Numerical Resolution of McKean-Vlasov FBSDEs Using Neural Networks

We propose several algorithms to solve McKean-Vlasov Forward Backward Stochastic Differential Equations (FBSDEs). Our schemes rely on the approximating power of neural networks to estimate the solution or its gradient through minimization problems. As a consequence, we obtain methods able to tackle...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Methodology and computing in applied probability Ročník 24; číslo 4; s. 2557 - 2586
Hlavní autoři: Germain, Maximilien, Mikael, Joseph, Warin, Xavier
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2022
Springer Nature B.V
Springer Verlag
Témata:
ISSN:1387-5841, 1573-7713
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose several algorithms to solve McKean-Vlasov Forward Backward Stochastic Differential Equations (FBSDEs). Our schemes rely on the approximating power of neural networks to estimate the solution or its gradient through minimization problems. As a consequence, we obtain methods able to tackle both mean-field games and mean-field control problems in moderate dimension. We analyze the numerical behavior of our algorithms on several multidimensional examples including non linear quadratic models.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1387-5841
1573-7713
DOI:10.1007/s11009-022-09946-1