6
  start-page: 67
  year: 1972
  ident: 1224_CR21
  publication-title: J Stat Phys
  doi: 10.1007/BF01023679
– ident: 1224_CR31
  doi: 10.1101/2022.11.01.514669
– volume: 117
  start-page: 2455
  issue: 12
  year: 2019
  ident: 1224_CR27
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2019.07.030
– volume: 286
  start-page: H1573
  issue: 4
  year: 2004
  ident: 1224_CR39
  publication-title: Am J Physiol Heart Circul Physiol
  doi: 10.1152/ajpheart.00794.2003
– volume-title: Ion channels of excitable membranes
  year: 2001
  ident: 1224_CR19
– volume: 12
  start-page: e1005,234
  issue: 12
  year: 2016
  ident: 1224_CR24
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005234
– volume-title: Uncertainty quantification: theory, implementation, and applications
  year: 2013
  ident: 1224_CR37
  doi: 10.1137/1.9781611973228
– volume: 112
  start-page: 1697
  issue: 520
  year: 2017
  ident: 1224_CR7
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2016.1229197
– volume: 10
  start-page: e004,628
  issue: 2
  year: 2017
  ident: 1224_CR32
  publication-title: Circ Arrhythm Electrophysiol
  doi: 10.1161/CIRCEP.116.004628
– volume: 12
  start-page: 1166
  year: 2021
  ident: 1224_CR26
  publication-title: Front Physiol
  doi: 10.3389/fphys.2021.708944
– volume-title: Bayesian data analysis
  year: 2013
  ident: 1224_CR14
  doi: 10.1201/b16018
– volume: 82
  start-page: 421
  issue: 2
  year: 2020
  ident: 1224_CR13
  publication-title: J R Stat Soc Ser B (Stat Methodol)
  doi: 10.1111/rssb.12356
– volume: 12
  issue: 4
  year: 2020
  ident: 1224_CR41
  publication-title: WIREs Syst Biol Med
  doi: 10.1002/wsbm.1482
– volume: 96
  start-page: 49
  year: 2016
  ident: 1224_CR20
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2015.11.018
– volume-title: Nonlinear regression. Wiley series in probability and statistics
  year: 2005
  ident: 1224_CR36
– ident: 1224_CR10
– volume: 117
  start-page: 2438
  issue: 12
  year: 2019
  ident: 1224_CR28
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2019.07.029
SSID ssj0007939
Score 2.4570782
Snippet When using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2
SubjectTerms Cell Biology
Electrophysiology
Estimates
Industrial applications
Ion Channels
Kinetics
Life Sciences
Mathematical and Computational Biology
Mathematical Concepts
Mathematical models
Mathematics
Mathematics and Statistics
Models, Biological
Models, Theoretical
Original Article
Parameter estimation
Pharmacovigilance
Potassium channels
Predictions
Product safety
Random noise
Random variables
Uncertainty
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6CAhI9sJSlgYKMxA0ijWMnsbmNOlOBgKpAW_UW2Y4tjTTNVJNMpflH_Zk8O8sUFZDglEOcFytv--K3Aby1CUeYr02cSyNj7koTK4V_KRSNpeTWMRei56df8sNDcXYmj7qisLrPdu9DksFSb4rdgnKij4lDOCjObsMddHfCD2z4_uN0sL8ocS3olajr6LC6Upnf0_jVHd3AmDfio8HtHDz8vw0_ggcdzCTjVi4ewy1b7cC9dvDkege2vw7dWusncDU9v5iFViHk20q12UOBYWThyNHSh3K8USQnKCAhgaBZk8nKkmZB_Ci1OZnM0PigX0NDTfSaHHdjJ4g_5CWqItOqtud6bj296bWRAmQS8kfqD2RckfEmlO4pf8KLL32okP5nhMJ-q0_h5GB6vP8x7iY4xIZT2cTKpTxxjCGMk9wHebWxI6kSoSmjuCLLjCy5ShPtnEeGXDjOylGicyUzmxv2DLaqRWV3gYyEk8ylRnuIN0pLpVniLNWlQoAjXBkB7RlZmK69uZ-yMS82jZk9PwrkRxH4UWQRvBueuWibe_x19V4vH0Wn6HXBQjMBSaWM4M1wG1XUx11UZRerusB_WiaY4GkSwfNWrobXsRwRuqA0gve9EG2I_3kvL_5t-Uu4n-Dnb4-O9mCrWa7sK7hrLptZvXwd1OcnC_sTXQ
  priority: 102
  providerName: Springer Nature
Title Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics
URI https://link.springer.com/article/10.1007/s11538-023-01224-6
https://www.ncbi.nlm.nih.gov/pubmed/37999811
https://www.proquest.com/docview/3254319199
https://www.proquest.com/docview/2893838452
Volume 86
WOSCitedRecordID wos001105013900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuyDBgcfyCiyVkbhBRB3nZS6o0KxAy1ZhX6r2EjmOLVXqJqVJkfqP-JmMnTQFrdgLl4miOI4Vz-OzZzwD8EZ5PsL8XLoRl9z1dSFdIXCVQlFZcl9ppq33_OJbNJnE0ylPuw23ugur3OhEq6iLSpo98vfMntrmlPOPix-uqRplvKtdCY0d2ENkQ01I17GX9poYea-FvxylHk1Xd2imPTpnRR0tlmudS274t2G6hjaveUqtATp88L9Dfwj3O-hJRi2vPIJbqtyHO20xyvU-3DvuM7jWj-FXcrWY2fQh5PtKtBFFdhJJpUm6NO4doyjJOTKNDSpo1mS8UqSpiCmvNifjGSoktHWovEm-JmddKQpiNn6JKElS1uoqnyvTX_JHmQEytjEl9QcyKslo6143PX_FizkOUWL_RwiPzVCfwPlhcvb5i9tVdXClT3njCh34nmYMoR33jeM3l2rIhRfnlFFsEYaSF74IvFxrgxb9WPusGHp5JHioIsmewm5Zleo5kGGsOdOBzA3sGwaFyJmnFc0LgaAn1oUDdDOlmexSnpvKG_Nsm6zZsEGGbJBZNshCB9727yzahB83tj7YTHnWCX-dbefbgdf9YxRb44sRpapWdYbrXBaz2A88B561HNZ_jkWI2mNKHXi3Yblt5_8ey4ubx_IS7nr4u9vtowPYbZYr9Qpuy5_NrF4OYCeaRpbGA9j7lEzSE7w7ityBFSlDo5aeIk2DS6Qnpxe_AfTTJb0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aAzQ48DEGFAYYCU4Q0dhuEiMhVNFOq9pVRerQbsF2bKlSl5amBfU_4sTfyLOTtKCJ3XbglEOSF8v5-fee_b4AXhnK0cxXOoiFFgG3mQ6kxF1KiGQpuLHMeu_5l0E8HCZnZ2K0A7_qXBgXVllzoifqbKbdGfk75rO2RSjEx_m3wHWNct7VuoVGCYu-Wf_ALVvxodfB__ua0qPu-NNxUHUVCDQPxTKQtsWpZQxNC8Gd41Fp0xSSJipkIT4RRVpkXLaostZZKzyxnGVNqmIpIhNrhnKvwXXuKou5UEE62jA_Yr00twWyDKrKKkmnTNXz1IIaMvDOrCD6WxFesG4veGa9wju6-79N1T24U5nWpF2uhfuwY_J9uFk221zvw-2TTYXa4gH87J7PJ748Cvm8kmXElAcpmVkyWjj3lVME5BQXhQ-aWK5JZ2XIckZc-7gp6UyQcFGXo3Iiak3GVasN4g62icxJNy_MuZoaJ6_7RxsF0vExM8V70s5Jexs-4CT38OLSPXKU30fz3w31AE6vZNIewm4-y81jIM3ECmZbWjmzttnKpGLUmlBlEo26xGYNCGsIpboq6e46i0zTbTFqB7sUYZd62KVRA95s3pmXBU0uffqwhlhakVuRbvHVgJeb20hLztckczNbFSnu41nCEt6iDXhUInrzORbjriQJwwa8rSG-Ff7vsTy5fCwvYO94fDJIB71h_yncojj15VHZIewuFyvzDG7o78tJsXjuFy2Br1cN_d9aH3fV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CcdF44DJgBAYYiTcWrYmdi3mraCumjaqIbdqbZTu2VKlLqyZF6j_iZ3LspOnQAAnxlIc4J5bO7bPPDeC9iRnCfKXDjGseMlvoUEo8pURoLDkzllofPb84zcbj_PKST65V8fts901IsqlpcF2ayvpoUdijbeGbV1T0N6EPDYXpbbjDXCK9O69_u-hsMUpfA4A56j06r7Zs5vc0fnVNN_DmjVipd0GjR_-_-cfwsIWfpN_IyxO4Zco9uNcMpFzvwYMvXRfX6in8GF4tpr6FCPm6kk1WkWckmVsyWboQjzOW5BwFxycW1GsyWBlSz4kbsTYjgykaJfR3aMCJWpOzdhwFcZe_RJZkWFbmSs2Moze8NmqADHxeSfWR9EvS34bYHeVjfLiSiBLpnyBEdlt9Buej4dmnz2E72SHULOJ1KG3CYkspwjvOXPBXadPjMs5VRCNckaaaF0wmsbLWIUaWW0aLXqwyyVOTafocdsp5aV4A6eWWU5to5aBfLymkorE1kSokAp_cFgFEG6YK3bY9d9M3ZmLbsNnxQyA_hOeHSAP40H2zaJp-_HX1wUZWRGsAKkF9kwEecR7Au-41qq6Lx8jSzFeVwLMuzWnOkjiA_UbGut_RDJF7HkUBHG4Eakv8z3t5-W_L38L9yWAkTo_HJ69gN0ZONLdLB7BTL1fmNdzV3-tptXzjteonD0sfJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+Quantification+of+Predictive+Uncertainty+Due+to+Model+Discrepancy+by+Training+with+an+Ensemble+of+Experimental+Designs%3A+An+Application+to+Ion+Channel+Kinetics&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Shuttleworth%2C+Joseph+G&rft.au=Lei%2C+Chon+Lok&rft.au=Whittaker%2C+Dominic+G&rft.au=Windley%2C+Monique+J&rft.date=2024-01-01&rft.eissn=1522-9602&rft.volume=86&rft.issue=1&rft.spage=2&rft_id=info:doi/10.1007%2Fs11538-023-01224-6&rft_id=info%3Apmid%2F37999811&rft.externalDocID=37999811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon