microRNAs in action: biogenesis, function and regulation

Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature reviews. Genetics Ročník 24; číslo 12; s. 816 - 833
Hlavní autoři: Shang, Renfu, Lee, Seungjae, Senavirathne, Gayan, Lai, Eric C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.12.2023
Nature Publishing Group
Témata:
ISSN:1471-0056, 1471-0064, 1471-0064
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR–Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future. In this Review, the authors describe how the application of new technologies to the microRNA (miRNA) field has yielded key insights into miRNA biology. The authors summarize our current understanding of miRNA biogenesis, function and processing, and highlight challenges to address in future research.
AbstractList Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR–Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.In this Review, the authors describe how the application of new technologies to the microRNA (miRNA) field has yielded key insights into miRNA biology. The authors summarize our current understanding of miRNA biogenesis, function and processing, and highlight challenges to address in future research.
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR–Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future. In this Review, the authors describe how the application of new technologies to the microRNA (miRNA) field has yielded key insights into miRNA biology. The authors summarize our current understanding of miRNA biogenesis, function and processing, and highlight challenges to address in future research.
Author Lee, Seungjae
Lai, Eric C.
Senavirathne, Gayan
Shang, Renfu
Author_xml – sequence: 1
  givenname: Renfu
  surname: Shang
  fullname: Shang, Renfu
  organization: Developmental Biology Program, Sloan Kettering Institute
– sequence: 2
  givenname: Seungjae
  orcidid: 0000-0001-5626-9656
  surname: Lee
  fullname: Lee, Seungjae
  organization: Developmental Biology Program, Sloan Kettering Institute
– sequence: 3
  givenname: Gayan
  surname: Senavirathne
  fullname: Senavirathne, Gayan
  organization: Developmental Biology Program, Sloan Kettering Institute
– sequence: 4
  givenname: Eric C.
  orcidid: 0000-0002-8432-5851
  surname: Lai
  fullname: Lai, Eric C.
  email: laie@mskcc.org
  organization: Developmental Biology Program, Sloan Kettering Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37380761$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1LwzAAxYNM3If-Ax6k4MWD1Xy1Tb2N4RcMBdFzSNJ0ZLTpTNrD_vtl66aww07JC7_3eHljMLCN1QBcI_iAIGGPnqIkS2OISQxhilC8PgMjRDO0lXTwd0_SIRh7v4QQpSgjF2BIMsJglqIRYLVRrvn6mPrI2Eio1jT2KZKmWWirvfH3UdnZ3WskbBE5vegqsZWX4LwUlddX-3MCfl6ev2dv8fzz9X02nceKoryNc5wJSAlkjGiKU4nzJA0tsEwSWuZSFAIziDXBKi-QhAgqVSpMWC6DkqogE3DX565c89tp3_LaeKWrSljddJ5jRlAIpRkN6O0Rumw6Z0O7QLGcwdACB-pmT3Wy1gVfOVMLt-aHTQLAeiAM473TJVem3f25dcJUHEG-nZ_38_MwP9_Nz9fBio-sh_STJtKbfIDtQrv_2idcG0UblTY
CitedBy_id crossref_primary_10_1016_j_prp_2024_155478
crossref_primary_10_1016_j_pt_2025_06_004
crossref_primary_10_1038_s41401_025_01484_z
crossref_primary_10_3390_ijms242216213
crossref_primary_10_3390_genes15091239
crossref_primary_10_3390_cancers17142315
crossref_primary_10_1007_s12015_024_10794_4
crossref_primary_10_1038_s44319_024_00315_2
crossref_primary_10_1016_j_ncrna_2024_11_006
crossref_primary_10_1016_j_cyto_2024_156624
crossref_primary_10_3390_cells14070553
crossref_primary_10_1111_jse_13158
crossref_primary_10_1038_s41467_024_53322_1
crossref_primary_10_3390_biomedicines12061360
crossref_primary_10_1080_14756366_2025_2468853
crossref_primary_10_1016_j_aca_2025_343689
crossref_primary_10_1186_s12916_025_04324_3
crossref_primary_10_1039_D4AY02280G
crossref_primary_10_1080_17520363_2025_2520160
crossref_primary_10_1016_j_actatropica_2025_107674
crossref_primary_10_1038_s41467_024_52568_z
crossref_primary_10_1016_j_yexcr_2024_114234
crossref_primary_10_1021_jacs_4c08719
crossref_primary_10_15420_ecr_2025_34
crossref_primary_10_1016_j_jare_2025_05_056
crossref_primary_10_1016_j_bbrc_2024_149937
crossref_primary_10_1080_17501911_2025_2467021
crossref_primary_10_1007_s10142_024_01489_7
crossref_primary_10_3892_mmr_2025_13575
crossref_primary_10_1177_0271678X251348816
crossref_primary_10_1007_s40843_024_3048_0
crossref_primary_10_1080_15476286_2025_2538271
crossref_primary_10_3389_fgene_2023_1320185
crossref_primary_10_1007_s00210_025_03893_7
crossref_primary_10_3892_etm_2025_12835
crossref_primary_10_1016_j_arr_2024_102278
crossref_primary_10_1177_22143602251348753
crossref_primary_10_1002_1878_0261_13744
crossref_primary_10_1261_rna_080021_124
crossref_primary_10_1038_s41413_025_00430_3
crossref_primary_10_1007_s42764_024_00135_7
crossref_primary_10_2147_IJN_S441133
crossref_primary_10_1186_s12935_025_03895_8
crossref_primary_10_1080_17576180_2025_2535953
crossref_primary_10_1210_endocr_bqad111
crossref_primary_10_3389_fpls_2024_1460540
crossref_primary_10_3390_biology13010015
crossref_primary_10_1021_acsami_4c14928
crossref_primary_10_1016_j_prp_2024_155102
crossref_primary_10_1186_s12964_025_02173_4
crossref_primary_10_1016_j_neuint_2025_106033
crossref_primary_10_3389_fimmu_2023_1228458
crossref_primary_10_32604_or_2024_049235
crossref_primary_10_1007_s10528_025_11168_2
crossref_primary_10_1016_j_ijbiomac_2025_145025
crossref_primary_10_1016_j_biopha_2024_117294
crossref_primary_10_1161_HYPERTENSIONAHA_124_23573
crossref_primary_10_1016_j_bbadis_2024_167098
crossref_primary_10_3390_pharmaceutics17040471
crossref_primary_10_3390_biomedicines13081895
crossref_primary_10_1002_jcsm_13823
crossref_primary_10_3389_fimmu_2025_1602252
crossref_primary_10_1360_SSV_2024_0342
crossref_primary_10_2147_IJN_S524558
crossref_primary_10_3390_ijms25031502
crossref_primary_10_3390_ijms251910701
crossref_primary_10_1016_j_brainresbull_2025_111345
crossref_primary_10_1007_s00018_023_05090_2
crossref_primary_10_1016_j_bcp_2025_116745
crossref_primary_10_1021_acs_est_4c10724
crossref_primary_10_4251_wjgo_v17_i5_104076
crossref_primary_10_1038_s41576_023_00662_1
crossref_primary_10_3390_horticulturae11020141
crossref_primary_10_1038_s41380_025_03167_x
crossref_primary_10_4103_NRR_NRR_D_24_00696
crossref_primary_10_1007_s12672_025_02246_3
crossref_primary_10_1002_smsc_202400261
crossref_primary_10_1002_ame2_70076
crossref_primary_10_1016_j_jbc_2023_105499
crossref_primary_10_1186_s12872_024_04465_y
crossref_primary_10_3390_dna4020006
crossref_primary_10_1016_j_yexcr_2024_114279
crossref_primary_10_1002_adfm_202502250
crossref_primary_10_1016_j_cej_2024_150631
crossref_primary_10_3390_molecules29245835
crossref_primary_10_1016_j_bbrc_2024_151069
crossref_primary_10_1038_s42003_024_06555_1
crossref_primary_10_1007_s10565_024_09927_9
crossref_primary_10_1186_s12951_025_03337_7
crossref_primary_10_1016_j_lfs_2024_123084
crossref_primary_10_3168_jds_2024_26210
crossref_primary_10_1007_s12291_025_01343_y
crossref_primary_10_1016_j_atherosclerosis_2024_119069
crossref_primary_10_1186_s13045_025_01671_9
crossref_primary_10_1016_j_prp_2023_155085
crossref_primary_10_3892_mmr_2025_13667
crossref_primary_10_1007_s11105_024_01513_x
crossref_primary_10_3390_ncrna11040051
crossref_primary_10_1038_s41598_023_46562_6
crossref_primary_10_1016_j_jhazmat_2025_138737
crossref_primary_10_1016_j_talanta_2025_128049
crossref_primary_10_1016_j_ijbiomac_2024_135370
crossref_primary_10_4103_neurol_india_Neurol_India_D_24_00920
crossref_primary_10_1016_j_compeleceng_2025_110242
crossref_primary_10_3390_cimb46110741
crossref_primary_10_3390_ncrna11010003
crossref_primary_10_1016_j_molcel_2024_09_008
crossref_primary_10_1038_s41586_025_09256_9
crossref_primary_10_3390_v17030399
crossref_primary_10_3390_ijms25116168
crossref_primary_10_1016_j_lfs_2024_123064
crossref_primary_10_1016_j_tig_2025_06_005
crossref_primary_10_1177_11795549251331755
crossref_primary_10_1007_s11259_025_10727_7
crossref_primary_10_3390_ijms242216052
crossref_primary_10_1016_j_ijbiomac_2025_145674
crossref_primary_10_3389_fonc_2024_1498139
crossref_primary_10_3389_fcell_2024_1331074
crossref_primary_10_3892_ijmm_2025_5531
crossref_primary_10_1002_jbt_70532
crossref_primary_10_3390_biom15050644
crossref_primary_10_1016_j_asems_2025_100158
crossref_primary_10_1631_jzus_B2400032
crossref_primary_10_1007_s10735_024_10327_w
crossref_primary_10_1186_s12915_025_02306_8
crossref_primary_10_1261_rna_080108_124
crossref_primary_10_1016_j_aqrep_2025_102653
crossref_primary_10_1016_j_tem_2024_10_002
crossref_primary_10_1167_iovs_66_3_27
crossref_primary_10_1007_s00210_024_03347_6
crossref_primary_10_1007_s00705_024_05992_x
crossref_primary_10_1016_j_tig_2024_12_009
crossref_primary_10_1038_s12276_024_01239_6
crossref_primary_10_1038_s41368_025_00349_9
crossref_primary_10_1038_s41598_024_74477_3
crossref_primary_10_3390_ijms251910325
crossref_primary_10_1016_j_celrep_2025_116243
crossref_primary_10_3389_fgene_2024_1381917
crossref_primary_10_1016_j_seminoncol_2025_152386
crossref_primary_10_3390_ijms26188879
crossref_primary_10_1007_s11033_024_09938_z
crossref_primary_10_1038_s41598_025_91100_1
crossref_primary_10_1007_s10792_025_03701_4
crossref_primary_10_1186_s12920_025_02158_9
crossref_primary_10_1002_jgm_70019
crossref_primary_10_3390_biom15081189
crossref_primary_10_1016_j_bbrep_2025_102197
crossref_primary_10_1016_j_tibs_2023_09_002
crossref_primary_10_3390_cells13231935
crossref_primary_10_2147_DDDT_S513371
crossref_primary_10_1007_s10142_025_01585_2
crossref_primary_10_1016_j_ecoenv_2025_117800
crossref_primary_10_3389_fcvm_2025_1546515
crossref_primary_10_1186_s12943_025_02298_7
crossref_primary_10_3390_biology14091289
crossref_primary_10_1038_s41392_023_01669_0
crossref_primary_10_1007_s43032_024_01703_8
crossref_primary_10_3389_fmolb_2025_1647300
crossref_primary_10_1140_epjs_s11734_025_01475_5
crossref_primary_10_1002_advs_202415341
crossref_primary_10_3389_fmolb_2024_1385586
crossref_primary_10_1016_j_jrras_2025_101877
crossref_primary_10_1038_s41598_025_07860_3
crossref_primary_10_1039_D4SD00373J
crossref_primary_10_1093_nar_gkae416
crossref_primary_10_1080_15412555_2025_2493701
crossref_primary_10_1038_s41598_025_98939_4
crossref_primary_10_1016_j_labinv_2025_104199
crossref_primary_10_3390_brainsci15070756
crossref_primary_10_1038_s42003_025_08721_5
crossref_primary_10_1016_j_talanta_2024_127078
crossref_primary_10_1016_j_tips_2024_03_006
crossref_primary_10_1002_adhm_202404398
crossref_primary_10_3390_plants14010136
crossref_primary_10_3389_dyst_2025_14224
crossref_primary_10_1016_j_prerep_2025_100035
crossref_primary_10_1186_s12957_025_03719_z
crossref_primary_10_1016_j_cbpa_2024_102502
crossref_primary_10_1016_j_snb_2024_135389
crossref_primary_10_1038_s41419_024_07286_1
crossref_primary_10_1093_narmme_ugaf022
crossref_primary_10_3390_diagnostics14171981
crossref_primary_10_4103_jioh_jioh_284_24
crossref_primary_10_1261_rna_080338_124
crossref_primary_10_3389_fcvm_2025_1518022
crossref_primary_10_1186_s12958_024_01303_w
crossref_primary_10_1055_a_2494_2233
crossref_primary_10_1126_science_adp9388
crossref_primary_10_1016_j_bcp_2025_117216
crossref_primary_10_1016_j_prp_2024_155093
crossref_primary_10_1093_nar_gkae1036
crossref_primary_10_1016_j_ijbiomac_2025_145614
crossref_primary_10_1016_j_cellsig_2025_111745
crossref_primary_10_3389_fnut_2025_1535498
crossref_primary_10_3390_biomedicines13051171
crossref_primary_10_1016_j_bbagrm_2024_195059
crossref_primary_10_3390_life14111431
crossref_primary_10_1016_j_jnutbio_2024_109714
crossref_primary_10_1096_fj_202400306R
crossref_primary_10_1016_j_psychres_2025_116465
crossref_primary_10_1053_j_seminhematol_2024_03_001
crossref_primary_10_1007_s12035_025_04750_7
crossref_primary_10_1016_j_bbadis_2025_167664
crossref_primary_10_1016_j_canlet_2024_216655
crossref_primary_10_1128_mbio_01375_25
crossref_primary_10_1186_s10020_023_00776_6
crossref_primary_10_3389_fnmol_2024_1462769
crossref_primary_10_1038_s41540_024_00367_z
crossref_primary_10_1021_acs_analchem_5c01674
crossref_primary_10_3389_fimmu_2025_1552665
crossref_primary_10_3390_neuroglia6020022
crossref_primary_10_1002_advs_202506830
crossref_primary_10_1007_s10142_025_01544_x
crossref_primary_10_1073_pnas_2306727120
crossref_primary_10_1016_j_ejphar_2025_177344
crossref_primary_10_3390_biom13111677
crossref_primary_10_1016_j_addr_2025_115639
crossref_primary_10_1097_MOH_0000000000000803
crossref_primary_10_1016_j_molpha_2024_100006
crossref_primary_10_1161_CIRCRESAHA_124_325573
crossref_primary_10_1186_s12885_025_13672_5
crossref_primary_10_1038_s41598_024_73000_y
crossref_primary_10_1002_jbt_70361
crossref_primary_10_1186_s12951_025_03528_2
crossref_primary_10_1186_s13046_025_03354_2
crossref_primary_10_1007_s11033_025_11015_y
crossref_primary_10_1016_j_omtn_2025_102450
crossref_primary_10_1038_s41597_024_03909_6
crossref_primary_10_1007_s00438_024_02183_w
crossref_primary_10_3390_genes15121649
crossref_primary_10_1186_s12967_023_04816_x
crossref_primary_10_1038_s41598_024_66117_7
crossref_primary_10_1016_j_omtn_2024_102281
crossref_primary_10_1016_j_exer_2025_110236
crossref_primary_10_1016_j_bbrc_2025_151958
crossref_primary_10_1007_s11033_024_10208_1
crossref_primary_10_1016_j_heliyon_2024_e36282
crossref_primary_10_1039_D5AY01227A
crossref_primary_10_1016_j_ijbiomac_2024_136820
crossref_primary_10_1016_j_jep_2025_120175
crossref_primary_10_3390_biomedicines13030725
crossref_primary_10_3390_cells14050368
crossref_primary_10_1093_nar_gkae792
crossref_primary_10_1016_j_bbadis_2025_167984
crossref_primary_10_1016_j_bios_2024_117106
crossref_primary_10_1111_liv_15906
crossref_primary_10_3390_cells14040312
crossref_primary_10_1111_mec_17749
crossref_primary_10_1111_nph_20287
crossref_primary_10_1186_s12933_024_02405_w
crossref_primary_10_3390_genes16030262
crossref_primary_10_1002_admt_202301570
crossref_primary_10_3390_gastroent16010005
crossref_primary_10_1093_nutrit_nuaf023
crossref_primary_10_1016_j_omtn_2024_102379
crossref_primary_10_4252_wjsc_v17_i4_102482
crossref_primary_10_1016_j_isci_2025_113445
crossref_primary_10_1016_j_tox_2024_154042
crossref_primary_10_1016_j_biopha_2024_116880
crossref_primary_10_1007_s11427_024_2819_y
crossref_primary_10_1007_s00210_025_03898_2
crossref_primary_10_3389_frpro_2024_1320917
crossref_primary_10_1128_cmr_00022_23
crossref_primary_10_1261_rna_080220_124
crossref_primary_10_1016_j_metabol_2025_156153
crossref_primary_10_3390_ijms25137229
crossref_primary_10_4254_wjh_v17_i7_106795
crossref_primary_10_1371_journal_pone_0311212
crossref_primary_10_1093_nar_gkae1094
crossref_primary_10_3390_toxics13030167
crossref_primary_10_1016_j_compbiomed_2025_110771
crossref_primary_10_3390_ijms26020710
crossref_primary_10_1186_s12967_025_06629_6
crossref_primary_10_3390_life14121608
crossref_primary_10_1016_j_bios_2025_117422
crossref_primary_10_1007_s10142_025_01599_w
crossref_primary_10_1097_BS9_0000000000000210
crossref_primary_10_1016_j_lanmic_2025_101155
crossref_primary_10_1016_j_gde_2025_102339
crossref_primary_10_31083_j_fbl2908292
crossref_primary_10_1016_j_csbj_2025_04_040
crossref_primary_10_1161_HYPERTENSIONAHA_124_21728
crossref_primary_10_1371_journal_pone_0314733
crossref_primary_10_3390_ijms25084301
crossref_primary_10_6023_A24090258
crossref_primary_10_3390_ijms252312979
crossref_primary_10_1016_j_gene_2025_149635
crossref_primary_10_17816_onco637142
crossref_primary_10_1038_s41598_025_00343_5
crossref_primary_10_3390_ijms26178633
crossref_primary_10_1016_j_micpath_2025_107646
crossref_primary_10_1039_D5AN00707K
crossref_primary_10_1016_j_biopha_2024_116984
crossref_primary_10_1007_s44446_025_00026_2
crossref_primary_10_1007_s00604_024_06920_1
crossref_primary_10_1002_adhm_202402933
crossref_primary_10_1080_10408398_2025_2479066
crossref_primary_10_1016_j_nbas_2025_100141
crossref_primary_10_1016_j_jcyt_2025_05_010
crossref_primary_10_1038_s41422_024_00975_8
crossref_primary_10_1016_j_exer_2024_110180
crossref_primary_10_3390_cimb47060473
crossref_primary_10_1021_acssensors_5c01842
crossref_primary_10_1111_bph_17308
crossref_primary_10_1016_j_preme_2025_100023
crossref_primary_10_3390_ijms25137123
crossref_primary_10_1021_acssensors_5c00758
crossref_primary_10_2147_IJN_S487097
crossref_primary_10_1002_smll_202402914
crossref_primary_10_1038_s41598_024_62064_5
crossref_primary_10_1016_j_bios_2025_117445
crossref_primary_10_1016_j_bios_2025_117565
crossref_primary_10_1002_wrna_1832
crossref_primary_10_1124_molpharm_124_000895
crossref_primary_10_1007_s00210_024_03603_9
crossref_primary_10_3389_fphar_2024_1467298
crossref_primary_10_3390_cimb47030170
crossref_primary_10_1007_s12602_024_10443_9
crossref_primary_10_1186_s40478_025_01950_z
crossref_primary_10_1038_s41598_024_79224_2
crossref_primary_10_1038_s41598_025_04835_2
crossref_primary_10_3390_ijms251810135
crossref_primary_10_1016_j_vetmic_2025_110622
crossref_primary_10_1016_j_ejmech_2025_117676
crossref_primary_10_1016_j_omtn_2024_102262
crossref_primary_10_1093_g3journal_jkae178
crossref_primary_10_1016_j_pmpp_2025_102793
crossref_primary_10_3892_ijo_2025_5769
crossref_primary_10_3389_fmolb_2023_1308274
crossref_primary_10_1111_jre_13384
crossref_primary_10_1016_j_nantod_2025_102800
crossref_primary_10_3389_fevo_2024_1464506
crossref_primary_10_3390_ijms26094259
crossref_primary_10_1242_dev_204373
crossref_primary_10_1007_s12015_025_10866_z
crossref_primary_10_3390_ncrna10050046
crossref_primary_10_1016_j_omtn_2025_102500
crossref_primary_10_1016_j_phrs_2025_107596
crossref_primary_10_3389_fphys_2025_1507059
crossref_primary_10_1016_j_biopha_2025_118452
crossref_primary_10_1038_s41378_025_00927_1
crossref_primary_10_1038_s41580_024_00805_0
crossref_primary_10_3390_cells13151289
crossref_primary_10_1016_j_cca_2025_120301
crossref_primary_10_2217_epi_2023_0365
crossref_primary_10_1038_s41380_025_02925_1
crossref_primary_10_3390_biomedicines12050962
crossref_primary_10_3389_fphar_2025_1532558
crossref_primary_10_3390_ijms26125629
crossref_primary_10_2147_IJN_S464403
crossref_primary_10_3389_fncel_2025_1457740
crossref_primary_10_1186_s13045_025_01726_x
crossref_primary_10_1016_j_atherosclerosis_2024_118584
crossref_primary_10_1016_j_jad_2024_09_032
crossref_primary_10_1016_j_gendis_2025_101770
crossref_primary_10_1007_s00210_025_03934_1
crossref_primary_10_3390_ijms25052786
crossref_primary_10_1016_j_gendis_2025_101534
crossref_primary_10_1111_jre_13369
crossref_primary_10_3390_ijms26052044
crossref_primary_10_1007_s10495_025_02117_w
crossref_primary_10_3389_fmolb_2025_1616221
crossref_primary_10_1038_s41598_025_08646_3
crossref_primary_10_5312_wjo_v16_i7_107045
crossref_primary_10_1158_1078_0432_CCR_24_2785
crossref_primary_10_1186_s13071_025_06689_z
crossref_primary_10_1016_j_foodres_2025_117325
crossref_primary_10_1093_jleuko_qiaf021
crossref_primary_10_1016_j_pharmr_2025_100065
crossref_primary_10_1038_s41580_024_00818_9
crossref_primary_10_3389_fcvm_2024_1432468
crossref_primary_10_1002_mrd_70045
crossref_primary_10_1016_j_bios_2025_117924
crossref_primary_10_1007_s12672_025_02744_4
crossref_primary_10_1016_j_isci_2024_111359
crossref_primary_10_1016_j_ccr_2025_216821
crossref_primary_10_1016_j_cellsig_2025_112081
crossref_primary_10_1038_s41573_025_01237_x
crossref_primary_10_3389_fncel_2025_1541885
crossref_primary_10_1097_MD_0000000000035918
crossref_primary_10_1016_j_ncrna_2024_08_006
crossref_primary_10_1039_D5AY00303B
crossref_primary_10_2147_TACG_S444546
crossref_primary_10_3390_chemosensors13090343
crossref_primary_10_3389_fonc_2025_1534862
crossref_primary_10_1007_s12268_024_2358_8
crossref_primary_10_3389_fendo_2024_1444940
crossref_primary_10_1093_postmj_qgae201
crossref_primary_10_1007_s00210_024_03594_7
crossref_primary_10_1038_s41598_024_54997_8
crossref_primary_10_1016_j_actatropica_2024_107243
crossref_primary_10_1016_j_gene_2024_149186
crossref_primary_10_1186_s12964_024_01934_x
crossref_primary_10_1111_pbi_70132
crossref_primary_10_3390_cells13151242
crossref_primary_10_1016_j_tibtech_2024_04_002
crossref_primary_10_3389_fphar_2025_1604711
crossref_primary_10_1093_plphys_kiae311
crossref_primary_10_1101_gad_352129_124
crossref_primary_10_1016_j_lfs_2024_122950
crossref_primary_10_1021_acs_analchem_5c04010
crossref_primary_10_3390_ijms26094287
crossref_primary_10_3390_ijms26094288
crossref_primary_10_1186_s12859_024_05840_4
crossref_primary_10_3748_wjg_v30_i22_2843
crossref_primary_10_4252_wjsc_v17_i3_99472
crossref_primary_10_1002_adma_202501378
crossref_primary_10_1038_s41598_024_80708_4
crossref_primary_10_3748_wjg_v31_i24_104437
crossref_primary_10_1007_s12672_025_03234_3
crossref_primary_10_3390_ijms25115961
crossref_primary_10_1016_j_cca_2023_117610
crossref_primary_10_1186_s12284_024_00748_2
crossref_primary_10_1371_journal_ppat_1012789
crossref_primary_10_3390_ijms26104621
crossref_primary_10_1016_j_synbio_2025_03_011
crossref_primary_10_1016_j_redox_2025_103689
crossref_primary_10_1080_10985549_2025_2519156
crossref_primary_10_1186_s13287_025_04558_1
crossref_primary_10_1111_pce_15546
crossref_primary_10_3390_ijms25147686
crossref_primary_10_1186_s12951_025_03102_w
crossref_primary_10_1021_acs_molpharmaceut_4c00871
crossref_primary_10_1080_21688370_2025_2502709
crossref_primary_10_1080_10715762_2025_2564674
crossref_primary_10_3389_fnmol_2024_1386735
crossref_primary_10_1186_s11658_024_00632_3
crossref_primary_10_1002_alr_23558
crossref_primary_10_1007_s11883_024_01216_4
crossref_primary_10_3390_plants13111429
crossref_primary_10_1038_s41576_024_00810_1
crossref_primary_10_1096_fj_202402248R
crossref_primary_10_1002_chem_202402566
crossref_primary_10_1016_j_ajpath_2025_07_006
crossref_primary_10_3389_fmolb_2024_1368372
crossref_primary_10_20517_evcna_2025_47
crossref_primary_10_1016_j_virol_2024_110361
crossref_primary_10_1016_j_trac_2025_118397
crossref_primary_10_1016_j_ijbiomac_2025_147006
Cites_doi 10.1016/j.molcel.2020.02.009
10.1016/j.cell.2018.03.006
10.1038/nsmb1293
10.1016/j.jmb.2017.07.018
10.1016/j.molcel.2015.05.015
10.1016/j.molcel.2020.04.030
10.1038/s41467-022-30976-3
10.4161/cc.9.22.13958
10.1038/ncomms13694
10.1073/pnas.1311639110
10.1038/sj.emboj.7601512
10.1038/nature09039
10.1126/science.1187197
10.1016/j.molcel.2020.10.028
10.1016/j.cell.2004.06.017
10.1080/15476286.2020.1868139
10.1016/j.cell.2013.10.001
10.1038/nature09092
10.1016/j.molcel.2019.05.014
10.1016/j.cell.2018.03.080
10.1016/j.molcel.2008.09.014
10.1126/science.1154040
10.1016/j.cell.2011.11.055
10.1242/dev.125.20.4077
10.7554/eLife.07646
10.1093/nar/gkac519
10.1016/0092-8674(93)90530-4
10.1126/science.1065329
10.15252/embr.201540078
10.1093/nar/gkx916
10.1038/s41467-019-12415-y
10.1242/dev.124.20.4039
10.1126/science.1241930
10.1038/s41467-018-05182-9
10.1038/nature05983
10.1038/s41467-022-29822-3
10.1073/pnas.1209487109
10.1126/science.1187058
10.1093/nar/gkv1330
10.1073/pnas.0912632107
10.1016/j.devcel.2014.12.018
10.1038/s41467-021-23607-w
10.1016/j.cell.2015.06.029
10.1038/nsmb.1475
10.1038/nature08349
10.1074/jbc.M110.180844
10.1038/nsmb.2230
10.1038/s41594-018-0032-x
10.1261/rna.056937.116
10.1038/s41467-022-32969-8
10.1261/rna.068692.118
10.1016/j.molcel.2012.12.024
10.1016/j.cell.2012.05.017
10.1016/j.molcel.2019.06.018
10.1261/rna.053264.115
10.1093/nar/gkaa921
10.1016/j.cell.2015.07.008
10.1126/science.1062961
10.1093/nar/gky248
10.1126/science.1102513
10.1093/nar/gkaa209
10.1016/j.celrep.2022.111154
10.1016/j.cell.2014.01.041
10.1128/MCB.00664-09
10.1038/nature14254
10.1126/science.1163728
10.1016/j.cell.2015.06.032
10.1016/0092-8674(93)90529-Y
10.1038/s41598-018-33596-4
10.1261/rna.2983511
10.1016/j.cell.2007.06.028
10.1016/j.molcel.2009.12.016
10.1093/nar/gkab731
10.1016/j.molcel.2020.05.011
10.1016/j.molcel.2015.08.015
10.1126/science.aam8526
10.1016/j.cell.2013.11.027
10.1083/jcb.200803111
10.1101/gr.121210.111
10.15252/embj.2018101153
10.1073/pnas.2214335119
10.1038/s41586-023-05722-4
10.1261/rna.7272305
10.1038/s41467-021-24555-1
10.1016/j.molcel.2019.06.019
10.1093/nar/gkac568
10.1261/rna.1155108
10.1016/j.celrep.2021.110015
10.1016/j.molcel.2018.04.010
10.7554/eLife.69803
10.1261/rna.054684.115
10.1038/nature12119
10.1261/rna.036194.112
10.1016/j.molcel.2012.10.002
10.1038/s41467-020-16533-w
10.1016/j.molcel.2011.07.024
10.1038/s41580-018-0059-1
10.1021/acs.biochem.8b00944
10.1038/s41467-020-15674-2
10.1038/s41598-017-09268-0
10.1038/s41467-022-31480-4
10.1016/j.celrep.2017.09.010
10.1101/gad.1812509
10.1016/j.cell.2010.05.017
10.1073/pnas.2015026117
10.1016/j.celrep.2014.05.013
10.1016/j.molcel.2020.02.020
10.1038/s41467-022-29046-5
10.1016/j.molcel.2019.05.033
10.1038/s41586-022-04790-2
10.1126/science.1139089
10.1261/rna.1319309
10.1038/embor.2010.81
10.1101/gad.348874.121
10.1016/j.molcel.2022.08.029
10.1016/j.molcel.2017.12.027
10.1038/nrg2916
10.1038/nsmb729
10.1126/science.1102514
10.1038/nsmb.1552
10.1038/nsmb.2606
10.1016/j.cell.2010.03.039
10.1261/rna.034538.112
10.1016/j.molcel.2018.10.033
10.1016/j.cell.2012.09.042
10.1261/rna.036434.112
10.1016/j.celrep.2023.112111
10.1038/35053110
10.1038/ncomms15114
10.1016/j.cell.2007.11.034
10.1101/gad.1884710
10.1016/j.cell.2010.03.009
10.1038/sj.emboj.7600491
10.1126/science.aav1741
10.1093/nar/gkab840
10.1016/j.cell.2009.08.002
10.1101/gad.339333.120
10.1073/pnas.1513421112
10.1073/pnas.1006432107
10.1038/nature08434
10.1038/s41586-023-05723-3
10.1016/j.cell.2006.03.043
10.1016/j.molcel.2019.01.010
10.1016/j.devcel.2020.06.004
10.1126/science.abl4546
10.1126/science.abc9546
10.1038/nature07315
10.1038/s41594-018-0136-3
10.1038/s41586-022-04911-x
10.1016/j.cell.2018.05.022
10.1371/journal.ppat.1002510
10.1126/science.abg2264
10.1261/rna.065862.118
10.1016/j.cub.2009.12.044
10.1093/emboj/cdf582
10.1038/nature06908
10.1016/j.molcel.2021.07.002
10.1126/science.1221551
10.1101/gad.1761509
10.1371/journal.pbio.2001272
10.1126/science.1064921
10.1261/rna.7240905
10.1038/nature06904
10.1093/nar/gkaa543
10.1126/science.1241911
10.1101/gad.1291905
10.1016/j.cell.2015.12.019
10.1038/ncomms9430
10.1038/s41467-021-25078-5
10.1074/jbc.M504714200
10.1016/j.molcel.2020.01.026
10.1016/j.molcel.2004.07.007
10.1016/j.molcel.2010.06.005
10.1016/j.molcel.2018.02.012
10.1016/j.cell.2008.10.053
10.1038/ncb2611
10.1016/j.molcel.2020.02.016
10.1038/ncb1759
10.1038/s41586-021-03524-0
10.1038/s41467-023-37819-9
10.15252/embj.201796474
10.1016/j.molcel.2008.10.013
10.1093/nar/gkaa018
10.1038/s41594-020-0461-1
10.1038/s41467-017-01713-y
10.1101/gad.1521307
10.1093/carcin/bgn187
10.1038/nrm3611
10.1242/dev.124.23.4847
10.1093/nar/gkq1030
10.1101/gr.251421.119
10.1016/j.cell.2004.12.035
10.1038/nature07666
10.1038/s41580-020-0246-8
10.1016/j.molcel.2022.09.002
10.1126/science.1190809
10.1038/nature13553
10.1261/rna.079098.122
10.1016/j.cell.2013.01.031
10.1016/j.devcel.2014.11.004
10.1016/j.molcel.2007.06.017
10.1093/nar/gkr148
10.1126/science.abc9359
10.1016/j.molcel.2019.06.012
10.1016/j.cell.2015.05.010
10.1038/nature10198
10.1038/ng865
10.1016/j.molcel.2020.02.024
10.1093/nar/gkaa827
10.1016/j.molcel.2022.10.010
10.1016/j.molcel.2016.06.014
10.1016/j.molcel.2017.03.014
10.1371/journal.pbio.0030085
10.1016/j.celrep.2012.10.023
10.1016/j.cell.2012.09.022
10.1126/science.abj8379
10.1126/science.1121638
10.3390/v11050448
10.1038/s41477-021-01000-1
10.1261/rna.040055.113
10.1126/science.1065062
10.1016/j.molcel.2009.08.020
10.1126/sciadv.abh1434
ContentType Journal Article
Copyright Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. Springer Nature Limited.
Copyright_xml – notice: Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. Springer Nature Limited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
DOI 10.1038/s41576-023-00611-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Central Student
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1471-0064
EndPage 833
ExternalDocumentID 37380761
10_1038_s41576_023_00611_y
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NIGMS NIH HHS
  grantid: R01 GM083300
GroupedDBID ---
-DZ
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFFNX
AFKRA
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
IHW
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
AFFHD
AGGLG
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QP
7QR
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
RC3
7X8
ID FETCH-LOGICAL-c419t-927a0430883e426b29561612b554f9bada2802e32c9d1b010ccfc2389b1b0bcd3
IEDL.DBID M7P
ISICitedReferencesCount 531
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018014400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0056
1471-0064
IngestDate Sun Nov 09 12:15:43 EST 2025
Mon Oct 06 18:26:22 EDT 2025
Wed Dec 10 14:04:39 EST 2025
Sat Nov 29 02:34:59 EST 2025
Tue Nov 18 22:30:55 EST 2025
Fri Feb 21 02:36:58 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2023. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-927a0430883e426b29561612b554f9bada2802e32c9d1b010ccfc2389b1b0bcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5626-9656
0000-0002-8432-5851
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11087887
PMID 37380761
PQID 2889800882
PQPubID 44267
PageCount 18
ParticipantIDs proquest_miscellaneous_2831295474
proquest_journals_2889800882
pubmed_primary_37380761
crossref_citationtrail_10_1038_s41576_023_00611_y
crossref_primary_10_1038_s41576_023_00611_y
springer_journals_10_1038_s41576_023_00611_y
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Genetics
PublicationTitleAbbrev Nat Rev Genet
PublicationTitleAlternate Nat Rev Genet
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Nguyen, Park, Dang, Choi, Kim (CR33) 2018; 46
McGeary, Bisaria, Pham, Wang, Bartel (CR65) 2022
Park (CR52) 2011; 475
Naganuma, Tadakuma, Tomari (CR99) 2021; 12
Kingston, Blodgett, Bartel (CR201) 2022; 82
Garaulet, Zhang, Wei, Li, Lai (CR215) 2020; 54
Macrae (CR48) 2006; 311
Ulitsky, Shkumatava, Jan, Sive, Bartel (CR196) 2011; 147
Suh (CR166) 2010; 20
Sternburg, Estep, Nguyen, Li, Karginov (CR75) 2018; 8
Salomon, Jolly, Moore, Zamore, Serebrov (CR103) 2015; 162
Yao, Sasaki, Ueda, Tomari, Tadakuma (CR104) 2015; 59
Lee (CR208) 2023; 42
Wei (CR93) 2021; 7
Kim, Nguyen, Li, Nguyen (CR34) 2018; 24
Kadener (CR138) 2009; 15
Nakanishi (CR112) 2022; 50
Kim (CR124) 2020; 78
Zeng, Cullen (CR27) 2005; 280
Smibert (CR139) 2011; 17
Heo (CR115) 2008; 32
Yang (CR192) 2022; 13
Kim (CR74) 2009; 23
Viswanathan, Daley, Gregory (CR116) 2008; 320
Partin (CR87) 2020; 78
Hutter (CR153) 2020; 78
Morlando (CR157) 2008; 15
Martello (CR131) 2010; 141
Yu (CR182) 2017; 15
Du, Wang, Sliz, Gregory (CR142) 2015; 162
Loeb (CR61) 2012; 48
Gu, Jin, Zhang, Sarnow, Kay (CR67) 2009; 16
Lataniotis (CR145) 2017; 7
Wang (CR132) 2020; 48
Consortium (CR43) 2021; 49
Cheloufi, Dos Santos, Chong, Hannon (CR221) 2010; 465
Liu (CR81) 2018; 173
Barr (CR84) 2011; 286
Cui (CR140) 2021; 593
Krol (CR179) 2010; 141
Ruby, Jan, Bartel (CR217) 2007; 448
Lee, Kim, Kim (CR38) 2023; 615
Grimson (CR66) 2007; 27
Cialek (CR109) 2022; 13
Kedde (CR76) 2007; 131
Schirle, Sheu-Gruttadauria, Chandradoss, Joo, MacRae (CR57) 2015
Gantier (CR174) 2011; 39
Nishida (CR209) 2013; 49
Yang (CR223) 2010; 107
Shi (CR193) 2020
Fang, Bartel (CR152) 2020; 78
Ramachandran, Chen (CR180) 2008; 321
Jin, Wang, Liu, Wang, Xu (CR86) 2020; 78
Murchison (CR167) 2007; 21
Yu, Kim (CR70) 2020
Shi, Nicholson, Jaggi, Nicholson (CR88) 2011; 39
Wang (CR79) 2009; 461
Willkomm (CR102) 2022; 13
Treiber, Treiber, Meister (CR126) 2019; 20
Nguyen (CR82) 2015; 161
Rybak (CR117) 2008; 10
Lewis, Burge, Bartel (CR16) 2005; 120
Park, Sim, Kehling, Nakanishi (CR24) 2020; 117
Leviten, Lai, Posakony (CR3) 1997; 124
Sim (CR73) 2022; 119
Klum, Chandradoss, Schirle, Joo, MacRae (CR106) 2018; 37
Xie (CR219) 2013; 155
Kobayashi, Singer (CR110) 2022; 13
Tsuboyama, Tadakuma, Tomari (CR101) 2018; 70
Boland, Tritschler, Heimstadt, Izaurralde, Weichenrieder (CR56) 2010; 11
Park (CR23) 2017; 45
Flemr (CR163) 2013; 155
Vermeulen (CR50) 2005; 11
Kim (CR40) 2021; 81
Derrien (CR136) 2012; 109
Gu (CR53) 2012; 151
Elkayam (CR20) 2012; 150
Cui (CR107) 2019; 10
Lai, Posakony (CR4) 1997; 124
Watanabe (CR164) 2008; 453
Chandradoss, Schirle, Szczepaniak, MacRae, Joo (CR105) 2015; 162
McGeary (CR64) 2019
Yang (CR71) 2019; 75
Bitetti (CR200) 2018; 25
Lee, Lee, Kim, Kim, Roh (CR90) 2023; 615
Shin (CR58) 2010; 38
Kim (CR77) 2021; 12
Luo (CR46) 2021; 12
Kobayashi, Shoji, Kiyokawa, Negishi, Tomari (CR134) 2019; 73
Truscott, Islam, Frolov (CR144) 2016; 22
MacRae, Zhou, Doudna (CR49) 2007; 14
Reichholf (CR178) 2019; 75
Marcinowski (CR186) 2012; 8
Ameres, Zamore (CR190) 2013; 14
Ecsedi, Rausch, Grosshans (CR214) 2015; 32
Zhang, Kolb, Jaskiewicz, Westhof, Filipowicz (CR47) 2004; 118
Cazalla, Yario, Steitz (CR185) 2010; 328
Lee, Ambros (CR8) 2001; 294
Fareh (CR94) 2016; 7
Tokumaru, Suzuki, Yamada, Nagino, Takahashi (CR130) 2008; 29
Lagos-Quintana, Rauhut, Lendeckel, Tuschl (CR9) 2001; 294
Baskerville, Bartel (CR141) 2005; 11
Wang, Sheng, Juranek, Tuschl, Patel (CR18) 2008; 456
Fernandez (CR35) 2017; 8
Pawlicki, Steitz (CR160) 2008; 182
Shukla, Bjerke, Muhlrad, Yi, Parker (CR181) 2019; 73
Okamura, Hagen, Duan, Tyler, Lai (CR216) 2007; 130
Kwon (CR154) 2020; 48
Rice, Shivashankar, Ma, Baryza, Nutiu (CR39) 2020; 80
Yang (CR191) 2020; 11
Partin (CR32) 2017; 8
Donayo (CR143) 2019; 75
Cifuentes (CR222) 2010; 328
Poirier (CR171) 2021; 373
Michlewski, Caceres (CR125) 2019; 25
Nguyen, Trinh, Bao, Nguyen (CR54) 2022; 13
Lai (CR6) 2002; 30
Kang (CR41) 2021; 37
Kwon (CR83) 2016; 164
Zamudio, Kelly, Sharp (CR220) 2014; 156
Hutvagner (CR162) 2001; 293
Chang, Triboulet, Thornton, Gregory (CR120) 2013
Heo (CR123) 2012; 151
Ustianenko (CR122) 2013; 19
Sheng (CR202) 2023; 14
Yang, Lai (CR12) 2011; 43
Kataruka (CR168) 2020; 48
Ballarino (CR156) 2009; 29
Lai, Burks, Posakony (CR5) 1998; 125
Haar (CR146) 2016; 44
Kennedy (CR170) 2015; 112
Jeong (CR205) 2023; 379
Zeng, Yi, Cullen (CR28) 2005; 24
D’Ambrogio, Gu, Udagawa, Mello, Richter (CR204) 2012
Sheu-Gruttadauria, MacRae (CR111) 2017; 429
Ruijtenberg (CR108) 2020; 27
Su (CR96) 2022; 607
Wightman, Ha, Ruvkun (CR2) 1993; 75
Wang (CR97) 2021; 374
Sheu-Gruttadauria, Xiao, Gebert, MacRae (CR72) 2019; 38
Kim, Kim (CR155) 2007; 26
Ibrahim (CR183) 2010; 107
Drake (CR210) 2014; 31
Treiber (CR129) 2017; 66
Ameres (CR189) 2010; 328
Donnelly (CR198) 2022; 40
Yang, Lai (CR148) 2010; 9
Liu (CR158) 2016; 63
Heo (CR118) 2009; 138
Liu (CR21) 2004; 305
Lal (CR60) 2009; 35
Ghini (CR187) 2018; 9
Chatterjee, Grosshans (CR184) 2009; 461
Lee, Feinbaum, Ambros (CR1) 1993; 75
Chi, Hannon, Darnell (CR59) 2012; 19
Bartel (CR10) 2018; 173
Bernstein, Caudy, Hammond, Hannon (CR161) 2001; 409
Shang (CR211) 2022; 50
Zhang, Kolb, Brondani, Billy, Filipowicz (CR51) 2002; 21
Newman, Thomson, Hammond (CR114) 2008; 14
Bogerd (CR218) 2010; 37
Kingston, Bartel (CR176) 2019; 29
Nguyen, Nguyen, Bao, Li, Nguyen (CR45) 2020; 48
Han (CR194) 2020
Quick-Cleveland (CR85) 2014; 7
Church (CR159) 2017; 20
Gutierrez-Perez (CR212) 2021; 7
Herbert (CR98) 2016; 22
Jouravleva (CR92) 2022; 82
Nussbacher, Yeo (CR128) 2018; 69
Li, Le, Nguyen, Trinh, Nguyen (CR37) 2021; 18
Carmell, Hannon (CR89) 2004; 11
Gibbings (CR177) 2012; 14
Schnall-Levin (CR68) 2011; 21
Schuster, Miesen, van Rij (CR169) 2019
Kretov (CR150) 2020; 78
Sheu-Gruttadauria (CR113) 2019
Michlewski, Guil, Semple, Caceres (CR127) 2008; 32
Shang (CR14) 2015; 6
Brennecke, Stark, Russell, Cohen (CR17) 2005; 3
Nguyen, Nguyen, Nguyen, Nguyen (CR25) 2019; 58
Vilimova (CR147) 2021; 49
Jee (CR149) 2018; 69
Zapletal (CR91) 2022; 82
Tam (CR165) 2008; 453
Fromm, Zhong, Tarbier, Friedlander, Hackenberg (CR44) 2022
Czech, Hannon (CR11) 2010; 12
Yamaguchi (CR95) 2022; 607
Chiang (CR42) 2010; 24
Yang, Schwartz, McJunkin (CR213) 2020; 34
Li (CR199) 2021; 35
Smibert, Yang, Azzam, Liu, Lai (CR133) 2013; 20
Maillard (CR173) 2013; 342
Ma, Wu, Choi, Wu (CR29) 2013; 110
Hafner (CR62) 2010; 141
Li, Lu, Han, Fan, Ding (CR172) 2013; 342
Iwasaki (CR100) 2015; 521
Lau, Lim, Weinstein, Bartel (CR7) 2001; 294
Zhang (CR69) 2018; 25
Thornton, Chang, Piskounova, Gregory (CR119) 2012; 18
Piwecka (CR195) 2017
de la Mata (CR188) 2015
Song, Smith, Hannon, Joshua-Tor (CR80) 2004; 305
Martinez, Gregory (CR135) 2013; 19
Frank, Sonenberg, Nagar (CR55) 2010; 465
Schirle, MacRae (CR19) 2012; 336
Kleaveland, Shi, Stefano, Bartel (CR197) 2018; 174
Katoh (CR203) 2009; 23
Mansur (CR206) 2016; 22
Vieux (CR207) 2021; 49
Shang (CR151) 2020; 78
van Rooij (CR175) 2007; 316
Auyeung, Ulitsky, McGeary, Bartel (CR30) 2013; 152
Han (CR137) 2009; 136
Lai, Tam, Rubin (CR15) 2005; 19
Han (CR26) 2006; 125
Maurin, Cazalla, Yang, Bortolamiol-Becet, Lai (CR13) 2012; 18
Meister (CR22) 2004; 15
Becker (CR63) 2019; 75
Faehnle, Walleshauser, Joshua-Tor (CR121) 2014; 514
Fang, Bartel (CR31) 2015; 60
Wang (CR78) 2008; 456
Li, Nguyen, Nguyen, Nguyen (CR36) 2020; 11
J Han (611_CR137) 2009; 136
K Zhang (611_CR69) 2018; 25
S Su (611_CR96) 2022; 607
G Michlewski (611_CR125) 2019; 25
RC Lee (611_CR8) 2001; 294
F Mansur (611_CR206) 2016; 22
IJ MacRae (611_CR49) 2007; 14
K Jouravleva (611_CR92) 2022; 82
K Kim (611_CR40) 2021; 81
A Grimson (611_CR66) 2007; 27
M Truscott (611_CR144) 2016; 22
CY Shi (611_CR193) 2020
JE Park (611_CR52) 2011; 475
GB Loeb (611_CR61) 2012; 48
I Barr (611_CR84) 2011; 286
M Morlando (611_CR157) 2008; 15
SM Klum (611_CR106) 2018; 37
I Ulitsky (611_CR196) 2011; 147
YY Lee (611_CR90) 2023; 615
VA Church (611_CR159) 2017; 20
S Li (611_CR36) 2020; 11
Y Li (611_CR172) 2013; 342
H Kobayashi (611_CR110) 2022; 13
JE Thornton (611_CR119) 2012; 18
B Derrien (611_CR136) 2012; 109
T Watanabe (611_CR164) 2008; 453
W Jin (611_CR86) 2020; 78
Y Zeng (611_CR28) 2005; 24
MA Carmell (611_CR89) 2004; 11
A Vermeulen (611_CR50) 2005; 11
A Lal (611_CR60) 2009; 35
WE Salomon (611_CR103) 2015; 162
BP Lewis (611_CR16) 2005; 120
NT Schirle (611_CR57) 2015
EC Lai (611_CR4) 1997; 124
WR Becker (611_CR63) 2019; 75
D Cazalla (611_CR185) 2010; 328
D Cifuentes (611_CR222) 2010; 328
SL Ameres (611_CR190) 2013; 14
JS Yang (611_CR12) 2011; 43
M de la Mata (611_CR188) 2015
F Ghini (611_CR187) 2018; 9
TA Nguyen (611_CR33) 2018; 46
W Fang (611_CR31) 2015; 60
HR Chiang (611_CR42) 2010; 24
A Yang (611_CR192) 2022; 13
IJ Macrae (611_CR48) 2006; 311
B Fromm (611_CR44) 2022
TD Nguyen (611_CR54) 2022; 13
S Willkomm (611_CR102) 2022; 13
K Okamura (611_CR216) 2007; 130
H Zhang (611_CR51) 2002; 21
W Kang (611_CR41) 2021; 37
S Yamaguchi (611_CR95) 2022; 607
CA Cialek (611_CR109) 2022; 13
TL Nguyen (611_CR45) 2020; 48
B Yang (611_CR213) 2020; 34
S Tokumaru (611_CR130) 2008; 29
I Heo (611_CR123) 2012; 151
S Baskerville (611_CR141) 2005; 11
JR Zamudio (611_CR220) 2014; 156
D Gibbings (611_CR177) 2012; 14
T Katoh (611_CR203) 2009; 23
Y Wang (611_CR78) 2008; 456
C Yao (611_CR104) 2015; 59
JG Ruby (611_CR217) 2007; 448
CR Faehnle (611_CR121) 2014; 514
M Piwecka (611_CR195) 2017
SL Ameres (611_CR189) 2010; 328
SD Chandradoss (611_CR105) 2015; 162
J Sheu-Gruttadauria (611_CR72) 2019; 38
ER Kingston (611_CR176) 2019; 29
Y Wang (611_CR79) 2009; 461
A Yang (611_CR191) 2020; 11
YY Lee (611_CR38) 2023; 615
R Shang (611_CR211) 2022; 50
DL Garaulet (611_CR215) 2020; 54
SE McGeary (611_CR65) 2022
AO Donayo (611_CR143) 2019; 75
A Boland (611_CR56) 2010; 11
Y Yu (611_CR182) 2017; 15
S Kim (611_CR77) 2021; 12
K Kim (611_CR34) 2018; 24
JK Nussbacher (611_CR128) 2018; 69
YK Kim (611_CR155) 2007; 26
S Gu (611_CR53) 2012; 151
M Vilimova (611_CR147) 2021; 49
MA Newman (611_CR114) 2008; 14
H Ma (611_CR29) 2013; 110
EC Lai (611_CR15) 2005; 19
TJ Cui (611_CR107) 2019; 10
Y Wang (611_CR18) 2008; 456
P Smibert (611_CR139) 2011; 17
D Zapletal (611_CR91) 2022; 82
S Iwasaki (611_CR100) 2015; 521
OH Tam (611_CR165) 2008; 453
A Rybak (611_CR117) 2008; 10
HM Nguyen (611_CR25) 2019; 58
S Li (611_CR37) 2021; 18
J Krol (611_CR179) 2010; 141
N Fernandez (611_CR35) 2017; 8
HH Kim (611_CR74) 2009; 23
SE McGeary (611_CR64) 2019
M Hafner (611_CR62) 2010; 141
SC Kwon (611_CR83) 2016; 164
E Elkayam (611_CR20) 2012; 150
B Reichholf (611_CR178) 2019; 75
DP Bartel (611_CR10) 2018; 173
MP Gantier (611_CR174) 2011; 39
J Sheu-Gruttadauria (611_CR113) 2019
KM Herbert (611_CR98) 2016; 22
N Suh (611_CR166) 2010; 20
B Czech (611_CR11) 2010; 12
M Flemr (611_CR163) 2013; 155
K Tsuboyama (611_CR101) 2018; 70
NJ Martinez (611_CR135) 2013; 19
J Haar (611_CR146) 2016; 44
S Kataruka (611_CR168) 2020; 48
HM Chang (611_CR120) 2013
L Lataniotis (611_CR145) 2017; 7
J Han (611_CR194) 2020
MW Leviten (611_CR3) 1997; 124
JM Pawlicki (611_CR160) 2008; 182
H Kobayashi (611_CR134) 2019; 73
Y Cui (611_CR140) 2021; 593
EM Kennedy (611_CR170) 2015; 112
P Smibert (611_CR133) 2013; 20
P Du (611_CR142) 2015; 162
J Brennecke (611_CR17) 2005; 3
P Gutierrez-Perez (611_CR212) 2021; 7
K Nakanishi (611_CR112) 2022; 50
A Bitetti (611_CR200) 2018; 25
H Liu (611_CR158) 2016; 63
EC Lai (611_CR5) 1998; 125
M Ecsedi (611_CR214) 2015; 32
N Lau (611_CR7) 2001; 294
HC Jeong (611_CR205) 2023; 379
Z Shi (611_CR88) 2011; 39
S Ruijtenberg (611_CR108) 2020; 27
J Sheu-Gruttadauria (611_CR111) 2017; 429
M Xie (611_CR219) 2013; 155
M Schnall-Levin (611_CR68) 2011; 21
R Shang (611_CR14) 2015; 6
R Shang (611_CR151) 2020; 78
EP Murchison (611_CR167) 2007; 21
A Yang (611_CR71) 2019; 75
BF Donnelly (611_CR198) 2022; 40
R Consortium (611_CR43) 2021; 49
X Wei (611_CR93) 2021; 7
NT Schirle (611_CR19) 2012; 336
A D’Ambrogio (611_CR204) 2012
L Li (611_CR199) 2021; 35
AC Partin (611_CR32) 2017; 8
Z Liu (611_CR81) 2018; 173
I Heo (611_CR118) 2009; 138
TA Nguyen (611_CR82) 2015; 161
QJ Luo (611_CR46) 2021; 12
SC Kwon (611_CR154) 2020; 48
VC Auyeung (611_CR30) 2013; 152
S Kadener (611_CR138) 2009; 15
F Ibrahim (611_CR183) 2010; 107
S Gu (611_CR67) 2009; 16
EZ Poirier (611_CR171) 2021; 373
DA Kretov (611_CR150) 2020; 78
KF Vieux (611_CR207) 2021; 49
HP Bogerd (611_CR218) 2010; 37
H Kim (611_CR124) 2020; 78
JJ Song (611_CR80) 2004; 305
G Michlewski (611_CR127) 2008; 32
T Maurin (611_CR13) 2012; 18
M Kedde (611_CR76) 2007; 131
I Heo (611_CR115) 2008; 32
J Liu (611_CR21) 2004; 305
M Naganuma (611_CR99) 2021; 12
S Yu (611_CR70) 2020
M Drake (611_CR210) 2014; 31
J Quick-Cleveland (611_CR85) 2014; 7
G Meister (611_CR22) 2004; 15
D Wang (611_CR132) 2020; 48
D Ustianenko (611_CR122) 2013; 19
F Frank (611_CR55) 2010; 465
JS Yang (611_CR223) 2010; 107
C Shin (611_CR58) 2010; 38
G Hutvagner (611_CR162) 2001; 293
MS Park (611_CR24) 2020; 117
D Jee (611_CR149) 2018; 69
KM Nishida (611_CR209) 2013; 49
S Shukla (611_CR181) 2019; 73
JS Yang (611_CR148) 2010; 9
SW Chi (611_CR59) 2012; 19
T Treiber (611_CR129) 2017; 66
W Fang (611_CR152) 2020; 78
B Kleaveland (611_CR197) 2018; 174
S Schuster (611_CR169) 2019
E Lai (611_CR6) 2002; 30
T Treiber (611_CR126) 2019; 20
G Sim (611_CR73) 2022; 119
H Zhang (611_CR47) 2004; 118
M Lagos-Quintana (611_CR9) 2001; 294
GM Rice (611_CR39) 2020; 80
M Fareh (611_CR94) 2016; 7
S Chatterjee (611_CR184) 2009; 461
J Han (611_CR26) 2006; 125
SR Viswanathan (611_CR116) 2008; 320
Q Wang (611_CR97) 2021; 374
MS Park (611_CR23) 2017; 45
PV Maillard (611_CR173) 2013; 342
ER Kingston (611_CR201) 2022; 82
S Lee (611_CR208) 2023; 42
RC Lee (611_CR1) 1993; 75
E van Rooij (611_CR175) 2007; 316
K Hutter (611_CR153) 2020; 78
G Martello (611_CR131) 2010; 141
V Ramachandran (611_CR180) 2008; 321
P Sheng (611_CR202) 2023; 14
AC Partin (611_CR87) 2020; 78
B Wightman (611_CR2) 1993; 75
L Marcinowski (611_CR186) 2012; 8
Y Zeng (611_CR27) 2005; 280
S Cheloufi (611_CR221) 2010; 465
E Bernstein (611_CR161) 2001; 409
EL Sternburg (611_CR75) 2018; 8
M Ballarino (611_CR156) 2009; 29
References_xml – volume: 78
  start-page: 303
  year: 2020
  end-page: 316.e4
  ident: CR151
  article-title: Genomic clustering facilitates nuclear processing of suboptimal pri-miRNA loci
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.009
– volume: 173
  start-page: 20
  year: 2018
  end-page: 51
  ident: CR10
  article-title: Metazoan microRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.006
– volume: 14
  start-page: 934
  year: 2007
  end-page: 940
  ident: CR49
  article-title: Structural determinants of RNA recognition and cleavage by Dicer
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1293
– volume: 429
  start-page: 2619
  year: 2017
  end-page: 2639
  ident: CR111
  article-title: Structural foundations of RNA silencing by Argonaute
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.07.018
– volume: 59
  start-page: 125
  year: 2015
  end-page: 132
  ident: CR104
  article-title: Single-molecule analysis of the target cleavage reaction by the RNAi enzyme complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.05.015
– volume: 78
  start-page: 1224
  year: 2020
  end-page: 1236.e5
  ident: CR124
  article-title: A mechanism for microRNA arm switching regulated by uridylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.030
– volume: 13
  year: 2022
  ident: CR109
  article-title: Imaging translational control by Argonaute with single-molecule resolution in live cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30976-3
– volume: 9
  start-page: 4455
  year: 2010
  end-page: 4460
  ident: CR148
  article-title: Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.22.13958
– volume: 7
  year: 2016
  ident: CR94
  article-title: TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13694
– volume: 110
  start-page: 20687
  year: 2013
  end-page: 20692
  ident: CR29
  article-title: Lower and upper stem-single-stranded RNA junctions together determine the Drosha cleavage site
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1311639110
– volume: 26
  start-page: 775
  year: 2007
  end-page: 783
  ident: CR155
  article-title: Processing of intronic microRNAs
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601512
– volume: 465
  start-page: 818
  year: 2010
  end-page: 822
  ident: CR55
  article-title: Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2
  publication-title: Nature
  doi: 10.1038/nature09039
– volume: 328
  start-page: 1563
  year: 2010
  end-page: 1566
  ident: CR185
  article-title: Down-regulation of a host microRNA by a noncoding RNA
  publication-title: Science
  doi: 10.1126/science.1187197
– volume: 80
  start-page: 892
  year: 2020
  end-page: 902.e4
  ident: CR39
  article-title: Functional atlas of primary miRNA maturation by the microprocessor
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.10.028
– volume: 118
  start-page: 57
  year: 2004
  end-page: 68
  ident: CR47
  article-title: Single processing center models for human Dicer and bacterial RNase III
  publication-title: Cell
  doi: 10.1016/j.cell.2004.06.017
– volume: 18
  start-page: 1716
  year: 2021
  end-page: 1726
  ident: CR37
  article-title: Bulges control pri-miRNA processing in a position and strand-dependent manner
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2020.1868139
– volume: 155
  start-page: 807
  year: 2013
  end-page: 816
  ident: CR163
  article-title: A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.001
– volume: 465
  start-page: 584
  year: 2010
  end-page: 589
  ident: CR221
  article-title: A dicer-independent miRNA biogenesis pathway that requires Ago catalysis
  publication-title: Nature
  doi: 10.1038/nature09092
– volume: 75
  start-page: 511
  year: 2019
  end-page: 522.e4
  ident: CR71
  article-title: 3′ uridylation confers miRNAs with non-canonical target repertoires
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.05.014
– volume: 173
  start-page: 1191
  year: 2018
  end-page: 1203.e12
  ident: CR81
  article-title: Cryo-EM structure of human dicer and its complexes with a pre-miRNA substrate
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.080
– volume: 32
  start-page: 276
  year: 2008
  end-page: 284
  ident: CR115
  article-title: Lin28 mediates the terminal uridylation of let-7 precursor microRNA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.09.014
– volume: 320
  start-page: 97
  year: 2008
  end-page: 100
  ident: CR116
  article-title: Selective blockade of microRNA processing by Lin28
  publication-title: Science
  doi: 10.1126/science.1154040
– volume: 147
  start-page: 1537
  year: 2011
  end-page: 1550
  ident: CR196
  article-title: Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.055
– volume: 125
  start-page: 4077
  year: 1998
  end-page: 4088
  ident: CR5
  article-title: The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of complex transcripts
  publication-title: Development
  doi: 10.1242/dev.125.20.4077
– year: 2015
  ident: CR57
  article-title: Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets
  publication-title: eLife
  doi: 10.7554/eLife.07646
– volume: 50
  start-page: 6618
  year: 2022
  end-page: 6638
  ident: CR112
  article-title: Anatomy of four human Argonaute proteins
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkac519
– volume: 75
  start-page: 855
  year: 1993
  end-page: 862
  ident: CR2
  article-title: Posttranscriptional regulation of the heterochronic gene by mediates temporal pattern formation in
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90530-4
– volume: 294
  start-page: 862
  year: 2001
  end-page: 864
  ident: CR8
  article-title: An extensive class of small RNAs in
  publication-title: Science
  doi: 10.1126/science.1065329
– year: 2015
  ident: CR188
  article-title: Potent degradation of neuronal miRNAs induced by highly complementary targets
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201540078
– volume: 45
  start-page: 11867
  year: 2017
  end-page: 11877
  ident: CR23
  article-title: Human Argonaute3 has slicer activity
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkx916
– volume: 10
  year: 2019
  ident: CR107
  article-title: Argonaute bypasses cellular obstacles without hindrance during target search
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12415-y
– volume: 124
  start-page: 4039
  year: 1997
  end-page: 4051
  ident: CR3
  article-title: The gene encodes a novel small protein and shares 3′ UTR sequence motifs with multiple complex genes
  publication-title: Development
  doi: 10.1242/dev.124.20.4039
– volume: 342
  start-page: 235
  year: 2013
  end-page: 238
  ident: CR173
  article-title: Antiviral RNA interference in mammalian cells
  publication-title: Science
  doi: 10.1126/science.1241930
– volume: 9
  year: 2018
  ident: CR187
  article-title: Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05182-9
– volume: 448
  start-page: 83
  year: 2007
  end-page: 86
  ident: CR217
  article-title: Intronic microRNA precursors that bypass Drosha processing
  publication-title: Nature
  doi: 10.1038/nature05983
– volume: 13
  year: 2022
  ident: CR54
  article-title: Secondary structure RNA elements control the cleavage activity of DICER
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29822-3
– volume: 109
  start-page: 15942
  year: 2012
  end-page: 15946
  ident: CR136
  article-title: Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1209487109
– volume: 328
  start-page: 1534
  year: 2010
  end-page: 1539
  ident: CR189
  article-title: Target RNA-directed trimming and tailing of small silencing RNAs
  publication-title: Science
  doi: 10.1126/science.1187058
– volume: 44
  start-page: 1326
  year: 2016
  end-page: 1341
  ident: CR146
  article-title: The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkv1330
– volume: 107
  start-page: 3906
  year: 2010
  end-page: 3911
  ident: CR183
  article-title: Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0912632107
– volume: 32
  start-page: 335
  year: 2015
  end-page: 344
  ident: CR214
  article-title: The let-7 microRNA directs vulval development through a single target
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.12.018
– volume: 12
  year: 2021
  ident: CR46
  article-title: RNA structure probing reveals the structural basis of Dicer binding and cleavage
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23607-w
– volume: 162
  start-page: 84
  year: 2015
  end-page: 95
  ident: CR103
  article-title: Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.029
– volume: 15
  start-page: 902
  year: 2008
  end-page: 909
  ident: CR157
  article-title: Primary microRNA transcripts are processed co-transcriptionally
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1475
– volume: 461
  start-page: 546
  year: 2009
  end-page: 549
  ident: CR184
  article-title: Active turnover modulates mature microRNA activity in
  publication-title: Nature
  doi: 10.1038/nature08349
– volume: 286
  start-page: 16716
  year: 2011
  end-page: 16725
  ident: CR84
  article-title: DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.180844
– volume: 19
  start-page: 321
  year: 2012
  end-page: 327
  ident: CR59
  article-title: An alternative mode of microRNA target recognition
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2230
– volume: 25
  start-page: 244
  year: 2018
  end-page: 251
  ident: CR200
  article-title: microRNA degradation by a conserved target RNA regulates animal behavior
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0032-x
– volume: 22
  start-page: 1492
  year: 2016
  end-page: 1499
  ident: CR206
  article-title: Gld2-catalyzed 3′ monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior
  publication-title: RNA
  doi: 10.1261/rna.056937.116
– volume: 13
  year: 2022
  ident: CR192
  article-title: TENT2, TUT4, and TUT7 selectively regulate miRNA sequence and abundance
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32969-8
– volume: 25
  start-page: 1
  year: 2019
  end-page: 16
  ident: CR125
  article-title: Post-transcriptional control of miRNA biogenesis
  publication-title: RNA
  doi: 10.1261/rna.068692.118
– volume: 49
  start-page: 680
  year: 2013
  end-page: 691
  ident: CR209
  article-title: Roles of R2D2, a cytoplasmic D2 body component, in the endogenous siRNA pathway in
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.12.024
– volume: 150
  start-page: 100
  year: 2012
  end-page: 110
  ident: CR20
  article-title: The structure of human Argonaute-2 in complex with miR-20a
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.017
– volume: 75
  start-page: 756
  year: 2019
  end-page: 768.e7
  ident: CR178
  article-title: Time-resolved small RNA sequencing unravels the molecular principles of microRNA homeostasis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.018
– volume: 22
  start-page: 129
  year: 2016
  end-page: 138
  ident: CR144
  article-title: Novel regulation and functional interaction of polycistronic miRNAs
  publication-title: RNA
  doi: 10.1261/rna.053264.115
– volume: 49
  start-page: D212
  year: 2021
  end-page: D220
  ident: CR43
  article-title: RNAcentral 2021: secondary structure integration, improved sequence search and new member databases
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkaa921
– volume: 162
  start-page: 885
  year: 2015
  end-page: 899
  ident: CR142
  article-title: A biogenesis step upstream of microprocessor controls miR-17 approximately 92 expression
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.008
– volume: 293
  start-page: 834
  year: 2001
  end-page: 838
  ident: CR162
  article-title: A cellular function for the RNA-interference enzyme Dicer in the maturation of the small temporal RNA
  publication-title: Science
  doi: 10.1126/science.1062961
– volume: 46
  start-page: 5726
  year: 2018
  end-page: 5736
  ident: CR33
  article-title: Microprocessor depends on hemin to recognize the apical loop of primary microRNA
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gky248
– volume: 305
  start-page: 1437
  year: 2004
  end-page: 1441
  ident: CR21
  article-title: Argonaute2 is the catalytic engine of mammalian RNAi
  publication-title: Science
  doi: 10.1126/science.1102513
– volume: 48
  start-page: 4681
  year: 2020
  end-page: 4697
  ident: CR132
  article-title: Uncovering the cellular capacity for intensive and specific feedback self-control of the argonautes and microRNA targeting activity
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkaa209
– volume: 40
  start-page: 111154
  year: 2022
  ident: CR198
  article-title: The developmentally timed decay of an essential microRNA family is seed-sequence dependent
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111154
– volume: 156
  start-page: 920
  year: 2014
  end-page: 934
  ident: CR220
  article-title: Argonaute-bound small RNAs from promoter-proximal RNA polymerase II
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.041
– volume: 29
  start-page: 5632
  year: 2009
  end-page: 5638
  ident: CR156
  article-title: Coupled RNA processing and transcription of intergenic primary microRNAs
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00664-09
– volume: 521
  start-page: 533
  year: 2015
  end-page: 536
  ident: CR100
  article-title: Defining fundamental steps in the assembly of the RNAi enzyme complex
  publication-title: Nature
  doi: 10.1038/nature14254
– volume: 321
  start-page: 1490
  year: 2008
  end-page: 1492
  ident: CR180
  article-title: Degradation of microRNAs by a family of exoribonucleases in
  publication-title: Science
  doi: 10.1126/science.1163728
– volume: 162
  start-page: 96
  year: 2015
  end-page: 107
  ident: CR105
  article-title: A dynamic search process underlies microRNA targeting
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.032
– volume: 75
  start-page: 843
  year: 1993
  end-page: 854
  ident: CR1
  article-title: The heterochronic gene encodes small RNAs with antisense complementarity to
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90529-Y
– volume: 8
  year: 2018
  ident: CR75
  article-title: Antagonistic and cooperative AGO2–PUM interactions in regulating mRNAs
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33596-4
– volume: 17
  start-page: 1997
  year: 2011
  end-page: 2010
  ident: CR139
  article-title: A genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs
  publication-title: RNA
  doi: 10.1261/rna.2983511
– volume: 130
  start-page: 89
  year: 2007
  end-page: 100
  ident: CR216
  article-title: The mirtron pathway generates microRNA-class regulatory RNAs in
  publication-title: Cell
  doi: 10.1016/j.cell.2007.06.028
– volume: 37
  start-page: 135
  year: 2010
  end-page: 142
  ident: CR218
  article-title: A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral microRNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.12.016
– volume: 49
  start-page: 10018
  year: 2021
  end-page: 10033
  ident: CR147
  article-title: regulation within a cluster of viral microRNAs
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkab731
– volume: 78
  start-page: 876
  year: 2020
  end-page: 889
  ident: CR153
  article-title: SAFB2 enables the processing of suboptimal stem–loop structures in clustered primary miRNA transcripts
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.05.011
– volume: 60
  start-page: 131
  year: 2015
  end-page: 145
  ident: CR31
  article-title: The menu of features that define primary microRNAs and enable de novo design of microRNA genes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.08.015
– year: 2017
  ident: CR195
  article-title: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function
  publication-title: Science
  doi: 10.1126/science.aam8526
– volume: 155
  start-page: 1568
  year: 2013
  end-page: 1580
  ident: CR219
  article-title: Mammalian 5′-capped microRNA precursors that generate a single microRNA
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.027
– volume: 182
  start-page: 61
  year: 2008
  end-page: 76
  ident: CR160
  article-title: Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200803111
– volume: 21
  start-page: 1395
  year: 2011
  end-page: 1403
  ident: CR68
  article-title: Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs
  publication-title: Genome Res.
  doi: 10.1101/gr.121210.111
– volume: 38
  year: 2019
  ident: CR72
  article-title: Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2
  publication-title: EMBO J.
  doi: 10.15252/embj.2018101153
– volume: 119
  year: 2022
  ident: CR73
  article-title: Manganese-dependent microRNA trimming by 3′ → 5′ exonucleases generates 14-nucleotide or shorter tiny RNAs
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2214335119
– volume: 615
  start-page: 323
  year: 2023
  end-page: 330
  ident: CR38
  article-title: Sequence determinant of small RNA production by DICER
  publication-title: Nature
  doi: 10.1038/s41586-023-05722-4
– volume: 11
  start-page: 674
  year: 2005
  end-page: 682
  ident: CR50
  article-title: The contributions of dsRNA structure to Dicer specificity and efficiency
  publication-title: RNA
  doi: 10.1261/rna.7272305
– volume: 12
  year: 2021
  ident: CR99
  article-title: Single-molecule analysis of processive double-stranded RNA cleavage by Dicer-2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24555-1
– year: 2019
  ident: CR113
  article-title: Structural basis for target-directed microRNA degradation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.019
– volume: 50
  start-page: 7637
  year: 2022
  end-page: 7654
  ident: CR211
  article-title: Regulated dicing of pre-mir-144 via reshaping of its terminal loop
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkac568
– volume: 14
  start-page: 1539
  year: 2008
  end-page: 1549
  ident: CR114
  article-title: Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing
  publication-title: RNA
  doi: 10.1261/rna.1155108
– volume: 37
  start-page: 110015
  year: 2021
  ident: CR41
  article-title: MapToCleave: high-throughput profiling of microRNA biogenesis in living cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.110015
– volume: 70
  start-page: 722
  year: 2018
  end-page: 729.e4
  ident: CR101
  article-title: Conformational activation of argonaute by distinct yet coordinated actions of the Hsp70 and Hsp90 chaperone systems
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.04.010
– year: 2022
  ident: CR65
  article-title: microRNA 3′-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position
  publication-title: eLife
  doi: 10.7554/eLife.69803
– volume: 22
  start-page: 175
  year: 2016
  end-page: 183
  ident: CR98
  article-title: A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting
  publication-title: RNA
  doi: 10.1261/rna.054684.115
– year: 2013
  ident: CR120
  article-title: A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway
  publication-title: Nature
  doi: 10.1038/nature12119
– volume: 18
  start-page: 2166
  year: 2012
  end-page: 2173
  ident: CR13
  article-title: RNase III-independent microRNA biogenesis in mammalian cells
  publication-title: RNA
  doi: 10.1261/rna.036194.112
– volume: 48
  start-page: 760
  year: 2012
  end-page: 770
  ident: CR61
  article-title: Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.10.002
– volume: 11
  year: 2020
  ident: CR191
  article-title: AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16533-w
– volume: 43
  start-page: 892
  year: 2011
  end-page: 903
  ident: CR12
  article-title: Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.07.024
– volume: 20
  start-page: 5
  year: 2019
  end-page: 20
  ident: CR126
  article-title: Regulation of microRNA biogenesis and its crosstalk with other cellular pathways
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0059-1
– volume: 58
  start-page: 189
  year: 2019
  end-page: 198
  ident: CR25
  article-title: Orientation of human microprocessor on primary microRNAs
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.8b00944
– volume: 11
  year: 2020
  ident: CR36
  article-title: Mismatched and wobble base pairs govern primary microRNA processing by human microprocessor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15674-2
– volume: 7
  year: 2017
  ident: CR145
  article-title: CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09268-0
– volume: 13
  year: 2022
  ident: CR102
  article-title: Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31480-4
– volume: 20
  start-page: 3123
  year: 2017
  end-page: 3134
  ident: CR159
  article-title: Microprocessor recruitment to elongating RNA polymerase II is required for differential expression of microRNAs
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.010
– volume: 23
  start-page: 1743
  year: 2009
  end-page: 1748
  ident: CR74
  article-title: HuR recruits let-7/RISC to repress c-Myc expression
  publication-title: Genes Dev.
  doi: 10.1101/gad.1812509
– volume: 141
  start-page: 1195
  year: 2010
  end-page: 1207
  ident: CR131
  article-title: A microRNA targeting dicer for metastasis control
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.017
– volume: 117
  start-page: 28576
  year: 2020
  end-page: 28578
  ident: CR24
  article-title: Human Argonaute2 and Argonaute3 are catalytically activated by different lengths of guide RNA
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2015026117
– volume: 7
  start-page: 1994
  year: 2014
  end-page: 2005
  ident: CR85
  article-title: The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.013
– volume: 78
  start-page: 317
  year: 2020
  end-page: 328.e6
  ident: CR150
  article-title: Ago2-dependent processing allows miR-451 to evade the global microRNA turnover elicited during erythropoiesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.020
– volume: 13
  year: 2022
  ident: CR110
  article-title: Single-molecule imaging of microRNA-mediated gene silencing in cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29046-5
– volume: 75
  start-page: 340
  year: 2019
  end-page: 356
  ident: CR143
  article-title: Oncogenic biogenesis of pri-miR-17-92 reveals hierarchy and competition among polycistronic microRNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.05.033
– volume: 607
  start-page: 393
  year: 2022
  end-page: 398
  ident: CR95
  article-title: Structure of the Dicer-2–R2D2 heterodimer bound to a small RNA duplex
  publication-title: Nature
  doi: 10.1038/s41586-022-04790-2
– volume: 316
  start-page: 575
  year: 2007
  end-page: 579
  ident: CR175
  article-title: Control of stress-dependent cardiac growth and gene expression by a microRNA
  publication-title: Science
  doi: 10.1126/science.1139089
– volume: 15
  start-page: 537
  year: 2009
  end-page: 545
  ident: CR138
  article-title: Genome-wide identification of targets of the Drosha-Pasha/DGCR8 complex
  publication-title: RNA
  doi: 10.1261/rna.1319309
– volume: 11
  start-page: 522
  year: 2010
  end-page: 527
  ident: CR56
  article-title: Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2010.81
– volume: 35
  start-page: 1595
  year: 2021
  end-page: 1609
  ident: CR199
  article-title: Widespread microRNA degradation elements in target mRNAs can assist the encoded proteins
  publication-title: Genes Dev.
  doi: 10.1101/gad.348874.121
– volume: 82
  start-page: 3872
  year: 2022
  end-page: 3884.e9
  ident: CR201
  article-title: Endogenous transcripts direct microRNA degradation in , and this targeted degradation is required for proper embryonic development
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.08.029
– volume: 69
  start-page: 265
  year: 2018
  end-page: 278.e6
  ident: CR149
  article-title: Dual strategies for Argonaute2-mediated biogenesis of erythroid miRNAs underlie conserved requirements for slicing in mammals
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.027
– volume: 12
  start-page: 19
  year: 2010
  end-page: 31
  ident: CR11
  article-title: Small RNA sorting: matchmaking for Argonautes
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2916
– volume: 11
  start-page: 214
  year: 2004
  end-page: 218
  ident: CR89
  article-title: RNase III enzymes and the initiation of gene silencing
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb729
– volume: 305
  start-page: 1434
  year: 2004
  end-page: 1437
  ident: CR80
  article-title: Crystal structure of Argonaute and its implications for RISC slicer activity
  publication-title: Science
  doi: 10.1126/science.1102514
– volume: 16
  start-page: 144
  year: 2009
  end-page: 150
  ident: CR67
  article-title: Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1552
– volume: 20
  start-page: 789
  year: 2013
  end-page: 795
  ident: CR133
  article-title: Homeostatic control of Argonaute stability by microRNA availability
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2606
– volume: 141
  start-page: 618
  year: 2010
  end-page: 631
  ident: CR179
  article-title: Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.039
– volume: 18
  start-page: 1875
  year: 2012
  end-page: 1885
  ident: CR119
  article-title: Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7)
  publication-title: RNA
  doi: 10.1261/rna.034538.112
– volume: 73
  start-page: 119
  year: 2019
  end-page: 129.e5
  ident: CR134
  article-title: Iruka eliminates dysfunctional argonaute by selective ubiquitination of its empty state
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.10.033
– volume: 151
  start-page: 900
  year: 2012
  end-page: 911
  ident: CR53
  article-title: The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.042
– volume: 19
  start-page: 605
  year: 2013
  end-page: 612
  ident: CR135
  article-title: Argonaute2 expression is post-transcriptionally coupled to microRNA abundance
  publication-title: RNA
  doi: 10.1261/rna.036434.112
– volume: 42
  start-page: 112111
  year: 2023
  ident: CR208
  article-title: Promiscuous splicing-derived hairpins are dominant substrates of tailing-mediated defense of miRNA biogenesis in mammals
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2023.112111
– volume: 409
  start-page: 363
  year: 2001
  end-page: 366
  ident: CR161
  article-title: Role for a bidentate ribonuclease in the initiation step of RNA interference
  publication-title: Nature
  doi: 10.1038/35053110
– volume: 8
  year: 2017
  ident: CR35
  article-title: Genetic variation and RNA structure regulate microRNA biogenesis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15114
– volume: 131
  start-page: 1273
  year: 2007
  end-page: 1286
  ident: CR76
  article-title: RNA-binding protein Dnd1 inhibits microRNA access to target mRNA
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.034
– volume: 24
  start-page: 992
  year: 2010
  end-page: 1009
  ident: CR42
  article-title: Mammalian microRNAs: experimental evaluation of novel and previously annotated genes
  publication-title: Genes Dev.
  doi: 10.1101/gad.1884710
– volume: 141
  start-page: 129
  year: 2010
  end-page: 141
  ident: CR62
  article-title: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.009
– volume: 24
  start-page: 138
  year: 2005
  end-page: 148
  ident: CR28
  article-title: Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600491
– year: 2019
  ident: CR64
  article-title: The biochemical basis of microRNA targeting efficacy
  publication-title: Science
  doi: 10.1126/science.aav1741
– volume: 49
  start-page: 11167
  year: 2021
  end-page: 11180
  ident: CR207
  article-title: Screening by deep sequencing reveals mediators of microRNA tailing in
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab840
– volume: 138
  start-page: 696
  year: 2009
  end-page: 708
  ident: CR118
  article-title: TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.08.002
– volume: 34
  start-page: 1227
  year: 2020
  end-page: 1238
  ident: CR213
  article-title: In vivo CRISPR screening for phenotypic targets of the mir-35-42 family in
  publication-title: Genes Dev.
  doi: 10.1101/gad.339333.120
– volume: 112
  start-page: E6945
  year: 2015
  end-page: E6954
  ident: CR170
  article-title: Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1513421112
– volume: 107
  start-page: 15163
  year: 2010
  end-page: 15168
  ident: CR223
  article-title: Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1006432107
– volume: 461
  start-page: 754
  year: 2009
  end-page: 761
  ident: CR79
  article-title: Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes
  publication-title: Nature
  doi: 10.1038/nature08434
– volume: 615
  start-page: 331
  year: 2023
  end-page: 338
  ident: CR90
  article-title: Structure of the human DICER–pre-miRNA complex in a dicing state
  publication-title: Nature
  doi: 10.1038/s41586-023-05723-3
– volume: 125
  start-page: 887
  year: 2006
  end-page: 901
  ident: CR26
  article-title: Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.043
– volume: 73
  start-page: 1204
  year: 2019
  end-page: 1216.e4
  ident: CR181
  article-title: The RNase PARN controls the levels of specific miRNAs that contribute to p53 regulation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.01.010
– volume: 54
  start-page: 410
  year: 2020
  end-page: 423
  ident: CR215
  article-title: miRNAs and neural alternative polyadenylation specify the virgin behavioral state
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.06.004
– volume: 374
  start-page: 1152
  year: 2021
  end-page: 1157
  ident: CR97
  article-title: Mechanism of siRNA production by a plant Dicer–RNA complex in dicing-competent conformation
  publication-title: Science
  doi: 10.1126/science.abl4546
– year: 2020
  ident: CR194
  article-title: A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming
  publication-title: Science
  doi: 10.1126/science.abc9546
– volume: 456
  start-page: 209
  year: 2008
  end-page: 213
  ident: CR18
  article-title: Structure of the guide-strand-containing Argonaute silencing complex
  publication-title: Nature
  doi: 10.1038/nature07315
– volume: 25
  start-page: 1019
  year: 2018
  end-page: 1027
  ident: CR69
  article-title: A novel class of microRNA-recognition elements that function only within open reading frames
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0136-3
– volume: 607
  start-page: 399
  year: 2022
  end-page: 406
  ident: CR96
  article-title: Structural insights into dsRNA processing by Dicer-2–Loqs-PD
  publication-title: Nature
  doi: 10.1038/s41586-022-04911-x
– volume: 174
  start-page: 350
  year: 2018
  end-page: 362.e17
  ident: CR197
  article-title: A network of noncoding regulatory RNAs acts in the mammalian brain
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.022
– volume: 8
  year: 2012
  ident: CR186
  article-title: Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002510
– volume: 373
  start-page: 231
  year: 2021
  end-page: 236
  ident: CR171
  article-title: An isoform of Dicer protects mammalian stem cells against multiple RNA viruses
  publication-title: Science
  doi: 10.1126/science.abg2264
– volume: 24
  start-page: 892
  year: 2018
  end-page: 898
  ident: CR34
  article-title: SRSF3 recruits DROSHA to the basal junction of primary microRNAs
  publication-title: RNA
  doi: 10.1261/rna.065862.118
– volume: 20
  start-page: 271
  year: 2010
  end-page: 277
  ident: CR166
  article-title: microRNA function is globally suppressed in mouse oocytes and early embryos
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.12.044
– volume: 21
  start-page: 5875
  year: 2002
  end-page: 5885
  ident: CR51
  article-title: Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf582
– volume: 453
  start-page: 539
  year: 2008
  end-page: 543
  ident: CR164
  article-title: Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes
  publication-title: Nature
  doi: 10.1038/nature06908
– volume: 81
  start-page: 3422
  year: 2021
  end-page: 3439.e11
  ident: CR40
  article-title: A quantitative map of human primary microRNA processing sites
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.07.002
– volume: 336
  start-page: 1037
  year: 2012
  end-page: 1040
  ident: CR19
  article-title: The crystal structure of human Argonaute2
  publication-title: Science
  doi: 10.1126/science.1221551
– volume: 23
  start-page: 433
  year: 2009
  end-page: 438
  ident: CR203
  article-title: Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2
  publication-title: Genes Dev.
  doi: 10.1101/gad.1761509
– volume: 15
  year: 2017
  ident: CR182
  article-title: ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2001272
– volume: 294
  start-page: 853
  year: 2001
  end-page: 858
  ident: CR9
  article-title: Identification of novel genes coding for small expressed RNAs
  publication-title: Science
  doi: 10.1126/science.1064921
– volume: 11
  start-page: 241
  year: 2005
  end-page: 247
  ident: CR141
  article-title: Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes
  publication-title: RNA
  doi: 10.1261/rna.7240905
– volume: 453
  start-page: 534
  year: 2008
  end-page: 538
  ident: CR165
  article-title: Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes
  publication-title: Nature
  doi: 10.1038/nature06904
– volume: 48
  start-page: 8050
  year: 2020
  end-page: 8062
  ident: CR168
  article-title: microRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkaa543
– volume: 342
  start-page: 231
  year: 2013
  end-page: 234
  ident: CR172
  article-title: RNA interference functions as an antiviral immunity mechanism in mammals
  publication-title: Science
  doi: 10.1126/science.1241911
– volume: 19
  start-page: 1067
  year: 2005
  end-page: 1080
  ident: CR15
  article-title: Pervasive regulation of Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs
  publication-title: Genes Dev.
  doi: 10.1101/gad.1291905
– volume: 164
  start-page: 81
  year: 2016
  end-page: 90
  ident: CR83
  article-title: Structure of human DROSHA
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.019
– volume: 6
  year: 2015
  ident: CR14
  article-title: Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9430
– volume: 12
  year: 2021
  ident: CR77
  article-title: The regulatory impact of RNA-binding proteins on microRNA targeting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25078-5
– volume: 280
  start-page: 27595
  year: 2005
  end-page: 27603
  ident: CR27
  article-title: Efficient processing of primary microRNA hairpins by Drosha requires flanking non-structured RNA sequences
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M504714200
– volume: 78
  start-page: 289
  year: 2020
  end-page: 302.e6
  ident: CR152
  article-title: microRNA clustering assists processing of suboptimal microRNA hairpins through the action of the ERH protein
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.01.026
– volume: 15
  start-page: 185
  year: 2004
  end-page: 197
  ident: CR22
  article-title: Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.07.007
– volume: 38
  start-page: 789
  year: 2010
  end-page: 802
  ident: CR58
  article-title: Expanding the microRNA targeting code: functional sites with centered pairing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.06.005
– volume: 69
  start-page: 1005
  year: 2018
  end-page: 1016.e7
  ident: CR128
  article-title: Systematic discovery of RNA binding proteins that regulate microRNA levels
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.02.012
– volume: 136
  start-page: 75
  year: 2009
  end-page: 84
  ident: CR137
  article-title: Posttranscriptional crossregulation between Drosha and DGCR8
  publication-title: Cell
  doi: 10.1016/j.cell.2008.10.053
– volume: 14
  start-page: 1314
  year: 2012
  end-page: 1321
  ident: CR177
  article-title: Selective autophagy degrades DICER and AGO2 and regulates miRNA activity
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2611
– volume: 78
  start-page: 411
  year: 2020
  end-page: 422 e414
  ident: CR87
  article-title: Cryo-EM structures of human Drosha and DGCR8 in complex with primary microRNA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.016
– volume: 10
  start-page: 987
  year: 2008
  end-page: 993
  ident: CR117
  article-title: A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1759
– volume: 593
  start-page: 602
  year: 2021
  end-page: 606
  ident: CR140
  article-title: Global miRNA dosage control of embryonic germ layer specification
  publication-title: Nature
  doi: 10.1038/s41586-021-03524-0
– volume: 14
  start-page: 2108
  year: 2023
  ident: CR202
  article-title: Screening of Drosophila microRNA-degradation sequences reveals Argonaute1 mRNA’s role in regulating miR-999
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37819-9
– volume: 37
  start-page: 75
  year: 2018
  end-page: 88
  ident: CR106
  article-title: Helix-7 in argonaute2 shapes the microRNA seed region for rapid target recognition
  publication-title: EMBO J.
  doi: 10.15252/embj.201796474
– volume: 32
  start-page: 383
  year: 2008
  end-page: 393
  ident: CR127
  article-title: Posttranscriptional regulation of miRNAs harboring conserved terminal loops
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.10.013
– volume: 48
  start-page: 2579
  year: 2020
  end-page: 2593
  ident: CR45
  article-title: The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human microprocessor
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkaa018
– volume: 27
  start-page: 790
  year: 2020
  end-page: 801
  ident: CR108
  article-title: mRNA structural dynamics shape Argonaute–target interactions
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0461-1
– volume: 8
  year: 2017
  ident: CR32
  article-title: Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01713-y
– volume: 21
  start-page: 682
  year: 2007
  end-page: 693
  ident: CR167
  article-title: Critical roles for Dicer in the female germline
  publication-title: Genes Dev.
  doi: 10.1101/gad.1521307
– volume: 29
  start-page: 2073
  year: 2008
  end-page: 2077
  ident: CR130
  article-title: let-7 regulates Dicer expression and constitutes a negative feedback loop
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgn187
– volume: 14
  start-page: 475
  year: 2013
  end-page: 488
  ident: CR190
  article-title: Diversifying microRNA sequence and function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3611
– volume: 124
  start-page: 4847
  year: 1997
  end-page: 4856
  ident: CR4
  article-title: The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of and complex gene expression
  publication-title: Development
  doi: 10.1242/dev.124.23.4847
– volume: 39
  start-page: 2756
  year: 2011
  end-page: 2768
  ident: CR88
  article-title: Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkq1030
– volume: 29
  start-page: 1777
  year: 2019
  end-page: 1790
  ident: CR176
  article-title: Global analyses of the dynamics of mammalian microRNA metabolism
  publication-title: Genome Res.
  doi: 10.1101/gr.251421.119
– volume: 120
  start-page: 15
  year: 2005
  end-page: 20
  ident: CR16
  article-title: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.035
– volume: 456
  start-page: 921
  year: 2008
  end-page: 926
  ident: CR78
  article-title: Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex
  publication-title: Nature
  doi: 10.1038/nature07666
– year: 2020
  ident: CR70
  article-title: A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0246-8
– volume: 82
  start-page: 4049
  year: 2022
  end-page: 4063.e6
  ident: CR92
  article-title: Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.09.002
– volume: 328
  start-page: 1694
  year: 2010
  end-page: 1698
  ident: CR222
  article-title: A novel miRNA processing pathway independent of dicer requires Argonaute2 catalytic activity
  publication-title: Science
  doi: 10.1126/science.1190809
– volume: 514
  start-page: 252
  year: 2014
  end-page: 256
  ident: CR121
  article-title: Mechanism of Dis3l2 substrate recognition in the Lin28–let-7 pathway
  publication-title: Nature
  doi: 10.1038/nature13553
– year: 2022
  ident: CR44
  article-title: The limits of human microRNA annotation have been met
  publication-title: RNA
  doi: 10.1261/rna.079098.122
– volume: 152
  start-page: 844
  year: 2013
  end-page: 858
  ident: CR30
  article-title: Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.031
– volume: 31
  start-page: 614
  year: 2014
  end-page: 628
  ident: CR210
  article-title: A requirement for ERK dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.11.004
– volume: 27
  start-page: 91
  year: 2007
  end-page: 105
  ident: CR66
  article-title: microRNA targeting specificity in mammals: determinants beyond seed pairing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.06.017
– volume: 39
  start-page: 5692
  year: 2011
  end-page: 5703
  ident: CR174
  article-title: Analysis of microRNA turnover in mammalian cells following Dicer1 ablation
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkr148
– year: 2020
  ident: CR193
  article-title: The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation
  publication-title: Science
  doi: 10.1126/science.abc9359
– volume: 75
  start-page: 741
  year: 2019
  end-page: 755.e11
  ident: CR63
  article-title: High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.012
– volume: 161
  start-page: 1374
  year: 2015
  end-page: 1387
  ident: CR82
  article-title: Functional anatomy of the human microprocessor
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.010
– volume: 475
  start-page: 201
  year: 2011
  end-page: 205
  ident: CR52
  article-title: Dicer recognizes the 5′ end of RNA for efficient and accurate processing
  publication-title: Nature
  doi: 10.1038/nature10198
– volume: 30
  start-page: 363
  year: 2002
  end-page: 364
  ident: CR6
  article-title: microRNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation
  publication-title: Nat. Genet.
  doi: 10.1038/ng865
– volume: 78
  start-page: 423
  year: 2020
  end-page: 433.e5
  ident: CR86
  article-title: Structural basis for pri-miRNA recognition by Drosha
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.024
– volume: 48
  start-page: 11097
  year: 2020
  end-page: 11112
  ident: CR154
  article-title: ERH facilitates microRNA maturation through the interaction with the N-terminus of DGCR8
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkaa827
– volume: 82
  start-page: 4064
  year: 2022
  end-page: 4079.e13
  ident: CR91
  article-title: Structural and functional basis of mammalian microRNA biogenesis by Dicer
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.10.010
– volume: 63
  start-page: 420
  year: 2016
  end-page: 432
  ident: CR158
  article-title: HP1BP3, a chromatin retention factor for co-transcriptional microRNA processing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.06.014
– volume: 66
  start-page: 270
  year: 2017
  end-page: 284.e13
  ident: CR129
  article-title: A compendium of RNA-binding proteins that regulate microRNA biogenesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.03.014
– volume: 3
  year: 2005
  ident: CR17
  article-title: Principles of microRNA–target recognition
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030085
– year: 2012
  ident: CR204
  article-title: Specific miRNA stabilization by Gld2-catalyzed monoadenylation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.10.023
– volume: 151
  start-page: 521
  year: 2012
  end-page: 532
  ident: CR123
  article-title: Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.022
– volume: 379
  start-page: 901
  year: 2023
  end-page: 907
  ident: CR205
  article-title: USB1 is a miRNA deadenylase that regulates hematopoietic development
  publication-title: Science
  doi: 10.1126/science.abj8379
– volume: 311
  start-page: 195
  year: 2006
  end-page: 198
  ident: CR48
  article-title: Structural basis for double-stranded RNA processing by Dicer
  publication-title: Science
  doi: 10.1126/science.1121638
– year: 2019
  ident: CR169
  article-title: Antiviral RNAi in insects and mammals: parallels and differences
  publication-title: Viruses
  doi: 10.3390/v11050448
– volume: 7
  start-page: 1389
  year: 2021
  end-page: 1396
  ident: CR93
  article-title: Structural basis of microRNA processing by Dicer-like 1
  publication-title: Nat. Plants
  doi: 10.1038/s41477-021-01000-1
– volume: 19
  start-page: 1632
  year: 2013
  end-page: 1638
  ident: CR122
  article-title: Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs
  publication-title: RNA
  doi: 10.1261/rna.040055.113
– volume: 294
  start-page: 858
  year: 2001
  end-page: 862
  ident: CR7
  article-title: An abundant class of tiny RNAs with probable regulatory roles in
  publication-title: Science
  doi: 10.1126/science.1065062
– volume: 35
  start-page: 610
  year: 2009
  end-page: 625
  ident: CR60
  article-title: miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.08.020
– volume: 7
  start-page: eabh1434
  year: 2021
  ident: CR212
  article-title: miR-1 sustains muscle physiology by controlling V-ATPase complex assembly
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abh1434
– volume: 22
  start-page: 129
  year: 2016
  ident: 611_CR144
  publication-title: RNA
  doi: 10.1261/rna.053264.115
– volume: 48
  start-page: 4681
  year: 2020
  ident: 611_CR132
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkaa209
– volume: 54
  start-page: 410
  year: 2020
  ident: 611_CR215
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.06.004
– volume: 49
  start-page: D212
  year: 2021
  ident: 611_CR43
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkaa921
– volume: 19
  start-page: 1632
  year: 2013
  ident: 611_CR122
  publication-title: RNA
  doi: 10.1261/rna.040055.113
– volume: 6
  year: 2015
  ident: 611_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9430
– volume: 29
  start-page: 2073
  year: 2008
  ident: 611_CR130
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgn187
– volume: 456
  start-page: 209
  year: 2008
  ident: 611_CR18
  publication-title: Nature
  doi: 10.1038/nature07315
– volume: 78
  start-page: 411
  year: 2020
  ident: 611_CR87
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.016
– volume: 38
  start-page: 789
  year: 2010
  ident: 611_CR58
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.06.005
– volume: 294
  start-page: 858
  year: 2001
  ident: 611_CR7
  publication-title: Science
  doi: 10.1126/science.1065062
– volume: 78
  start-page: 1224
  year: 2020
  ident: 611_CR124
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.030
– volume: 82
  start-page: 3872
  year: 2022
  ident: 611_CR201
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.08.029
– volume: 75
  start-page: 756
  year: 2019
  ident: 611_CR178
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.018
– volume: 448
  start-page: 83
  year: 2007
  ident: 611_CR217
  publication-title: Nature
  doi: 10.1038/nature05983
– volume: 461
  start-page: 546
  year: 2009
  ident: 611_CR184
  publication-title: Nature
  doi: 10.1038/nature08349
– volume: 7
  start-page: 1389
  year: 2021
  ident: 611_CR93
  publication-title: Nat. Plants
  doi: 10.1038/s41477-021-01000-1
– volume: 328
  start-page: 1563
  year: 2010
  ident: 611_CR185
  publication-title: Science
  doi: 10.1126/science.1187197
– volume: 23
  start-page: 1743
  year: 2009
  ident: 611_CR74
  publication-title: Genes Dev.
  doi: 10.1101/gad.1812509
– volume: 78
  start-page: 876
  year: 2020
  ident: 611_CR153
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.05.011
– volume: 280
  start-page: 27595
  year: 2005
  ident: 611_CR27
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M504714200
– volume: 20
  start-page: 3123
  year: 2017
  ident: 611_CR159
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.010
– volume: 155
  start-page: 1568
  year: 2013
  ident: 611_CR219
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.027
– volume: 294
  start-page: 853
  year: 2001
  ident: 611_CR9
  publication-title: Science
  doi: 10.1126/science.1064921
– volume: 18
  start-page: 2166
  year: 2012
  ident: 611_CR13
  publication-title: RNA
  doi: 10.1261/rna.036194.112
– volume: 373
  start-page: 231
  year: 2021
  ident: 611_CR171
  publication-title: Science
  doi: 10.1126/science.abg2264
– volume: 25
  start-page: 1019
  year: 2018
  ident: 611_CR69
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0136-3
– volume: 17
  start-page: 1997
  year: 2011
  ident: 611_CR139
  publication-title: RNA
  doi: 10.1261/rna.2983511
– volume: 8
  year: 2017
  ident: 611_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15114
– volume: 12
  year: 2021
  ident: 611_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23607-w
– volume: 11
  year: 2020
  ident: 611_CR191
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16533-w
– volume: 37
  start-page: 75
  year: 2018
  ident: 611_CR106
  publication-title: EMBO J.
  doi: 10.15252/embj.201796474
– volume: 320
  start-page: 97
  year: 2008
  ident: 611_CR116
  publication-title: Science
  doi: 10.1126/science.1154040
– volume: 37
  start-page: 110015
  year: 2021
  ident: 611_CR41
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.110015
– volume: 16
  start-page: 144
  year: 2009
  ident: 611_CR67
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1552
– volume: 82
  start-page: 4064
  year: 2022
  ident: 611_CR91
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.10.010
– volume: 147
  start-page: 1537
  year: 2011
  ident: 611_CR196
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.055
– volume: 30
  start-page: 363
  year: 2002
  ident: 611_CR6
  publication-title: Nat. Genet.
  doi: 10.1038/ng865
– volume: 48
  start-page: 2579
  year: 2020
  ident: 611_CR45
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkaa018
– volume: 321
  start-page: 1490
  year: 2008
  ident: 611_CR180
  publication-title: Science
  doi: 10.1126/science.1163728
– volume: 409
  start-page: 363
  year: 2001
  ident: 611_CR161
  publication-title: Nature
  doi: 10.1038/35053110
– volume: 465
  start-page: 584
  year: 2010
  ident: 611_CR221
  publication-title: Nature
  doi: 10.1038/nature09092
– volume: 138
  start-page: 696
  year: 2009
  ident: 611_CR118
  publication-title: Cell
  doi: 10.1016/j.cell.2009.08.002
– year: 2015
  ident: 611_CR188
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201540078
– volume: 22
  start-page: 1492
  year: 2016
  ident: 611_CR206
  publication-title: RNA
  doi: 10.1261/rna.056937.116
– volume: 151
  start-page: 521
  year: 2012
  ident: 611_CR123
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.022
– year: 2019
  ident: 611_CR169
  publication-title: Viruses
  doi: 10.3390/v11050448
– volume: 117
  start-page: 28576
  year: 2020
  ident: 611_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2015026117
– volume: 110
  start-page: 20687
  year: 2013
  ident: 611_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1311639110
– volume: 152
  start-page: 844
  year: 2013
  ident: 611_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.031
– volume: 131
  start-page: 1273
  year: 2007
  ident: 611_CR76
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.034
– volume: 8
  year: 2017
  ident: 611_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01713-y
– volume: 130
  start-page: 89
  year: 2007
  ident: 611_CR216
  publication-title: Cell
  doi: 10.1016/j.cell.2007.06.028
– year: 2017
  ident: 611_CR195
  publication-title: Science
  doi: 10.1126/science.aam8526
– volume: 521
  start-page: 533
  year: 2015
  ident: 611_CR100
  publication-title: Nature
  doi: 10.1038/nature14254
– volume: 32
  start-page: 276
  year: 2008
  ident: 611_CR115
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.09.014
– volume: 70
  start-page: 722
  year: 2018
  ident: 611_CR101
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.04.010
– volume: 109
  start-page: 15942
  year: 2012
  ident: 611_CR136
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1209487109
– volume: 13
  year: 2022
  ident: 611_CR110
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29046-5
– volume: 40
  start-page: 111154
  year: 2022
  ident: 611_CR198
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111154
– volume: 15
  start-page: 902
  year: 2008
  ident: 611_CR157
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1475
– volume: 18
  start-page: 1716
  year: 2021
  ident: 611_CR37
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2020.1868139
– volume: 124
  start-page: 4039
  year: 1997
  ident: 611_CR3
  publication-title: Development
  doi: 10.1242/dev.124.20.4039
– volume: 125
  start-page: 887
  year: 2006
  ident: 611_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.043
– volume: 615
  start-page: 323
  year: 2023
  ident: 611_CR38
  publication-title: Nature
  doi: 10.1038/s41586-023-05722-4
– volume: 73
  start-page: 1204
  year: 2019
  ident: 611_CR181
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.01.010
– volume: 118
  start-page: 57
  year: 2004
  ident: 611_CR47
  publication-title: Cell
  doi: 10.1016/j.cell.2004.06.017
– volume: 19
  start-page: 1067
  year: 2005
  ident: 611_CR15
  publication-title: Genes Dev.
  doi: 10.1101/gad.1291905
– volume: 461
  start-page: 754
  year: 2009
  ident: 611_CR79
  publication-title: Nature
  doi: 10.1038/nature08434
– volume: 174
  start-page: 350
  year: 2018
  ident: 611_CR197
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.022
– volume: 49
  start-page: 680
  year: 2013
  ident: 611_CR209
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.12.024
– volume: 8
  year: 2018
  ident: 611_CR75
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33596-4
– volume: 155
  start-page: 807
  year: 2013
  ident: 611_CR163
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.001
– year: 2020
  ident: 611_CR70
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0246-8
– volume: 32
  start-page: 335
  year: 2015
  ident: 611_CR214
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.12.018
– volume: 336
  start-page: 1037
  year: 2012
  ident: 611_CR19
  publication-title: Science
  doi: 10.1126/science.1221551
– volume: 162
  start-page: 96
  year: 2015
  ident: 611_CR105
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.032
– volume: 514
  start-page: 252
  year: 2014
  ident: 611_CR121
  publication-title: Nature
  doi: 10.1038/nature13553
– volume: 7
  year: 2016
  ident: 611_CR94
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13694
– volume: 37
  start-page: 135
  year: 2010
  ident: 611_CR218
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.12.016
– volume: 78
  start-page: 303
  year: 2020
  ident: 611_CR151
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.009
– volume: 29
  start-page: 1777
  year: 2019
  ident: 611_CR176
  publication-title: Genome Res.
  doi: 10.1101/gr.251421.119
– volume: 43
  start-page: 892
  year: 2011
  ident: 611_CR12
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.07.024
– volume: 39
  start-page: 2756
  year: 2011
  ident: 611_CR88
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkq1030
– volume: 305
  start-page: 1434
  year: 2004
  ident: 611_CR80
  publication-title: Science
  doi: 10.1126/science.1102514
– volume: 13
  year: 2022
  ident: 611_CR102
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31480-4
– volume: 141
  start-page: 1195
  year: 2010
  ident: 611_CR131
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.017
– volume: 48
  start-page: 11097
  year: 2020
  ident: 611_CR154
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkaa827
– year: 2012
  ident: 611_CR204
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.10.023
– volume: 20
  start-page: 789
  year: 2013
  ident: 611_CR133
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2606
– volume: 456
  start-page: 921
  year: 2008
  ident: 611_CR78
  publication-title: Nature
  doi: 10.1038/nature07666
– volume: 156
  start-page: 920
  year: 2014
  ident: 611_CR220
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.041
– volume: 24
  start-page: 992
  year: 2010
  ident: 611_CR42
  publication-title: Genes Dev.
  doi: 10.1101/gad.1884710
– volume: 75
  start-page: 340
  year: 2019
  ident: 611_CR143
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.05.033
– volume: 20
  start-page: 271
  year: 2010
  ident: 611_CR166
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.12.044
– volume: 141
  start-page: 129
  year: 2010
  ident: 611_CR62
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.009
– volume: 293
  start-page: 834
  year: 2001
  ident: 611_CR162
  publication-title: Science
  doi: 10.1126/science.1062961
– volume: 107
  start-page: 3906
  year: 2010
  ident: 611_CR183
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0912632107
– volume: 453
  start-page: 539
  year: 2008
  ident: 611_CR164
  publication-title: Nature
  doi: 10.1038/nature06908
– volume: 24
  start-page: 892
  year: 2018
  ident: 611_CR34
  publication-title: RNA
  doi: 10.1261/rna.065862.118
– volume: 9
  year: 2018
  ident: 611_CR187
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05182-9
– volume: 19
  start-page: 321
  year: 2012
  ident: 611_CR59
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2230
– year: 2019
  ident: 611_CR64
  publication-title: Science
  doi: 10.1126/science.aav1741
– volume: 73
  start-page: 119
  year: 2019
  ident: 611_CR134
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.10.033
– volume: 342
  start-page: 231
  year: 2013
  ident: 611_CR172
  publication-title: Science
  doi: 10.1126/science.1241911
– volume: 305
  start-page: 1437
  year: 2004
  ident: 611_CR21
  publication-title: Science
  doi: 10.1126/science.1102513
– volume: 112
  start-page: E6945
  year: 2015
  ident: 611_CR170
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1513421112
– volume: 46
  start-page: 5726
  year: 2018
  ident: 611_CR33
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gky248
– year: 2015
  ident: 611_CR57
  publication-title: eLife
  doi: 10.7554/eLife.07646
– volume: 119
  year: 2022
  ident: 611_CR73
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2214335119
– volume: 18
  start-page: 1875
  year: 2012
  ident: 611_CR119
  publication-title: RNA
  doi: 10.1261/rna.034538.112
– volume: 311
  start-page: 195
  year: 2006
  ident: 611_CR48
  publication-title: Science
  doi: 10.1126/science.1121638
– volume: 294
  start-page: 862
  year: 2001
  ident: 611_CR8
  publication-title: Science
  doi: 10.1126/science.1065329
– volume: 32
  start-page: 383
  year: 2008
  ident: 611_CR127
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.10.013
– volume: 453
  start-page: 534
  year: 2008
  ident: 611_CR165
  publication-title: Nature
  doi: 10.1038/nature06904
– volume: 50
  start-page: 7637
  year: 2022
  ident: 611_CR211
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkac568
– volume: 75
  start-page: 843
  year: 1993
  ident: 611_CR1
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90529-Y
– volume: 607
  start-page: 399
  year: 2022
  ident: 611_CR96
  publication-title: Nature
  doi: 10.1038/s41586-022-04911-x
– volume: 12
  start-page: 19
  year: 2010
  ident: 611_CR11
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2916
– volume: 78
  start-page: 289
  year: 2020
  ident: 611_CR152
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.01.026
– volume: 66
  start-page: 270
  year: 2017
  ident: 611_CR129
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.03.014
– volume: 49
  start-page: 11167
  year: 2021
  ident: 611_CR207
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab840
– volume: 3
  year: 2005
  ident: 611_CR17
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030085
– year: 2022
  ident: 611_CR65
  publication-title: eLife
  doi: 10.7554/eLife.69803
– volume: 10
  year: 2019
  ident: 611_CR107
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12415-y
– volume: 78
  start-page: 317
  year: 2020
  ident: 611_CR150
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.020
– volume: 42
  start-page: 112111
  year: 2023
  ident: 611_CR208
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2023.112111
– volume: 21
  start-page: 1395
  year: 2011
  ident: 611_CR68
  publication-title: Genome Res.
  doi: 10.1101/gr.121210.111
– volume: 316
  start-page: 575
  year: 2007
  ident: 611_CR175
  publication-title: Science
  doi: 10.1126/science.1139089
– volume: 12
  year: 2021
  ident: 611_CR99
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24555-1
– volume: 63
  start-page: 420
  year: 2016
  ident: 611_CR158
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.06.014
– volume: 13
  year: 2022
  ident: 611_CR192
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32969-8
– volume: 19
  start-page: 605
  year: 2013
  ident: 611_CR135
  publication-title: RNA
  doi: 10.1261/rna.036434.112
– volume: 69
  start-page: 265
  year: 2018
  ident: 611_CR149
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.027
– year: 2020
  ident: 611_CR194
  publication-title: Science
  doi: 10.1126/science.abc9546
– volume: 429
  start-page: 2619
  year: 2017
  ident: 611_CR111
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.07.018
– volume: 173
  start-page: 1191
  year: 2018
  ident: 611_CR81
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.080
– volume: 13
  year: 2022
  ident: 611_CR54
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29822-3
– volume: 21
  start-page: 682
  year: 2007
  ident: 611_CR167
  publication-title: Genes Dev.
  doi: 10.1101/gad.1521307
– volume: 342
  start-page: 235
  year: 2013
  ident: 611_CR173
  publication-title: Science
  doi: 10.1126/science.1241930
– volume: 7
  year: 2017
  ident: 611_CR145
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09268-0
– volume: 607
  start-page: 393
  year: 2022
  ident: 611_CR95
  publication-title: Nature
  doi: 10.1038/s41586-022-04790-2
– volume: 69
  start-page: 1005
  year: 2018
  ident: 611_CR128
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.02.012
– volume: 162
  start-page: 84
  year: 2015
  ident: 611_CR103
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.029
– volume: 15
  start-page: 185
  year: 2004
  ident: 611_CR22
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.07.007
– volume: 82
  start-page: 4049
  year: 2022
  ident: 611_CR92
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.09.002
– volume: 328
  start-page: 1694
  year: 2010
  ident: 611_CR222
  publication-title: Science
  doi: 10.1126/science.1190809
– volume: 120
  start-page: 15
  year: 2005
  ident: 611_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.035
– volume: 59
  start-page: 125
  year: 2015
  ident: 611_CR104
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.05.015
– volume: 75
  start-page: 855
  year: 1993
  ident: 611_CR2
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90530-4
– volume: 15
  start-page: 537
  year: 2009
  ident: 611_CR138
  publication-title: RNA
  doi: 10.1261/rna.1319309
– volume: 35
  start-page: 610
  year: 2009
  ident: 611_CR60
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.08.020
– volume: 14
  start-page: 934
  year: 2007
  ident: 611_CR49
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1293
– volume: 150
  start-page: 100
  year: 2012
  ident: 611_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.017
– volume: 44
  start-page: 1326
  year: 2016
  ident: 611_CR146
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkv1330
– volume: 12
  year: 2021
  ident: 611_CR77
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25078-5
– volume: 31
  start-page: 614
  year: 2014
  ident: 611_CR210
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.11.004
– volume: 21
  start-page: 5875
  year: 2002
  ident: 611_CR51
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf582
– volume: 27
  start-page: 91
  year: 2007
  ident: 611_CR66
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.06.017
– volume: 13
  year: 2022
  ident: 611_CR109
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30976-3
– volume: 182
  start-page: 61
  year: 2008
  ident: 611_CR160
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200803111
– volume: 136
  start-page: 75
  year: 2009
  ident: 611_CR137
  publication-title: Cell
  doi: 10.1016/j.cell.2008.10.053
– volume: 22
  start-page: 175
  year: 2016
  ident: 611_CR98
  publication-title: RNA
  doi: 10.1261/rna.054684.115
– volume: 20
  start-page: 5
  year: 2019
  ident: 611_CR126
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0059-1
– year: 2019
  ident: 611_CR113
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.019
– volume: 7
  start-page: eabh1434
  year: 2021
  ident: 611_CR212
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abh1434
– volume: 81
  start-page: 3422
  year: 2021
  ident: 611_CR40
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.07.002
– volume: 29
  start-page: 5632
  year: 2009
  ident: 611_CR156
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00664-09
– volume: 328
  start-page: 1534
  year: 2010
  ident: 611_CR189
  publication-title: Science
  doi: 10.1126/science.1187058
– volume: 48
  start-page: 8050
  year: 2020
  ident: 611_CR168
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkaa543
– volume: 38
  year: 2019
  ident: 611_CR72
  publication-title: EMBO J.
  doi: 10.15252/embj.2018101153
– volume: 75
  start-page: 741
  year: 2019
  ident: 611_CR63
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.06.012
– volume: 7
  start-page: 1994
  year: 2014
  ident: 611_CR85
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.013
– volume: 11
  start-page: 522
  year: 2010
  ident: 611_CR56
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2010.81
– volume: 50
  start-page: 6618
  year: 2022
  ident: 611_CR112
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkac519
– volume: 60
  start-page: 131
  year: 2015
  ident: 611_CR31
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.08.015
– volume: 14
  start-page: 475
  year: 2013
  ident: 611_CR190
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3611
– volume: 141
  start-page: 618
  year: 2010
  ident: 611_CR179
  publication-title: Cell
  doi: 10.1016/j.cell.2010.03.039
– volume: 374
  start-page: 1152
  year: 2021
  ident: 611_CR97
  publication-title: Science
  doi: 10.1126/science.abl4546
– volume: 14
  start-page: 1314
  year: 2012
  ident: 611_CR177
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2611
– volume: 475
  start-page: 201
  year: 2011
  ident: 611_CR52
  publication-title: Nature
  doi: 10.1038/nature10198
– volume: 24
  start-page: 138
  year: 2005
  ident: 611_CR28
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600491
– volume: 162
  start-page: 885
  year: 2015
  ident: 611_CR142
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.008
– volume: 11
  year: 2020
  ident: 611_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15674-2
– volume: 9
  start-page: 4455
  year: 2010
  ident: 611_CR148
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.22.13958
– volume: 125
  start-page: 4077
  year: 1998
  ident: 611_CR5
  publication-title: Development
  doi: 10.1242/dev.125.20.4077
– volume: 11
  start-page: 214
  year: 2004
  ident: 611_CR89
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb729
– volume: 8
  year: 2012
  ident: 611_CR186
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002510
– volume: 11
  start-page: 674
  year: 2005
  ident: 611_CR50
  publication-title: RNA
  doi: 10.1261/rna.7272305
– volume: 14
  start-page: 1539
  year: 2008
  ident: 611_CR114
  publication-title: RNA
  doi: 10.1261/rna.1155108
– volume: 80
  start-page: 892
  year: 2020
  ident: 611_CR39
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.10.028
– volume: 593
  start-page: 602
  year: 2021
  ident: 611_CR140
  publication-title: Nature
  doi: 10.1038/s41586-021-03524-0
– volume: 75
  start-page: 511
  year: 2019
  ident: 611_CR71
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.05.014
– volume: 286
  start-page: 16716
  year: 2011
  ident: 611_CR84
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.180844
– volume: 23
  start-page: 433
  year: 2009
  ident: 611_CR203
  publication-title: Genes Dev.
  doi: 10.1101/gad.1761509
– volume: 14
  start-page: 2108
  year: 2023
  ident: 611_CR202
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37819-9
– volume: 379
  start-page: 901
  year: 2023
  ident: 611_CR205
  publication-title: Science
  doi: 10.1126/science.abj8379
– volume: 124
  start-page: 4847
  year: 1997
  ident: 611_CR4
  publication-title: Development
  doi: 10.1242/dev.124.23.4847
– volume: 11
  start-page: 241
  year: 2005
  ident: 611_CR141
  publication-title: RNA
  doi: 10.1261/rna.7240905
– year: 2022
  ident: 611_CR44
  publication-title: RNA
  doi: 10.1261/rna.079098.122
– volume: 615
  start-page: 331
  year: 2023
  ident: 611_CR90
  publication-title: Nature
  doi: 10.1038/s41586-023-05723-3
– year: 2020
  ident: 611_CR193
  publication-title: Science
  doi: 10.1126/science.abc9359
– volume: 39
  start-page: 5692
  year: 2011
  ident: 611_CR174
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkr148
– volume: 151
  start-page: 900
  year: 2012
  ident: 611_CR53
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.042
– volume: 35
  start-page: 1595
  year: 2021
  ident: 611_CR199
  publication-title: Genes Dev.
  doi: 10.1101/gad.348874.121
– volume: 27
  start-page: 790
  year: 2020
  ident: 611_CR108
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0461-1
– year: 2013
  ident: 611_CR120
  publication-title: Nature
  doi: 10.1038/nature12119
– volume: 34
  start-page: 1227
  year: 2020
  ident: 611_CR213
  publication-title: Genes Dev.
  doi: 10.1101/gad.339333.120
– volume: 25
  start-page: 1
  year: 2019
  ident: 611_CR125
  publication-title: RNA
  doi: 10.1261/rna.068692.118
– volume: 45
  start-page: 11867
  year: 2017
  ident: 611_CR23
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkx916
– volume: 58
  start-page: 189
  year: 2019
  ident: 611_CR25
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.8b00944
– volume: 10
  start-page: 987
  year: 2008
  ident: 611_CR117
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1759
– volume: 48
  start-page: 760
  year: 2012
  ident: 611_CR61
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.10.002
– volume: 161
  start-page: 1374
  year: 2015
  ident: 611_CR82
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.010
– volume: 49
  start-page: 10018
  year: 2021
  ident: 611_CR147
  publication-title: Nucleic acids Res.
  doi: 10.1093/nar/gkab731
– volume: 15
  year: 2017
  ident: 611_CR182
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2001272
– volume: 78
  start-page: 423
  year: 2020
  ident: 611_CR86
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.024
– volume: 107
  start-page: 15163
  year: 2010
  ident: 611_CR223
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1006432107
– volume: 26
  start-page: 775
  year: 2007
  ident: 611_CR155
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601512
– volume: 25
  start-page: 244
  year: 2018
  ident: 611_CR200
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0032-x
– volume: 465
  start-page: 818
  year: 2010
  ident: 611_CR55
  publication-title: Nature
  doi: 10.1038/nature09039
– volume: 173
  start-page: 20
  year: 2018
  ident: 611_CR10
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.006
– volume: 164
  start-page: 81
  year: 2016
  ident: 611_CR83
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.019
SSID ssj0016173
Score 2.7556958
SecondaryResourceType review_article
Snippet Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 816
SubjectTerms 631/337/505
631/535
Agriculture
Animal Genetics and Genomics
Biomedical and Life Sciences
Biomedicine
Biosynthesis
Cancer Research
CRISPR
Electron microscopy
Gene Function
Human Genetics
MicroRNAs
MicroRNAs - genetics
miRNA
Review Article
Transcriptome
Transcriptomes
Title microRNAs in action: biogenesis, function and regulation
URI https://link.springer.com/article/10.1038/s41576-023-00611-y
https://www.ncbi.nlm.nih.gov/pubmed/37380761
https://www.proquest.com/docview/2889800882
https://www.proquest.com/docview/2831295474
Volume 24
WOSCitedRecordID wos001018014400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1471-0064
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016173
  issn: 1471-0056
  databaseCode: 7RV
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-Clkm7DMY-yChVkLgNi9oOxOaCAIE4TFVVAeotsh1nqrSl0JRJ_e_3XpwWoQouXCw5sRPLz36_Z78vgANlteQm7zHvTo5ZcqwdM0okrEB0t65Allmb_N__Svt9NRrpQXPhVjVmlQueWDPqfOLojvxIKKVRuEGB8OzhkVHWKNKuNik01qFNURJEbbo3WGoRToKGmSMDZhTzsnGa6Ul1VCFwpWR-KxmhOGfzl8C0Im2uaEprALrefO_Qt-BTI3rG52GtfIY1X27Dh5CMcv4F1F-yzRv2z6t4XMbB3-E0tuPJb2KH4-owJgykp7Ep83gakthj9SvcXV_dXt6wJq8CcwnXM6ZFaijUl1LSI0BbQc6tKOlYFC0KbU1uhOoJL4XTObd4YHOucAjt2mLNulx-g1Y5Kf0OxMrxlBvsq0yRiNwp5x252ibeG2m0jIAvJjVzTdBxyn3xJ6uV31JlgRAZEiKrCZHNI_i57PMQQm682bqzmPSs2X5V9jzjEewvX-PGIW2IKf3kidpITkrONInge6Dx8ncU7okueCI4XBD9-eOvj-XH22PZhY-UrD4Yw3SgNZs--T3YcP9m42rahfV0eE_lKK1LhaW65F1oX1z1B8NuvbT_A3ym9fw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTxQxEJ8gSuAFFRQWQWuCT9Jw2y5sa2IMQQmE82IMGt5K2-2SS2APbg_I_VP-jc7sxxFC5I0HH3e37Tad6fymnS-AdeW0jG3W4cFvb_FkS3tulUh4jujufI4is3L5_91Nez11fKx_TMGfNhaG3CpbmVgJ6mzg6Y58UyilUblBhfDLxSWnqlFkXW1LaNRscRjGN3hkKz8ffEX6fhBi79vR7j5vqgpwn8R6xLVILSW6UkoGhCcnKLQTcd4hsOba2cwK1RFBCq-z2OFxxfvcI7Bph0_OZxLHfQJPKZMd7Si1O3EpoaNC5dCPAp9Tjs0mSKcj1WaJQJmSu6_kpDXEfHwXCO9pt_cssxXg7T3_35bqBcw3qjXbqffCS5gKxQLM1MU2x4ugzsn38Gdvp2T9gtXxHJ-Y6w9OSdz3yw1GGE9vmS0yNgynTWWzV_DrUab9GqaLQRGWgSkfp7HFvsrmici88sFTKHESgpVWywjilojGN0nVqbbHmamM-1KZmvAGCW8qwptxBB8nfS7qlCIPtl5tiWwa8VKaWwpH8H7yGQUDWXtsEQZX1EbGZMRNkwiWap6a_I7SWdEFVgQbLZPdDv7vuaw8PJd3MLt_9L1ruge9wzcwJ4jZK8efVZgeDa_CGjzz16N-OXxbbRsGJ4_NfH8B0oJLqQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVRceLcECgQJTtTatZ02NhJChXZF1SpaVYB6M7bjVCuVbNlsW-1f49cxk8dWqKK3HjgmsRMr_jzf2PMCeKOcltzmAxb81iZLNrVnVomEFcjuzhcoMmuX_-8HaZapoyM9WoLfXSwMuVV2MrEW1PnE0xl5XyilUblBhbBftG4Ro53hx9NfjCpIkaW1K6fRQGQ_zC9w-1Z92NvBuX4rxHD36-cvrK0wwHzC9YxpkVpKeqWUDEhVTlCYJ3K-Q5IttLO5FWogghRe59zh1sX7wiPJaYdXzucS33sLllNUMpIeLH_azUaHCxvGVmPf5ij-GWXcbEN2BlL1K6TNlJx_JSMdgrP537R4Rde9Yqet6W94_3_-cQ_gXqt0x9vNKnkIS6F8BHeaMpzzx6B-klfiYbZdxeMybiI93sduPDkmIhhXGzGxP92NbZnH03Dc1jx7At9uZNir0CsnZXgKsfI85Rb7KlskIvfKB09BxkkIVlotI-DdhBrfplunqh8npjb7S2UaEBgEgalBYOYRvFv0OW2SjVzber2bcNMKnspcznYErxePUWSQHciWYXJGbSQn826aRLDW4GvxOUp0RUdbEWx0gLt8-b_H8uz6sbyCFcScOdjL9p_DXUG4rz2C1qE3m56FF3Dbn8_G1fRlu4Zi-HHT6PsDPZNWBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=microRNAs+in+action%3A+biogenesis%2C+function+and+regulation&rft.jtitle=Nature+reviews.+Genetics&rft.au=Shang%2C+Renfu&rft.au=Lee%2C+Seungjae&rft.au=Senavirathne%2C+Gayan&rft.au=Lai%2C+Eric+C&rft.date=2023-12-01&rft.issn=1471-0064&rft.eissn=1471-0064&rft.volume=24&rft.issue=12&rft.spage=816&rft_id=info:doi/10.1038%2Fs41576-023-00611-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon