Numerical Resolution of McKean-Vlasov FBSDEs Using Neural Networks

We propose several algorithms to solve McKean-Vlasov Forward Backward Stochastic Differential Equations (FBSDEs). Our schemes rely on the approximating power of neural networks to estimate the solution or its gradient through minimization problems. As a consequence, we obtain methods able to tackle...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Methodology and computing in applied probability Ročník 24; číslo 4; s. 2557 - 2586
Hlavní autoři: Germain, Maximilien, Mikael, Joseph, Warin, Xavier
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2022
Springer Nature B.V
Springer Verlag
Témata:
ISSN:1387-5841, 1573-7713
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose several algorithms to solve McKean-Vlasov Forward Backward Stochastic Differential Equations (FBSDEs). Our schemes rely on the approximating power of neural networks to estimate the solution or its gradient through minimization problems. As a consequence, we obtain methods able to tackle both mean-field games and mean-field control problems in moderate dimension. We analyze the numerical behavior of our algorithms on several multidimensional examples including non linear quadratic models.
AbstractList We propose several algorithms to solve McKean-Vlasov Forward Backward Stochastic Differential Equations (FBSDEs). Our schemes rely on the approximating power of neural networks to estimate the solution or its gradient through minimization problems. As a consequence, we obtain methods able to tackle both mean-field games and mean-field control problems in moderate dimension. We analyze the numerical behavior of our algorithms on several examples including non linear quadratic models.
We propose several algorithms to solve McKean-Vlasov Forward Backward Stochastic Differential Equations (FBSDEs). Our schemes rely on the approximating power of neural networks to estimate the solution or its gradient through minimization problems. As a consequence, we obtain methods able to tackle both mean-field games and mean-field control problems in moderate dimension. We analyze the numerical behavior of our algorithms on several multidimensional examples including non linear quadratic models.
Author Germain, Maximilien
Warin, Xavier
Mikael, Joseph
Author_xml – sequence: 1
  givenname: Maximilien
  orcidid: 0000-0003-3231-2087
  surname: Germain
  fullname: Germain, Maximilien
  email: mgermain@lpsm.paris
  organization: EDF R&D, Université de Paris, LPSM
– sequence: 2
  givenname: Joseph
  surname: Mikael
  fullname: Mikael, Joseph
  organization: EDF R&D
– sequence: 3
  givenname: Xavier
  surname: Warin
  fullname: Warin, Xavier
  organization: EDF R&D, FiME
BackLink https://hal.science/hal-03326051$$DView record in HAL
BookMark eNp9kFFPwjAQxxuDiYB-AZ-W-ORDtdeu6_YICGJETFR8bbrR4XCs2G4Yv73FGU188Okul__v7vLroU5lKo3QKZALIERcOvAlwYRSTJIkjDAcoC5wwbAQwDq-Z7HAPA7hCPWcWxNCgbOwi4bzZqNtkakyeNDOlE1dmCoweXCX3WpV4edSObMLJsPHq7ELFq6oVsFcN9bn57p-N_bVHaPDXJVOn3zXPlpMxk-jKZ7dX9-MBjOchZDUWFHOAWJG8kynXEcUIrYUacrTOFQRCLLM05hGIdeMhEzRBIhKKdUZ8GSZiJD10Xm790WVcmuLjbIf0qhCTgczuZ8RxmhEOOyoz5612a01b412tVybxlb-PUlFRBjnLAafom0qs8Y5q_OftUDk3qtsvUrvVX55lXso_gNlRa322mqrivJ_lLWo83eqlba_X_1DfQKHDot2
CitedBy_id crossref_primary_10_1016_j_ejor_2025_04_018
crossref_primary_10_1214_23_AAP1949
crossref_primary_10_1007_s10915_022_01796_w
crossref_primary_10_1007_s11009_025_10142_0
crossref_primary_10_1007_s00245_025_10279_x
crossref_primary_10_1093_imanum_drad060
crossref_primary_10_1016_j_jmaa_2024_128661
crossref_primary_10_1016_j_cnsns_2025_109304
crossref_primary_10_1137_22M151861X
crossref_primary_10_1007_s11009_025_10172_8
crossref_primary_10_1007_s40687_025_00531_9
crossref_primary_10_1007_s00245_023_10075_5
crossref_primary_10_3390_g15020012
crossref_primary_10_3390_math12060803
crossref_primary_10_1007_s11401_024_0002_z
Cites_doi 10.1007/s11579-017-0206-z
10.1137/090758477
10.1051/proc/201965084
10.1016/j.crma.2006.09.019
10.1016/j.crma.2006.09.018
10.1186/s41546-020-00047-w
10.1007/s10915-019-00908-3
10.1214/18-AAP1429
10.1137/20M1316640
10.1073/pnas.1718942115
10.1214/14-AAP1020
10.1090/psapm/078/06
10.3389/fams.2020.00011
10.1007/978-3-319-56436-4
10.1007/s42985-020-00062-8
10.1109/MIS.2020.2971597
10.1090/mcom/3514
10.1007/s00332-018-9525-3
10.1016/j.spa.2004.01.001
10.1007/s11009-019-09767-9
10.1137/120883499
10.1214/105051605000000412
10.1007/978-3-319-58920-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
88I
8AO
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
1XC
VOOES
DOI 10.1007/s11009-022-09946-1
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Science Database
Engineering Database (subscription)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ABI/INFORM Collection China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1573-7713
EndPage 2586
ExternalDocumentID oai:HAL:hal-03326051v2
10_1007_s11009_022_09946_1
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBO
EBS
EBU
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
QWB
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z81
Z88
ZL0
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7XB
8FK
JQ2
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c419t-a25511830fceb5e62163d7bb5b84a6170dfb82645e3043a2910ab22ec159d9743
IEDL.DBID 7WY
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768611500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1387-5841
IngestDate Tue Oct 14 20:47:07 EDT 2025
Wed Nov 05 00:52:18 EST 2025
Sat Nov 29 02:52:19 EST 2025
Tue Nov 18 22:31:32 EST 2025
Fri Feb 21 02:45:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords MSC 68T07
Mean-field games
Neural networks
49N80
MSC 35Q89
Machine learning
MSC 65C30
Deep BSDE
McKean-Vlasov FBSDEs
machine learning
mean-field games
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-a25511830fceb5e62163d7bb5b84a6170dfb82645e3043a2910ab22ec159d9743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3231-2087
OpenAccessLink https://hal.science/hal-03326051
PQID 2760355381
PQPubID 26119
PageCount 30
ParticipantIDs hal_primary_oai_HAL_hal_03326051v2
proquest_journals_2760355381
crossref_primary_10_1007_s11009_022_09946_1
crossref_citationtrail_10_1007_s11009_022_09946_1
springer_journals_10_1007_s11009_022_09946_1
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Methodology and computing in applied probability
PublicationTitleAbbrev Methodol Comput Appl Probab
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Anil C, Lucas J, Grosse R (2019) Sorting out Lipschitz function approximation. In: Chaudhuri K, Salakhutdinov R (eds), Proceedings of the 36th ICML (vol. 97, p 291–301). http://proceedings.mlr.press/v97/anil19a.html
BachouchAHuréCPhamHLangrenéNDeep neural networks algorithms for stochastic control problems on finite horizon: Numerical computationsMethodol Comput Appl Probab202110.1007/s11009-019-09767-91466.65007
Lauriere M (2021) Numerical methods for mean field games and mean field type control. arXiv:210606231
Carmona R, Laurière M (2019) Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II – the finite horizon case. arXiv preprint arXiv:190801613, to appear in The Annals of Applied Probability
GobetELemorJPWarinXA regression-based monte carlo method to solve backward stochastic differential equationsAnn Appl Probab200515321722202215265710.1214/1050516050000004121083.60047
JiSPengSPengYZhangXThree algorithms for solving high-dimensional fully coupled FBSDEs through deep learningIEEE Intell Syst2020353718410.1109/MIS.2020.2971597
CardaliaguetPLehalleCAMean field game of controls and an application to trade crowdingMath Financial Econ2018123335363380524710.1007/s11579-017-0206-z1397.91084
Achdou Y, Kobeissi Z (2020) Mean field games of controls: Finite difference approximations. arXiv:200303968
Huré C, Pham H, Bachouch A, Langrené N (2021) Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis. SIAM J Numer Anal 59(1):525–557. https://doi.org/10.1137/20M1316640
Beck C, Jentzen A (2019b) Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. J Nonlinear Sci 29(4):1563–1619. https://doi.org/10.1007/s00332-018-9525-3
Han J, Jentzen A, Weinan E (2017) Solving high-dimensional partial differential equations using deep learning. Proc Nat Acad Sci 115. https://doi.org/10.1073/pnas.1718942115
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, USENIX Association, Berkeley, CA, USA, OSDI’16, p. 265–283. http://dl.acm.org/citation.cfm?id=3026877.3026899
Sergeev A, Del Balso M (2018) Horovod: Fast and easy distributed deep learning in tensorflow
Carmona R, Lacker D (2015) A probabilistic weak formulation of mean field games and applications. Ann Appl Prob 25(3):1189–1231. https://doi.org/10.1214/14-AAP1020
HuréCPhamHWarinXDeep backward schemes for high-dimensional nonlinear PDEsMath Comput20208932415471579408191110.1090/mcom/35141440.60063
BouchardBTouziNDiscrete-time approximation and monte-carlo simulation of backward stochastic differential equationsStochastic Process Appl20041112175206205653610.1016/j.spa.2004.01.0011071.60059
Carmona R, Delarue F (2018b) Probabilistic theory of mean field games with applications II. Springer. https://doi.org/10.1007/978-3-319-56436-4
Achdou Y, Capuzzo-Dolcetta I (2010) Mean field games: Numerical methods. SIAM J Num Analysis 48. https://doi.org/10.1137/090758477
Chassagneux JF, Crisan D, Delarue F (2015) A probabilistic approach to classical solutions of the master equation for large population equilibria. to appear in Memoirs of the AMS
Fouque JP, Zhang Z (2020) Deep learning methods for mean field control problems with delay. Front Appl Math Stat 6. https://doi.org/10.3389/fams.2020.00011
Carmona R, Delarue F (2013) Probabilistic analysis of mean-field games. SIAM J Control Optim 51(4):2705–2734. https://doi.org/10.1137/120883499
Chassagneux JF, Crisan D, Delarue F (2019) Numerical method for FBSDEs of McKean-Vlasov type. Ann Appl Prob 29. https://doi.org/10.1214/18-AAP1429
Angiuli A, Graves CV, Li H, Chassagneux JF, Delarue F, Carmona R (2019) Cemracs 2017: Numerical probabilistic approach to MFG. ESAIM: Proc Surv 65:84–113. https://doi.org/10.1051/proc/201965084
Carmona R, Delarue F (2018a) Probabilistic theory of mean field games with applications I. Springer. https://doi.org/10.1007/978-3-319-58920-6
Chan-Wai-Nam Q, Mikael J, Warin X (2019) Machine learning for semi linear PDEs. J Sci Comput 79:1667–1712. https://doi.org/10.1007/s10915-019-00908-3
Pham H, Warin X, Germain M (2021) Neural networks-based backward scheme for fully nonlinear PDEs. SN Part Diff Equations Appl 2. https://doi.org/10.1007/s42985-020-00062-8
HanJLongJConvergence of the deep BSDE method for coupled FBSDEsProb Uncert Quan Risk202051133412222710.1186/s41546-020-00047-w1454.60105
Beck C, Becker S, Cheridito P, Jentzen A, Neufeld A (2019a) Deep splitting method for parabolic PDEs. arXiv preprint: arXiv:190703452
Kingma D, Ba J (2015) Adam: A method for stochastic optimization. International Conference on Learning Representations
Lasry JM, Lions PL (2006b) Jeux à champ moyen. ii – horizon fini et contrôle optimal. Comptes Rendus Mathématique Académie des Sciences, Paris 10. https://doi.org/10.1016/j.crma.2006.09.018
Lasry JM, Lions PL (2006a) Jeux à champ moyen. i – le cas stationnaire. Comptes Rendus Mathematique - C R MATH 343:619–625. https://doi.org/10.1016/j.crma.2006.09.019
9946_CR3
9946_CR2
E Gobet (9946_CR20) 2005; 15
9946_CR1
9946_CR8
9946_CR7
9946_CR24
9946_CR5
9946_CR4
9946_CR22
9946_CR29
9946_CR28
9946_CR27
9946_CR26
B Bouchard (9946_CR9) 2004; 111
P Cardaliaguet (9946_CR10) 2018; 12
J Han (9946_CR21) 2020; 5
9946_CR31
9946_CR30
9946_CR14
9946_CR13
9946_CR12
9946_CR11
9946_CR18
9946_CR17
9946_CR16
C Huré (9946_CR23) 2020; 89
9946_CR15
9946_CR19
A Bachouch (9946_CR6) 2021
S Ji (9946_CR25) 2020; 35
References_xml – reference: Han J, Jentzen A, Weinan E (2017) Solving high-dimensional partial differential equations using deep learning. Proc Nat Acad Sci 115. https://doi.org/10.1073/pnas.1718942115
– reference: HuréCPhamHWarinXDeep backward schemes for high-dimensional nonlinear PDEsMath Comput20208932415471579408191110.1090/mcom/35141440.60063
– reference: Kingma D, Ba J (2015) Adam: A method for stochastic optimization. International Conference on Learning Representations
– reference: Lasry JM, Lions PL (2006b) Jeux à champ moyen. ii – horizon fini et contrôle optimal. Comptes Rendus Mathématique Académie des Sciences, Paris 10. https://doi.org/10.1016/j.crma.2006.09.018
– reference: Beck C, Becker S, Cheridito P, Jentzen A, Neufeld A (2019a) Deep splitting method for parabolic PDEs. arXiv preprint: arXiv:190703452
– reference: Sergeev A, Del Balso M (2018) Horovod: Fast and easy distributed deep learning in tensorflow
– reference: Achdou Y, Kobeissi Z (2020) Mean field games of controls: Finite difference approximations. arXiv:200303968
– reference: Pham H, Warin X, Germain M (2021) Neural networks-based backward scheme for fully nonlinear PDEs. SN Part Diff Equations Appl 2. https://doi.org/10.1007/s42985-020-00062-8
– reference: Carmona R, Laurière M (2019) Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II – the finite horizon case. arXiv preprint arXiv:190801613, to appear in The Annals of Applied Probability
– reference: Fouque JP, Zhang Z (2020) Deep learning methods for mean field control problems with delay. Front Appl Math Stat 6. https://doi.org/10.3389/fams.2020.00011
– reference: Angiuli A, Graves CV, Li H, Chassagneux JF, Delarue F, Carmona R (2019) Cemracs 2017: Numerical probabilistic approach to MFG. ESAIM: Proc Surv 65:84–113. https://doi.org/10.1051/proc/201965084
– reference: Carmona R, Lacker D (2015) A probabilistic weak formulation of mean field games and applications. Ann Appl Prob 25(3):1189–1231. https://doi.org/10.1214/14-AAP1020
– reference: HanJLongJConvergence of the deep BSDE method for coupled FBSDEsProb Uncert Quan Risk202051133412222710.1186/s41546-020-00047-w1454.60105
– reference: BachouchAHuréCPhamHLangrenéNDeep neural networks algorithms for stochastic control problems on finite horizon: Numerical computationsMethodol Comput Appl Probab202110.1007/s11009-019-09767-91466.65007
– reference: Beck C, Jentzen A (2019b) Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. J Nonlinear Sci 29(4):1563–1619. https://doi.org/10.1007/s00332-018-9525-3
– reference: BouchardBTouziNDiscrete-time approximation and monte-carlo simulation of backward stochastic differential equationsStochastic Process Appl20041112175206205653610.1016/j.spa.2004.01.0011071.60059
– reference: Huré C, Pham H, Bachouch A, Langrené N (2021) Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis. SIAM J Numer Anal 59(1):525–557. https://doi.org/10.1137/20M1316640
– reference: Carmona R, Delarue F (2018a) Probabilistic theory of mean field games with applications I. Springer. https://doi.org/10.1007/978-3-319-58920-6
– reference: Carmona R, Delarue F (2013) Probabilistic analysis of mean-field games. SIAM J Control Optim 51(4):2705–2734. https://doi.org/10.1137/120883499
– reference: CardaliaguetPLehalleCAMean field game of controls and an application to trade crowdingMath Financial Econ2018123335363380524710.1007/s11579-017-0206-z1397.91084
– reference: Achdou Y, Capuzzo-Dolcetta I (2010) Mean field games: Numerical methods. SIAM J Num Analysis 48. https://doi.org/10.1137/090758477
– reference: Chassagneux JF, Crisan D, Delarue F (2019) Numerical method for FBSDEs of McKean-Vlasov type. Ann Appl Prob 29. https://doi.org/10.1214/18-AAP1429
– reference: Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, USENIX Association, Berkeley, CA, USA, OSDI’16, p. 265–283. http://dl.acm.org/citation.cfm?id=3026877.3026899
– reference: GobetELemorJPWarinXA regression-based monte carlo method to solve backward stochastic differential equationsAnn Appl Probab200515321722202215265710.1214/1050516050000004121083.60047
– reference: Lasry JM, Lions PL (2006a) Jeux à champ moyen. i – le cas stationnaire. Comptes Rendus Mathematique - C R MATH 343:619–625. https://doi.org/10.1016/j.crma.2006.09.019
– reference: Chassagneux JF, Crisan D, Delarue F (2015) A probabilistic approach to classical solutions of the master equation for large population equilibria. to appear in Memoirs of the AMS
– reference: Carmona R, Delarue F (2018b) Probabilistic theory of mean field games with applications II. Springer. https://doi.org/10.1007/978-3-319-56436-4
– reference: Anil C, Lucas J, Grosse R (2019) Sorting out Lipschitz function approximation. In: Chaudhuri K, Salakhutdinov R (eds), Proceedings of the 36th ICML (vol. 97, p 291–301). http://proceedings.mlr.press/v97/anil19a.html
– reference: JiSPengSPengYZhangXThree algorithms for solving high-dimensional fully coupled FBSDEs through deep learningIEEE Intell Syst2020353718410.1109/MIS.2020.2971597
– reference: Lauriere M (2021) Numerical methods for mean field games and mean field type control. arXiv:210606231
– reference: Chan-Wai-Nam Q, Mikael J, Warin X (2019) Machine learning for semi linear PDEs. J Sci Comput 79:1667–1712. https://doi.org/10.1007/s10915-019-00908-3
– ident: 9946_CR17
– volume: 12
  start-page: 335
  issue: 3
  year: 2018
  ident: 9946_CR10
  publication-title: Math Financial Econ
  doi: 10.1007/s11579-017-0206-z
– ident: 9946_CR2
  doi: 10.1137/090758477
– ident: 9946_CR15
– ident: 9946_CR4
  doi: 10.1051/proc/201965084
– ident: 9946_CR3
– ident: 9946_CR27
  doi: 10.1016/j.crma.2006.09.019
– ident: 9946_CR5
– ident: 9946_CR31
– ident: 9946_CR28
  doi: 10.1016/j.crma.2006.09.018
– ident: 9946_CR7
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  ident: 9946_CR21
  publication-title: Prob Uncert Quan Risk
  doi: 10.1186/s41546-020-00047-w
– ident: 9946_CR1
– ident: 9946_CR16
  doi: 10.1007/s10915-019-00908-3
– ident: 9946_CR18
  doi: 10.1214/18-AAP1429
– ident: 9946_CR24
  doi: 10.1137/20M1316640
– ident: 9946_CR22
  doi: 10.1073/pnas.1718942115
– ident: 9946_CR14
  doi: 10.1214/14-AAP1020
– ident: 9946_CR29
  doi: 10.1090/psapm/078/06
– ident: 9946_CR19
  doi: 10.3389/fams.2020.00011
– ident: 9946_CR13
  doi: 10.1007/978-3-319-56436-4
– ident: 9946_CR30
  doi: 10.1007/s42985-020-00062-8
– volume: 35
  start-page: 71
  issue: 3
  year: 2020
  ident: 9946_CR25
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2020.2971597
– volume: 89
  start-page: 1547
  issue: 324
  year: 2020
  ident: 9946_CR23
  publication-title: Math Comput
  doi: 10.1090/mcom/3514
– ident: 9946_CR26
– ident: 9946_CR8
  doi: 10.1007/s00332-018-9525-3
– volume: 111
  start-page: 175
  issue: 2
  year: 2004
  ident: 9946_CR9
  publication-title: Stochastic Process Appl
  doi: 10.1016/j.spa.2004.01.001
– year: 2021
  ident: 9946_CR6
  publication-title: Methodol Comput Appl Probab
  doi: 10.1007/s11009-019-09767-9
– ident: 9946_CR11
  doi: 10.1137/120883499
– volume: 15
  start-page: 2172
  issue: 3
  year: 2005
  ident: 9946_CR20
  publication-title: Ann Appl Probab
  doi: 10.1214/105051605000000412
– ident: 9946_CR12
  doi: 10.1007/978-3-319-58920-6
SSID ssj0021534
Score 2.4781804
Snippet We propose several algorithms to solve McKean-Vlasov Forward Backward Stochastic Differential Equations (FBSDEs). Our schemes rely on the approximating power...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2557
SubjectTerms Algorithms
Business and Management
Differential equations
Economics
Electrical Engineering
Life Sciences
Machine learning
Mathematics
Mathematics and Statistics
Neural networks
Optimization and Control
Probability
Random variables
Statistics
SummonAdditionalLinks – databaseName: Springer Journals - Owned
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CtaDj6oYXwTxpoFk8z622lKwDUK19BZ2Nxs8lFSatr_f2c2jKiroMcnkwc5s9vt2Z74FuBFSU8zxPEMEARIU5hODJQkzEjelNmGUmULpzA78KAomk_CpLArLq2z3aklS_anXxW6WmshH8oSoxvEM5DxbrlSbkRx9NK5pFvbhYitb7D44vFplqcz3z_g0HG2-ymTID0jzy-KoGnN6-__72gPYKzGm3i6C4hA2RNaCnaoEOW_B7rAWa8WjpgSchV7zEXSiZbGGM9XlzH4Rl_os1Yf8UdDMGCPanq30Xmf00M11lXCgS4EPtI-KjPL8GF563ef7vlHus2BwxwoXBkVagTzDNlMumCs8ghgt8RlzWeBQKdiepAxZiOMK23RsShBhUEaI4AiFEuQj9gk0slkmTkGnYeqxwEPHu8yhKQ9oEiIksGgaMo5P1cCqmjvmpQi53AtjGq_lk2XDxdhwsWq42NLgtr7nrZDg-NX6Gr1YG0r17H57EMtzpm1L9matiAYXlZPjss_mMfE9E9EXQhgN7iqnri___Mqzv5mfQ5PIuFA5MRfQWMyX4hK2-QpdPb9SsfwOXljplA
  priority: 102
  providerName: Springer Nature
Title Numerical Resolution of McKean-Vlasov FBSDEs Using Neural Networks
URI https://link.springer.com/article/10.1007/s11009-022-09946-1
https://www.proquest.com/docview/2760355381
https://hal.science/hal-03326051
Volume 24
WOSCitedRecordID wos000768611500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals - Owned
  customDbUrl:
  eissn: 1573-7713
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021534
  issn: 1387-5841
  databaseCode: RSV
  dateStart: 19990701
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HeDAGzEeU4W4QUSbvk-IjU2TxqqJ8b5USZoKpGkDOvb7sdtuAyS4cLHUNk2r2Int2PkMcKwJU8zxPKaDAB0U6XMmk0SyxE2FzaWQps5xZq_8KAoeHsJuueGWlWmVkzUxX6iToaI98jPueybqRlQw569vjKpGUXS1LKExD4uoqF2qYODfP04dLpzNRVFbnEioaK3y0ExxdM7KwwLoiqGN5HjM-qaY5p8pLfKLzfkjTJprn-baf_97HVZLu9O4KARlA-b0YBNWOlPQ1mwLatFHEb7pG7SpX4ikMUyNjmprMWB3aGgPx0az1rtsZEaea2AQtge2j4pk8mwbbpuNm3qLlSUWmHKscMQEjhq6GLaZKi1d7XE0zxJfSlcGjiCs9iSV6IA4rrZNxxYcjQshOdcKraAEXRF7BxYGw4HeBUOEqScDD3nuSkekKhBJiNaAJdJQKuy1AtZkfGNV4o9TGYx-PENOJp7EyJM450lsVeBk-s5rgb7xZ-sjZNu0IQFnty6uYrpn2jY5btaYV-Bgwqe4nK5ZPGNSBU4nnJ49_v2Te3_3tg_LnEQsT385gIXR-4c-hCU1Hr1k79VcWKuwWGtE3Wu8avsMacesE-Vdon4Padd9Qnrdu_sEkd7zBg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xScCBHVFWC8EJLBpnPyDEVhW1jZBYxM3YjiOQUAukFPFTfCPjLC0gwY0D18RxlOSN501m_AZgSxtNMcfzqA4CDFCkz6iMY0ljNxE2k0JWdaYz2_SjKLi5Cc-H4L3cC2PKKss1MVuo444y_8j3mO9V0Teigzl4fKKma5TJrpYtNHJYNPTbK4Zs6f7ZCX7fbcZqp5fHdVp0FaDKscIuFUiikVXb1URp6WqPISOJfSldGTjCyJPHiUTO7bgaI31bMPSnQjKmFTr-GNm3jfMOw6hjB56xqIZP-wEerh55E100XHTsVrFJJ9-qZ2VpCAz9kJM5HrW-OMLhO1OG-YnjfkvLZt6uNv3f3tMMTBW8mhzmhjALQ7o9B5OtvihtOg9H0UuennogJmmRmxzpJKSlGlq06TUGEp0eqR1dnJymJKulIEa7BMdHebF8ugBXf_IQizDS7rT1EhARJp4MPMS0Kx2RqEDEIbIdSyShVDhrBazye3JV6KubNh8PfKAMbTDAEQM8wwC3KrDTv-YxVxf5dfQmwqQ_0AiD1w-b3Byr2rYJTK0eq8BqiQteLEcpH4CiArslsganf77l8u-zbcB4_bLV5M2zqLECE8zAOyv1WYWR7vOLXoMx1evep8_rmaEQuP1rxH0A5vFGDA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB5BWSE4ALssojwttHsCi8Z5HxCitBWoJap4iZvXdhyBhFogpYi_xq9jnEe7IMGNA9fEcZTkG883mfE3AH-00RRzPI_qIMAARfqMyjiWNHYTYTMpZE1nOrMdP4qCq6uwOwEv5V4YU1ZZronZQh33lflHvst8r4a-ER3MblKURXQbrf27e2o6SJlMa9lOI4dIWz8_YfiW7h038Fv_ZazVPD88okWHAaocKxxQgYQaGbZdS5SWrvYYspPYl9KVgSOMVHmcSOTfjqsx6rcFQ98qJGNaIQmIkYnbOO8kTPk2Bj0VmKo3o-7pKNzDtSRvqYtmjG7eKrbs5Bv3rCwpgYEgMjTHo9Ybtzh5bYoy_2O875K0me9rzX_nt7YAcwXjJge5ifyECd37BbMnI7nadBHq0WOeuLolJp2RGyPpJ-REtbXo0UsMMfpD0qqfNZopyaosiFE1wfFRXkaf_oaLL3mIJaj0-j29DESEiScDD9HuSkckKhBxiDzIEkkoFc5aBav8tlwVyuumAcgtH2tGGzxwxAPP8MCtKmyPrrnLdUc-Hb2FkBkNNJLhRwcdbo7VbNuErNaQVWGtxAgvFqqUjwFShZ0SZePTH99y5fPZNmEagcY7x1F7FWaYQXpWA7QGlcHDo16HH2o4uEkfNgqrIfDvqyH3CqOAUF4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+resolution+of+McKean-Vlasov+FBSDEs+using+neural+networks&rft.jtitle=Methodology+and+computing+in+applied+probability&rft.au=Germain%2C+Maximilien&rft.au=Mikael%2C+Joseph&rft.au=Warin%2C+Xavier&rft.date=2022-12-01&rft.pub=Springer+Verlag&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007%2Fs11009-022-09946-1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03326051v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-5841&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-5841&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-5841&client=summon