microRNAs in action: biogenesis, function and regulation
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to...
Uloženo v:
| Vydáno v: | Nature reviews. Genetics Ročník 24; číslo 12; s. 816 - 833 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.12.2023
Nature Publishing Group |
| Témata: | |
| ISSN: | 1471-0056, 1471-0064, 1471-0064 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR–Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
In this Review, the authors describe how the application of new technologies to the microRNA (miRNA) field has yielded key insights into miRNA biology. The authors summarize our current understanding of miRNA biogenesis, function and processing, and highlight challenges to address in future research. |
|---|---|
| AbstractList | Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future. Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR–Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.In this Review, the authors describe how the application of new technologies to the microRNA (miRNA) field has yielded key insights into miRNA biology. The authors summarize our current understanding of miRNA biogenesis, function and processing, and highlight challenges to address in future research. Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future. Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR–Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future. In this Review, the authors describe how the application of new technologies to the microRNA (miRNA) field has yielded key insights into miRNA biology. The authors summarize our current understanding of miRNA biogenesis, function and processing, and highlight challenges to address in future research. |
| Author | Lee, Seungjae Lai, Eric C. Senavirathne, Gayan Shang, Renfu |
| Author_xml | – sequence: 1 givenname: Renfu surname: Shang fullname: Shang, Renfu organization: Developmental Biology Program, Sloan Kettering Institute – sequence: 2 givenname: Seungjae orcidid: 0000-0001-5626-9656 surname: Lee fullname: Lee, Seungjae organization: Developmental Biology Program, Sloan Kettering Institute – sequence: 3 givenname: Gayan surname: Senavirathne fullname: Senavirathne, Gayan organization: Developmental Biology Program, Sloan Kettering Institute – sequence: 4 givenname: Eric C. orcidid: 0000-0002-8432-5851 surname: Lai fullname: Lai, Eric C. email: laie@mskcc.org organization: Developmental Biology Program, Sloan Kettering Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37380761$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kM1LwzAAxYNM3If-Ax6k4MWD1Xy1Tb2N4RcMBdFzSNJ0ZLTpTNrD_vtl66aww07JC7_3eHljMLCN1QBcI_iAIGGPnqIkS2OISQxhilC8PgMjRDO0lXTwd0_SIRh7v4QQpSgjF2BIMsJglqIRYLVRrvn6mPrI2Eio1jT2KZKmWWirvfH3UdnZ3WskbBE5vegqsZWX4LwUlddX-3MCfl6ev2dv8fzz9X02nceKoryNc5wJSAlkjGiKU4nzJA0tsEwSWuZSFAIziDXBKi-QhAgqVSpMWC6DkqogE3DX565c89tp3_LaeKWrSljddJ5jRlAIpRkN6O0Rumw6Z0O7QLGcwdACB-pmT3Wy1gVfOVMLt-aHTQLAeiAM473TJVem3f25dcJUHEG-nZ_38_MwP9_Nz9fBio-sh_STJtKbfIDtQrv_2idcG0UblTY |
| CitedBy_id | crossref_primary_10_1016_j_prp_2024_155478 crossref_primary_10_1016_j_pt_2025_06_004 crossref_primary_10_1038_s41401_025_01484_z crossref_primary_10_3390_ijms242216213 crossref_primary_10_3390_genes15091239 crossref_primary_10_3390_cancers17142315 crossref_primary_10_1007_s12015_024_10794_4 crossref_primary_10_1038_s44319_024_00315_2 crossref_primary_10_1016_j_ncrna_2024_11_006 crossref_primary_10_1016_j_cyto_2024_156624 crossref_primary_10_3390_cells14070553 crossref_primary_10_1111_jse_13158 crossref_primary_10_1038_s41467_024_53322_1 crossref_primary_10_3390_biomedicines12061360 crossref_primary_10_1080_14756366_2025_2468853 crossref_primary_10_1016_j_aca_2025_343689 crossref_primary_10_1186_s12916_025_04324_3 crossref_primary_10_1039_D4AY02280G crossref_primary_10_1080_17520363_2025_2520160 crossref_primary_10_1016_j_actatropica_2025_107674 crossref_primary_10_1038_s41467_024_52568_z crossref_primary_10_1016_j_yexcr_2024_114234 crossref_primary_10_1021_jacs_4c08719 crossref_primary_10_15420_ecr_2025_34 crossref_primary_10_1016_j_jare_2025_05_056 crossref_primary_10_1016_j_bbrc_2024_149937 crossref_primary_10_1080_17501911_2025_2467021 crossref_primary_10_1007_s10142_024_01489_7 crossref_primary_10_3892_mmr_2025_13575 crossref_primary_10_1177_0271678X251348816 crossref_primary_10_1007_s40843_024_3048_0 crossref_primary_10_1080_15476286_2025_2538271 crossref_primary_10_3389_fgene_2023_1320185 crossref_primary_10_1007_s00210_025_03893_7 crossref_primary_10_3892_etm_2025_12835 crossref_primary_10_1016_j_arr_2024_102278 crossref_primary_10_1177_22143602251348753 crossref_primary_10_1002_1878_0261_13744 crossref_primary_10_1261_rna_080021_124 crossref_primary_10_1038_s41413_025_00430_3 crossref_primary_10_1007_s42764_024_00135_7 crossref_primary_10_2147_IJN_S441133 crossref_primary_10_1186_s12935_025_03895_8 crossref_primary_10_1080_17576180_2025_2535953 crossref_primary_10_1210_endocr_bqad111 crossref_primary_10_3389_fpls_2024_1460540 crossref_primary_10_3390_biology13010015 crossref_primary_10_1021_acsami_4c14928 crossref_primary_10_1016_j_prp_2024_155102 crossref_primary_10_1186_s12964_025_02173_4 crossref_primary_10_1016_j_neuint_2025_106033 crossref_primary_10_3389_fimmu_2023_1228458 crossref_primary_10_32604_or_2024_049235 crossref_primary_10_1007_s10528_025_11168_2 crossref_primary_10_1016_j_ijbiomac_2025_145025 crossref_primary_10_1016_j_biopha_2024_117294 crossref_primary_10_1161_HYPERTENSIONAHA_124_23573 crossref_primary_10_1016_j_bbadis_2024_167098 crossref_primary_10_3390_pharmaceutics17040471 crossref_primary_10_3390_biomedicines13081895 crossref_primary_10_1002_jcsm_13823 crossref_primary_10_3389_fimmu_2025_1602252 crossref_primary_10_1360_SSV_2024_0342 crossref_primary_10_2147_IJN_S524558 crossref_primary_10_3390_ijms25031502 crossref_primary_10_3390_ijms251910701 crossref_primary_10_1016_j_brainresbull_2025_111345 crossref_primary_10_1007_s00018_023_05090_2 crossref_primary_10_1016_j_bcp_2025_116745 crossref_primary_10_1021_acs_est_4c10724 crossref_primary_10_4251_wjgo_v17_i5_104076 crossref_primary_10_1038_s41576_023_00662_1 crossref_primary_10_3390_horticulturae11020141 crossref_primary_10_1038_s41380_025_03167_x crossref_primary_10_4103_NRR_NRR_D_24_00696 crossref_primary_10_1007_s12672_025_02246_3 crossref_primary_10_1002_smsc_202400261 crossref_primary_10_1002_ame2_70076 crossref_primary_10_1016_j_jbc_2023_105499 crossref_primary_10_1186_s12872_024_04465_y crossref_primary_10_3390_dna4020006 crossref_primary_10_1016_j_yexcr_2024_114279 crossref_primary_10_1002_adfm_202502250 crossref_primary_10_1016_j_cej_2024_150631 crossref_primary_10_3390_molecules29245835 crossref_primary_10_1016_j_bbrc_2024_151069 crossref_primary_10_1038_s42003_024_06555_1 crossref_primary_10_1007_s10565_024_09927_9 crossref_primary_10_1186_s12951_025_03337_7 crossref_primary_10_1016_j_lfs_2024_123084 crossref_primary_10_3168_jds_2024_26210 crossref_primary_10_1007_s12291_025_01343_y crossref_primary_10_1016_j_atherosclerosis_2024_119069 crossref_primary_10_1186_s13045_025_01671_9 crossref_primary_10_1016_j_prp_2023_155085 crossref_primary_10_3892_mmr_2025_13667 crossref_primary_10_1007_s11105_024_01513_x crossref_primary_10_3390_ncrna11040051 crossref_primary_10_1038_s41598_023_46562_6 crossref_primary_10_1016_j_jhazmat_2025_138737 crossref_primary_10_1016_j_talanta_2025_128049 crossref_primary_10_1016_j_ijbiomac_2024_135370 crossref_primary_10_4103_neurol_india_Neurol_India_D_24_00920 crossref_primary_10_1016_j_compeleceng_2025_110242 crossref_primary_10_3390_cimb46110741 crossref_primary_10_3390_ncrna11010003 crossref_primary_10_1016_j_molcel_2024_09_008 crossref_primary_10_1038_s41586_025_09256_9 crossref_primary_10_3390_v17030399 crossref_primary_10_3390_ijms25116168 crossref_primary_10_1016_j_lfs_2024_123064 crossref_primary_10_1016_j_tig_2025_06_005 crossref_primary_10_1177_11795549251331755 crossref_primary_10_1007_s11259_025_10727_7 crossref_primary_10_3390_ijms242216052 crossref_primary_10_1016_j_ijbiomac_2025_145674 crossref_primary_10_3389_fonc_2024_1498139 crossref_primary_10_3389_fcell_2024_1331074 crossref_primary_10_3892_ijmm_2025_5531 crossref_primary_10_1002_jbt_70532 crossref_primary_10_3390_biom15050644 crossref_primary_10_1016_j_asems_2025_100158 crossref_primary_10_1631_jzus_B2400032 crossref_primary_10_1007_s10735_024_10327_w crossref_primary_10_1186_s12915_025_02306_8 crossref_primary_10_1261_rna_080108_124 crossref_primary_10_1016_j_aqrep_2025_102653 crossref_primary_10_1016_j_tem_2024_10_002 crossref_primary_10_1167_iovs_66_3_27 crossref_primary_10_1007_s00210_024_03347_6 crossref_primary_10_1007_s00705_024_05992_x crossref_primary_10_1016_j_tig_2024_12_009 crossref_primary_10_1038_s12276_024_01239_6 crossref_primary_10_1038_s41368_025_00349_9 crossref_primary_10_1038_s41598_024_74477_3 crossref_primary_10_3390_ijms251910325 crossref_primary_10_1016_j_celrep_2025_116243 crossref_primary_10_3389_fgene_2024_1381917 crossref_primary_10_1016_j_seminoncol_2025_152386 crossref_primary_10_3390_ijms26188879 crossref_primary_10_1007_s11033_024_09938_z crossref_primary_10_1038_s41598_025_91100_1 crossref_primary_10_1007_s10792_025_03701_4 crossref_primary_10_1186_s12920_025_02158_9 crossref_primary_10_1002_jgm_70019 crossref_primary_10_3390_biom15081189 crossref_primary_10_1016_j_bbrep_2025_102197 crossref_primary_10_1016_j_tibs_2023_09_002 crossref_primary_10_3390_cells13231935 crossref_primary_10_2147_DDDT_S513371 crossref_primary_10_1007_s10142_025_01585_2 crossref_primary_10_1016_j_ecoenv_2025_117800 crossref_primary_10_3389_fcvm_2025_1546515 crossref_primary_10_1186_s12943_025_02298_7 crossref_primary_10_3390_biology14091289 crossref_primary_10_1038_s41392_023_01669_0 crossref_primary_10_1007_s43032_024_01703_8 crossref_primary_10_3389_fmolb_2025_1647300 crossref_primary_10_1140_epjs_s11734_025_01475_5 crossref_primary_10_1002_advs_202415341 crossref_primary_10_3389_fmolb_2024_1385586 crossref_primary_10_1016_j_jrras_2025_101877 crossref_primary_10_1038_s41598_025_07860_3 crossref_primary_10_1039_D4SD00373J crossref_primary_10_1093_nar_gkae416 crossref_primary_10_1080_15412555_2025_2493701 crossref_primary_10_1038_s41598_025_98939_4 crossref_primary_10_1016_j_labinv_2025_104199 crossref_primary_10_3390_brainsci15070756 crossref_primary_10_1038_s42003_025_08721_5 crossref_primary_10_1016_j_talanta_2024_127078 crossref_primary_10_1016_j_tips_2024_03_006 crossref_primary_10_1002_adhm_202404398 crossref_primary_10_3390_plants14010136 crossref_primary_10_3389_dyst_2025_14224 crossref_primary_10_1016_j_prerep_2025_100035 crossref_primary_10_1186_s12957_025_03719_z crossref_primary_10_1016_j_cbpa_2024_102502 crossref_primary_10_1016_j_snb_2024_135389 crossref_primary_10_1038_s41419_024_07286_1 crossref_primary_10_1093_narmme_ugaf022 crossref_primary_10_3390_diagnostics14171981 crossref_primary_10_4103_jioh_jioh_284_24 crossref_primary_10_1261_rna_080338_124 crossref_primary_10_3389_fcvm_2025_1518022 crossref_primary_10_1186_s12958_024_01303_w crossref_primary_10_1055_a_2494_2233 crossref_primary_10_1126_science_adp9388 crossref_primary_10_1016_j_bcp_2025_117216 crossref_primary_10_1016_j_prp_2024_155093 crossref_primary_10_1093_nar_gkae1036 crossref_primary_10_1016_j_ijbiomac_2025_145614 crossref_primary_10_1016_j_cellsig_2025_111745 crossref_primary_10_3389_fnut_2025_1535498 crossref_primary_10_3390_biomedicines13051171 crossref_primary_10_1016_j_bbagrm_2024_195059 crossref_primary_10_3390_life14111431 crossref_primary_10_1016_j_jnutbio_2024_109714 crossref_primary_10_1096_fj_202400306R crossref_primary_10_1016_j_psychres_2025_116465 crossref_primary_10_1053_j_seminhematol_2024_03_001 crossref_primary_10_1007_s12035_025_04750_7 crossref_primary_10_1016_j_bbadis_2025_167664 crossref_primary_10_1016_j_canlet_2024_216655 crossref_primary_10_1128_mbio_01375_25 crossref_primary_10_1186_s10020_023_00776_6 crossref_primary_10_3389_fnmol_2024_1462769 crossref_primary_10_1038_s41540_024_00367_z crossref_primary_10_1021_acs_analchem_5c01674 crossref_primary_10_3389_fimmu_2025_1552665 crossref_primary_10_3390_neuroglia6020022 crossref_primary_10_1002_advs_202506830 crossref_primary_10_1007_s10142_025_01544_x crossref_primary_10_1073_pnas_2306727120 crossref_primary_10_1016_j_ejphar_2025_177344 crossref_primary_10_3390_biom13111677 crossref_primary_10_1016_j_addr_2025_115639 crossref_primary_10_1097_MOH_0000000000000803 crossref_primary_10_1016_j_molpha_2024_100006 crossref_primary_10_1161_CIRCRESAHA_124_325573 crossref_primary_10_1186_s12885_025_13672_5 crossref_primary_10_1038_s41598_024_73000_y crossref_primary_10_1002_jbt_70361 crossref_primary_10_1186_s12951_025_03528_2 crossref_primary_10_1186_s13046_025_03354_2 crossref_primary_10_1007_s11033_025_11015_y crossref_primary_10_1016_j_omtn_2025_102450 crossref_primary_10_1038_s41597_024_03909_6 crossref_primary_10_1007_s00438_024_02183_w crossref_primary_10_3390_genes15121649 crossref_primary_10_1186_s12967_023_04816_x crossref_primary_10_1038_s41598_024_66117_7 crossref_primary_10_1016_j_omtn_2024_102281 crossref_primary_10_1016_j_exer_2025_110236 crossref_primary_10_1016_j_bbrc_2025_151958 crossref_primary_10_1007_s11033_024_10208_1 crossref_primary_10_1016_j_heliyon_2024_e36282 crossref_primary_10_1039_D5AY01227A crossref_primary_10_1016_j_ijbiomac_2024_136820 crossref_primary_10_1016_j_jep_2025_120175 crossref_primary_10_3390_biomedicines13030725 crossref_primary_10_3390_cells14050368 crossref_primary_10_1093_nar_gkae792 crossref_primary_10_1016_j_bbadis_2025_167984 crossref_primary_10_1016_j_bios_2024_117106 crossref_primary_10_1111_liv_15906 crossref_primary_10_3390_cells14040312 crossref_primary_10_1111_mec_17749 crossref_primary_10_1111_nph_20287 crossref_primary_10_1186_s12933_024_02405_w crossref_primary_10_3390_genes16030262 crossref_primary_10_1002_admt_202301570 crossref_primary_10_3390_gastroent16010005 crossref_primary_10_1093_nutrit_nuaf023 crossref_primary_10_1016_j_omtn_2024_102379 crossref_primary_10_4252_wjsc_v17_i4_102482 crossref_primary_10_1016_j_isci_2025_113445 crossref_primary_10_1016_j_tox_2024_154042 crossref_primary_10_1016_j_biopha_2024_116880 crossref_primary_10_1007_s11427_024_2819_y crossref_primary_10_1007_s00210_025_03898_2 crossref_primary_10_3389_frpro_2024_1320917 crossref_primary_10_1128_cmr_00022_23 crossref_primary_10_1261_rna_080220_124 crossref_primary_10_1016_j_metabol_2025_156153 crossref_primary_10_3390_ijms25137229 crossref_primary_10_4254_wjh_v17_i7_106795 crossref_primary_10_1371_journal_pone_0311212 crossref_primary_10_1093_nar_gkae1094 crossref_primary_10_3390_toxics13030167 crossref_primary_10_1016_j_compbiomed_2025_110771 crossref_primary_10_3390_ijms26020710 crossref_primary_10_1186_s12967_025_06629_6 crossref_primary_10_3390_life14121608 crossref_primary_10_1016_j_bios_2025_117422 crossref_primary_10_1007_s10142_025_01599_w crossref_primary_10_1097_BS9_0000000000000210 crossref_primary_10_1016_j_lanmic_2025_101155 crossref_primary_10_1016_j_gde_2025_102339 crossref_primary_10_31083_j_fbl2908292 crossref_primary_10_1016_j_csbj_2025_04_040 crossref_primary_10_1161_HYPERTENSIONAHA_124_21728 crossref_primary_10_1371_journal_pone_0314733 crossref_primary_10_3390_ijms25084301 crossref_primary_10_6023_A24090258 crossref_primary_10_3390_ijms252312979 crossref_primary_10_1016_j_gene_2025_149635 crossref_primary_10_17816_onco637142 crossref_primary_10_1038_s41598_025_00343_5 crossref_primary_10_3390_ijms26178633 crossref_primary_10_1016_j_micpath_2025_107646 crossref_primary_10_1039_D5AN00707K crossref_primary_10_1016_j_biopha_2024_116984 crossref_primary_10_1007_s44446_025_00026_2 crossref_primary_10_1007_s00604_024_06920_1 crossref_primary_10_1002_adhm_202402933 crossref_primary_10_1080_10408398_2025_2479066 crossref_primary_10_1016_j_nbas_2025_100141 crossref_primary_10_1016_j_jcyt_2025_05_010 crossref_primary_10_1038_s41422_024_00975_8 crossref_primary_10_1016_j_exer_2024_110180 crossref_primary_10_3390_cimb47060473 crossref_primary_10_1021_acssensors_5c01842 crossref_primary_10_1111_bph_17308 crossref_primary_10_1016_j_preme_2025_100023 crossref_primary_10_3390_ijms25137123 crossref_primary_10_1021_acssensors_5c00758 crossref_primary_10_2147_IJN_S487097 crossref_primary_10_1002_smll_202402914 crossref_primary_10_1038_s41598_024_62064_5 crossref_primary_10_1016_j_bios_2025_117445 crossref_primary_10_1016_j_bios_2025_117565 crossref_primary_10_1002_wrna_1832 crossref_primary_10_1124_molpharm_124_000895 crossref_primary_10_1007_s00210_024_03603_9 crossref_primary_10_3389_fphar_2024_1467298 crossref_primary_10_3390_cimb47030170 crossref_primary_10_1007_s12602_024_10443_9 crossref_primary_10_1186_s40478_025_01950_z crossref_primary_10_1038_s41598_024_79224_2 crossref_primary_10_1038_s41598_025_04835_2 crossref_primary_10_3390_ijms251810135 crossref_primary_10_1016_j_vetmic_2025_110622 crossref_primary_10_1016_j_ejmech_2025_117676 crossref_primary_10_1016_j_omtn_2024_102262 crossref_primary_10_1093_g3journal_jkae178 crossref_primary_10_1016_j_pmpp_2025_102793 crossref_primary_10_3892_ijo_2025_5769 crossref_primary_10_3389_fmolb_2023_1308274 crossref_primary_10_1111_jre_13384 crossref_primary_10_1016_j_nantod_2025_102800 crossref_primary_10_3389_fevo_2024_1464506 crossref_primary_10_3390_ijms26094259 crossref_primary_10_1242_dev_204373 crossref_primary_10_1007_s12015_025_10866_z crossref_primary_10_3390_ncrna10050046 crossref_primary_10_1016_j_omtn_2025_102500 crossref_primary_10_1016_j_phrs_2025_107596 crossref_primary_10_3389_fphys_2025_1507059 crossref_primary_10_1016_j_biopha_2025_118452 crossref_primary_10_1038_s41378_025_00927_1 crossref_primary_10_1038_s41580_024_00805_0 crossref_primary_10_3390_cells13151289 crossref_primary_10_1016_j_cca_2025_120301 crossref_primary_10_2217_epi_2023_0365 crossref_primary_10_1038_s41380_025_02925_1 crossref_primary_10_3390_biomedicines12050962 crossref_primary_10_3389_fphar_2025_1532558 crossref_primary_10_3390_ijms26125629 crossref_primary_10_2147_IJN_S464403 crossref_primary_10_3389_fncel_2025_1457740 crossref_primary_10_1186_s13045_025_01726_x crossref_primary_10_1016_j_atherosclerosis_2024_118584 crossref_primary_10_1016_j_jad_2024_09_032 crossref_primary_10_1016_j_gendis_2025_101770 crossref_primary_10_1007_s00210_025_03934_1 crossref_primary_10_3390_ijms25052786 crossref_primary_10_1016_j_gendis_2025_101534 crossref_primary_10_1111_jre_13369 crossref_primary_10_3390_ijms26052044 crossref_primary_10_1007_s10495_025_02117_w crossref_primary_10_3389_fmolb_2025_1616221 crossref_primary_10_1038_s41598_025_08646_3 crossref_primary_10_5312_wjo_v16_i7_107045 crossref_primary_10_1158_1078_0432_CCR_24_2785 crossref_primary_10_1186_s13071_025_06689_z crossref_primary_10_1016_j_foodres_2025_117325 crossref_primary_10_1093_jleuko_qiaf021 crossref_primary_10_1016_j_pharmr_2025_100065 crossref_primary_10_1038_s41580_024_00818_9 crossref_primary_10_3389_fcvm_2024_1432468 crossref_primary_10_1002_mrd_70045 crossref_primary_10_1016_j_bios_2025_117924 crossref_primary_10_1007_s12672_025_02744_4 crossref_primary_10_1016_j_isci_2024_111359 crossref_primary_10_1016_j_ccr_2025_216821 crossref_primary_10_1016_j_cellsig_2025_112081 crossref_primary_10_1038_s41573_025_01237_x crossref_primary_10_3389_fncel_2025_1541885 crossref_primary_10_1097_MD_0000000000035918 crossref_primary_10_1016_j_ncrna_2024_08_006 crossref_primary_10_1039_D5AY00303B crossref_primary_10_2147_TACG_S444546 crossref_primary_10_3390_chemosensors13090343 crossref_primary_10_3389_fonc_2025_1534862 crossref_primary_10_1007_s12268_024_2358_8 crossref_primary_10_3389_fendo_2024_1444940 crossref_primary_10_1093_postmj_qgae201 crossref_primary_10_1007_s00210_024_03594_7 crossref_primary_10_1038_s41598_024_54997_8 crossref_primary_10_1016_j_actatropica_2024_107243 crossref_primary_10_1016_j_gene_2024_149186 crossref_primary_10_1186_s12964_024_01934_x crossref_primary_10_1111_pbi_70132 crossref_primary_10_3390_cells13151242 crossref_primary_10_1016_j_tibtech_2024_04_002 crossref_primary_10_3389_fphar_2025_1604711 crossref_primary_10_1093_plphys_kiae311 crossref_primary_10_1101_gad_352129_124 crossref_primary_10_1016_j_lfs_2024_122950 crossref_primary_10_1021_acs_analchem_5c04010 crossref_primary_10_3390_ijms26094287 crossref_primary_10_3390_ijms26094288 crossref_primary_10_1186_s12859_024_05840_4 crossref_primary_10_3748_wjg_v30_i22_2843 crossref_primary_10_4252_wjsc_v17_i3_99472 crossref_primary_10_1002_adma_202501378 crossref_primary_10_1038_s41598_024_80708_4 crossref_primary_10_3748_wjg_v31_i24_104437 crossref_primary_10_1007_s12672_025_03234_3 crossref_primary_10_3390_ijms25115961 crossref_primary_10_1016_j_cca_2023_117610 crossref_primary_10_1186_s12284_024_00748_2 crossref_primary_10_1371_journal_ppat_1012789 crossref_primary_10_3390_ijms26104621 crossref_primary_10_1016_j_synbio_2025_03_011 crossref_primary_10_1016_j_redox_2025_103689 crossref_primary_10_1080_10985549_2025_2519156 crossref_primary_10_1186_s13287_025_04558_1 crossref_primary_10_1111_pce_15546 crossref_primary_10_3390_ijms25147686 crossref_primary_10_1186_s12951_025_03102_w crossref_primary_10_1021_acs_molpharmaceut_4c00871 crossref_primary_10_1080_21688370_2025_2502709 crossref_primary_10_1080_10715762_2025_2564674 crossref_primary_10_3389_fnmol_2024_1386735 crossref_primary_10_1186_s11658_024_00632_3 crossref_primary_10_1002_alr_23558 crossref_primary_10_1007_s11883_024_01216_4 crossref_primary_10_3390_plants13111429 crossref_primary_10_1038_s41576_024_00810_1 crossref_primary_10_1096_fj_202402248R crossref_primary_10_1002_chem_202402566 crossref_primary_10_1016_j_ajpath_2025_07_006 crossref_primary_10_3389_fmolb_2024_1368372 crossref_primary_10_20517_evcna_2025_47 crossref_primary_10_1016_j_virol_2024_110361 crossref_primary_10_1016_j_trac_2025_118397 crossref_primary_10_1016_j_ijbiomac_2025_147006 |
| Cites_doi | 10.1016/j.molcel.2020.02.009 10.1016/j.cell.2018.03.006 10.1038/nsmb1293 10.1016/j.jmb.2017.07.018 10.1016/j.molcel.2015.05.015 10.1016/j.molcel.2020.04.030 10.1038/s41467-022-30976-3 10.4161/cc.9.22.13958 10.1038/ncomms13694 10.1073/pnas.1311639110 10.1038/sj.emboj.7601512 10.1038/nature09039 10.1126/science.1187197 10.1016/j.molcel.2020.10.028 10.1016/j.cell.2004.06.017 10.1080/15476286.2020.1868139 10.1016/j.cell.2013.10.001 10.1038/nature09092 10.1016/j.molcel.2019.05.014 10.1016/j.cell.2018.03.080 10.1016/j.molcel.2008.09.014 10.1126/science.1154040 10.1016/j.cell.2011.11.055 10.1242/dev.125.20.4077 10.7554/eLife.07646 10.1093/nar/gkac519 10.1016/0092-8674(93)90530-4 10.1126/science.1065329 10.15252/embr.201540078 10.1093/nar/gkx916 10.1038/s41467-019-12415-y 10.1242/dev.124.20.4039 10.1126/science.1241930 10.1038/s41467-018-05182-9 10.1038/nature05983 10.1038/s41467-022-29822-3 10.1073/pnas.1209487109 10.1126/science.1187058 10.1093/nar/gkv1330 10.1073/pnas.0912632107 10.1016/j.devcel.2014.12.018 10.1038/s41467-021-23607-w 10.1016/j.cell.2015.06.029 10.1038/nsmb.1475 10.1038/nature08349 10.1074/jbc.M110.180844 10.1038/nsmb.2230 10.1038/s41594-018-0032-x 10.1261/rna.056937.116 10.1038/s41467-022-32969-8 10.1261/rna.068692.118 10.1016/j.molcel.2012.12.024 10.1016/j.cell.2012.05.017 10.1016/j.molcel.2019.06.018 10.1261/rna.053264.115 10.1093/nar/gkaa921 10.1016/j.cell.2015.07.008 10.1126/science.1062961 10.1093/nar/gky248 10.1126/science.1102513 10.1093/nar/gkaa209 10.1016/j.celrep.2022.111154 10.1016/j.cell.2014.01.041 10.1128/MCB.00664-09 10.1038/nature14254 10.1126/science.1163728 10.1016/j.cell.2015.06.032 10.1016/0092-8674(93)90529-Y 10.1038/s41598-018-33596-4 10.1261/rna.2983511 10.1016/j.cell.2007.06.028 10.1016/j.molcel.2009.12.016 10.1093/nar/gkab731 10.1016/j.molcel.2020.05.011 10.1016/j.molcel.2015.08.015 10.1126/science.aam8526 10.1016/j.cell.2013.11.027 10.1083/jcb.200803111 10.1101/gr.121210.111 10.15252/embj.2018101153 10.1073/pnas.2214335119 10.1038/s41586-023-05722-4 10.1261/rna.7272305 10.1038/s41467-021-24555-1 10.1016/j.molcel.2019.06.019 10.1093/nar/gkac568 10.1261/rna.1155108 10.1016/j.celrep.2021.110015 10.1016/j.molcel.2018.04.010 10.7554/eLife.69803 10.1261/rna.054684.115 10.1038/nature12119 10.1261/rna.036194.112 10.1016/j.molcel.2012.10.002 10.1038/s41467-020-16533-w 10.1016/j.molcel.2011.07.024 10.1038/s41580-018-0059-1 10.1021/acs.biochem.8b00944 10.1038/s41467-020-15674-2 10.1038/s41598-017-09268-0 10.1038/s41467-022-31480-4 10.1016/j.celrep.2017.09.010 10.1101/gad.1812509 10.1016/j.cell.2010.05.017 10.1073/pnas.2015026117 10.1016/j.celrep.2014.05.013 10.1016/j.molcel.2020.02.020 10.1038/s41467-022-29046-5 10.1016/j.molcel.2019.05.033 10.1038/s41586-022-04790-2 10.1126/science.1139089 10.1261/rna.1319309 10.1038/embor.2010.81 10.1101/gad.348874.121 10.1016/j.molcel.2022.08.029 10.1016/j.molcel.2017.12.027 10.1038/nrg2916 10.1038/nsmb729 10.1126/science.1102514 10.1038/nsmb.1552 10.1038/nsmb.2606 10.1016/j.cell.2010.03.039 10.1261/rna.034538.112 10.1016/j.molcel.2018.10.033 10.1016/j.cell.2012.09.042 10.1261/rna.036434.112 10.1016/j.celrep.2023.112111 10.1038/35053110 10.1038/ncomms15114 10.1016/j.cell.2007.11.034 10.1101/gad.1884710 10.1016/j.cell.2010.03.009 10.1038/sj.emboj.7600491 10.1126/science.aav1741 10.1093/nar/gkab840 10.1016/j.cell.2009.08.002 10.1101/gad.339333.120 10.1073/pnas.1513421112 10.1073/pnas.1006432107 10.1038/nature08434 10.1038/s41586-023-05723-3 10.1016/j.cell.2006.03.043 10.1016/j.molcel.2019.01.010 10.1016/j.devcel.2020.06.004 10.1126/science.abl4546 10.1126/science.abc9546 10.1038/nature07315 10.1038/s41594-018-0136-3 10.1038/s41586-022-04911-x 10.1016/j.cell.2018.05.022 10.1371/journal.ppat.1002510 10.1126/science.abg2264 10.1261/rna.065862.118 10.1016/j.cub.2009.12.044 10.1093/emboj/cdf582 10.1038/nature06908 10.1016/j.molcel.2021.07.002 10.1126/science.1221551 10.1101/gad.1761509 10.1371/journal.pbio.2001272 10.1126/science.1064921 10.1261/rna.7240905 10.1038/nature06904 10.1093/nar/gkaa543 10.1126/science.1241911 10.1101/gad.1291905 10.1016/j.cell.2015.12.019 10.1038/ncomms9430 10.1038/s41467-021-25078-5 10.1074/jbc.M504714200 10.1016/j.molcel.2020.01.026 10.1016/j.molcel.2004.07.007 10.1016/j.molcel.2010.06.005 10.1016/j.molcel.2018.02.012 10.1016/j.cell.2008.10.053 10.1038/ncb2611 10.1016/j.molcel.2020.02.016 10.1038/ncb1759 10.1038/s41586-021-03524-0 10.1038/s41467-023-37819-9 10.15252/embj.201796474 10.1016/j.molcel.2008.10.013 10.1093/nar/gkaa018 10.1038/s41594-020-0461-1 10.1038/s41467-017-01713-y 10.1101/gad.1521307 10.1093/carcin/bgn187 10.1038/nrm3611 10.1242/dev.124.23.4847 10.1093/nar/gkq1030 10.1101/gr.251421.119 10.1016/j.cell.2004.12.035 10.1038/nature07666 10.1038/s41580-020-0246-8 10.1016/j.molcel.2022.09.002 10.1126/science.1190809 10.1038/nature13553 10.1261/rna.079098.122 10.1016/j.cell.2013.01.031 10.1016/j.devcel.2014.11.004 10.1016/j.molcel.2007.06.017 10.1093/nar/gkr148 10.1126/science.abc9359 10.1016/j.molcel.2019.06.012 10.1016/j.cell.2015.05.010 10.1038/nature10198 10.1038/ng865 10.1016/j.molcel.2020.02.024 10.1093/nar/gkaa827 10.1016/j.molcel.2022.10.010 10.1016/j.molcel.2016.06.014 10.1016/j.molcel.2017.03.014 10.1371/journal.pbio.0030085 10.1016/j.celrep.2012.10.023 10.1016/j.cell.2012.09.022 10.1126/science.abj8379 10.1126/science.1121638 10.3390/v11050448 10.1038/s41477-021-01000-1 10.1261/rna.040055.113 10.1126/science.1065062 10.1016/j.molcel.2009.08.020 10.1126/sciadv.abh1434 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. Springer Nature Limited. |
| Copyright_xml | – notice: Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. Springer Nature Limited. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 |
| DOI | 10.1038/s41576-023-00611-y |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology |
| EISSN | 1471-0064 |
| EndPage | 833 |
| ExternalDocumentID | 37380761 10_1038_s41576_023_00611_y |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NIGMS NIH HHS grantid: R01 GM083300 |
| GroupedDBID | --- -DZ .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AFBBN AFFNX AFKRA AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR IHW INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION NFIDA AFFHD AGGLG CGR CUY CVF ECM EIF NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7QP 7QR 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI RC3 7X8 |
| ID | FETCH-LOGICAL-c419t-927a0430883e426b29561612b554f9bada2802e32c9d1b010ccfc2389b1b0bcd3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 531 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018014400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-0056 1471-0064 |
| IngestDate | Sun Nov 09 12:15:43 EST 2025 Mon Oct 06 18:26:22 EDT 2025 Wed Dec 10 14:04:39 EST 2025 Sat Nov 29 02:34:59 EST 2025 Tue Nov 18 22:30:55 EST 2025 Fri Feb 21 02:36:58 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | 2023. Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-927a0430883e426b29561612b554f9bada2802e32c9d1b010ccfc2389b1b0bcd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-5626-9656 0000-0002-8432-5851 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11087887 |
| PMID | 37380761 |
| PQID | 2889800882 |
| PQPubID | 44267 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2831295474 proquest_journals_2889800882 pubmed_primary_37380761 crossref_citationtrail_10_1038_s41576_023_00611_y crossref_primary_10_1038_s41576_023_00611_y springer_journals_10_1038_s41576_023_00611_y |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature reviews. Genetics |
| PublicationTitleAbbrev | Nat Rev Genet |
| PublicationTitleAlternate | Nat Rev Genet |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Nguyen, Park, Dang, Choi, Kim (CR33) 2018; 46 McGeary, Bisaria, Pham, Wang, Bartel (CR65) 2022 Park (CR52) 2011; 475 Naganuma, Tadakuma, Tomari (CR99) 2021; 12 Kingston, Blodgett, Bartel (CR201) 2022; 82 Garaulet, Zhang, Wei, Li, Lai (CR215) 2020; 54 Macrae (CR48) 2006; 311 Ulitsky, Shkumatava, Jan, Sive, Bartel (CR196) 2011; 147 Suh (CR166) 2010; 20 Sternburg, Estep, Nguyen, Li, Karginov (CR75) 2018; 8 Salomon, Jolly, Moore, Zamore, Serebrov (CR103) 2015; 162 Yao, Sasaki, Ueda, Tomari, Tadakuma (CR104) 2015; 59 Lee (CR208) 2023; 42 Wei (CR93) 2021; 7 Kim, Nguyen, Li, Nguyen (CR34) 2018; 24 Kadener (CR138) 2009; 15 Nakanishi (CR112) 2022; 50 Kim (CR124) 2020; 78 Zeng, Cullen (CR27) 2005; 280 Smibert (CR139) 2011; 17 Heo (CR115) 2008; 32 Yang (CR192) 2022; 13 Kim (CR74) 2009; 23 Viswanathan, Daley, Gregory (CR116) 2008; 320 Partin (CR87) 2020; 78 Hutter (CR153) 2020; 78 Morlando (CR157) 2008; 15 Martello (CR131) 2010; 141 Yu (CR182) 2017; 15 Du, Wang, Sliz, Gregory (CR142) 2015; 162 Loeb (CR61) 2012; 48 Gu, Jin, Zhang, Sarnow, Kay (CR67) 2009; 16 Lataniotis (CR145) 2017; 7 Wang (CR132) 2020; 48 Consortium (CR43) 2021; 49 Cheloufi, Dos Santos, Chong, Hannon (CR221) 2010; 465 Liu (CR81) 2018; 173 Barr (CR84) 2011; 286 Cui (CR140) 2021; 593 Krol (CR179) 2010; 141 Ruby, Jan, Bartel (CR217) 2007; 448 Lee, Kim, Kim (CR38) 2023; 615 Grimson (CR66) 2007; 27 Cialek (CR109) 2022; 13 Kedde (CR76) 2007; 131 Schirle, Sheu-Gruttadauria, Chandradoss, Joo, MacRae (CR57) 2015 Gantier (CR174) 2011; 39 Nishida (CR209) 2013; 49 Yang (CR223) 2010; 107 Shi (CR193) 2020 Fang, Bartel (CR152) 2020; 78 Ramachandran, Chen (CR180) 2008; 321 Jin, Wang, Liu, Wang, Xu (CR86) 2020; 78 Murchison (CR167) 2007; 21 Yu, Kim (CR70) 2020 Shi, Nicholson, Jaggi, Nicholson (CR88) 2011; 39 Wang (CR79) 2009; 461 Willkomm (CR102) 2022; 13 Treiber, Treiber, Meister (CR126) 2019; 20 Nguyen (CR82) 2015; 161 Rybak (CR117) 2008; 10 Lewis, Burge, Bartel (CR16) 2005; 120 Park, Sim, Kehling, Nakanishi (CR24) 2020; 117 Leviten, Lai, Posakony (CR3) 1997; 124 Sim (CR73) 2022; 119 Klum, Chandradoss, Schirle, Joo, MacRae (CR106) 2018; 37 Xie (CR219) 2013; 155 Kobayashi, Singer (CR110) 2022; 13 Tsuboyama, Tadakuma, Tomari (CR101) 2018; 70 Boland, Tritschler, Heimstadt, Izaurralde, Weichenrieder (CR56) 2010; 11 Park (CR23) 2017; 45 Flemr (CR163) 2013; 155 Vermeulen (CR50) 2005; 11 Kim (CR40) 2021; 81 Derrien (CR136) 2012; 109 Gu (CR53) 2012; 151 Elkayam (CR20) 2012; 150 Cui (CR107) 2019; 10 Lai, Posakony (CR4) 1997; 124 Watanabe (CR164) 2008; 453 Chandradoss, Schirle, Szczepaniak, MacRae, Joo (CR105) 2015; 162 McGeary (CR64) 2019 Yang (CR71) 2019; 75 Bitetti (CR200) 2018; 25 Lee, Lee, Kim, Kim, Roh (CR90) 2023; 615 Shin (CR58) 2010; 38 Kim (CR77) 2021; 12 Luo (CR46) 2021; 12 Kobayashi, Shoji, Kiyokawa, Negishi, Tomari (CR134) 2019; 73 Truscott, Islam, Frolov (CR144) 2016; 22 MacRae, Zhou, Doudna (CR49) 2007; 14 Reichholf (CR178) 2019; 75 Marcinowski (CR186) 2012; 8 Ameres, Zamore (CR190) 2013; 14 Ecsedi, Rausch, Grosshans (CR214) 2015; 32 Zhang, Kolb, Jaskiewicz, Westhof, Filipowicz (CR47) 2004; 118 Cazalla, Yario, Steitz (CR185) 2010; 328 Lee, Ambros (CR8) 2001; 294 Fareh (CR94) 2016; 7 Tokumaru, Suzuki, Yamada, Nagino, Takahashi (CR130) 2008; 29 Lagos-Quintana, Rauhut, Lendeckel, Tuschl (CR9) 2001; 294 Baskerville, Bartel (CR141) 2005; 11 Wang, Sheng, Juranek, Tuschl, Patel (CR18) 2008; 456 Fernandez (CR35) 2017; 8 Pawlicki, Steitz (CR160) 2008; 182 Shukla, Bjerke, Muhlrad, Yi, Parker (CR181) 2019; 73 Okamura, Hagen, Duan, Tyler, Lai (CR216) 2007; 130 Kwon (CR154) 2020; 48 Rice, Shivashankar, Ma, Baryza, Nutiu (CR39) 2020; 80 Yang (CR191) 2020; 11 Partin (CR32) 2017; 8 Donayo (CR143) 2019; 75 Cifuentes (CR222) 2010; 328 Poirier (CR171) 2021; 373 Michlewski, Caceres (CR125) 2019; 25 Nguyen, Trinh, Bao, Nguyen (CR54) 2022; 13 Lai (CR6) 2002; 30 Kang (CR41) 2021; 37 Kwon (CR83) 2016; 164 Zamudio, Kelly, Sharp (CR220) 2014; 156 Hutvagner (CR162) 2001; 293 Chang, Triboulet, Thornton, Gregory (CR120) 2013 Heo (CR123) 2012; 151 Ustianenko (CR122) 2013; 19 Sheng (CR202) 2023; 14 Yang, Lai (CR12) 2011; 43 Kataruka (CR168) 2020; 48 Ballarino (CR156) 2009; 29 Lai, Burks, Posakony (CR5) 1998; 125 Haar (CR146) 2016; 44 Kennedy (CR170) 2015; 112 Jeong (CR205) 2023; 379 Zeng, Yi, Cullen (CR28) 2005; 24 D’Ambrogio, Gu, Udagawa, Mello, Richter (CR204) 2012 Sheu-Gruttadauria, MacRae (CR111) 2017; 429 Ruijtenberg (CR108) 2020; 27 Su (CR96) 2022; 607 Wightman, Ha, Ruvkun (CR2) 1993; 75 Wang (CR97) 2021; 374 Sheu-Gruttadauria, Xiao, Gebert, MacRae (CR72) 2019; 38 Kim, Kim (CR155) 2007; 26 Ibrahim (CR183) 2010; 107 Drake (CR210) 2014; 31 Treiber (CR129) 2017; 66 Ameres (CR189) 2010; 328 Donnelly (CR198) 2022; 40 Yang, Lai (CR148) 2010; 9 Liu (CR158) 2016; 63 Heo (CR118) 2009; 138 Liu (CR21) 2004; 305 Lal (CR60) 2009; 35 Ghini (CR187) 2018; 9 Chatterjee, Grosshans (CR184) 2009; 461 Lee, Feinbaum, Ambros (CR1) 1993; 75 Chi, Hannon, Darnell (CR59) 2012; 19 Bartel (CR10) 2018; 173 Bernstein, Caudy, Hammond, Hannon (CR161) 2001; 409 Shang (CR211) 2022; 50 Zhang, Kolb, Brondani, Billy, Filipowicz (CR51) 2002; 21 Newman, Thomson, Hammond (CR114) 2008; 14 Bogerd (CR218) 2010; 37 Kingston, Bartel (CR176) 2019; 29 Nguyen, Nguyen, Bao, Li, Nguyen (CR45) 2020; 48 Han (CR194) 2020 Quick-Cleveland (CR85) 2014; 7 Church (CR159) 2017; 20 Gutierrez-Perez (CR212) 2021; 7 Herbert (CR98) 2016; 22 Jouravleva (CR92) 2022; 82 Nussbacher, Yeo (CR128) 2018; 69 Li, Le, Nguyen, Trinh, Nguyen (CR37) 2021; 18 Carmell, Hannon (CR89) 2004; 11 Gibbings (CR177) 2012; 14 Schnall-Levin (CR68) 2011; 21 Schuster, Miesen, van Rij (CR169) 2019 Kretov (CR150) 2020; 78 Sheu-Gruttadauria (CR113) 2019 Michlewski, Guil, Semple, Caceres (CR127) 2008; 32 Shang (CR14) 2015; 6 Brennecke, Stark, Russell, Cohen (CR17) 2005; 3 Nguyen, Nguyen, Nguyen, Nguyen (CR25) 2019; 58 Vilimova (CR147) 2021; 49 Jee (CR149) 2018; 69 Zapletal (CR91) 2022; 82 Tam (CR165) 2008; 453 Fromm, Zhong, Tarbier, Friedlander, Hackenberg (CR44) 2022 Czech, Hannon (CR11) 2010; 12 Yamaguchi (CR95) 2022; 607 Chiang (CR42) 2010; 24 Yang, Schwartz, McJunkin (CR213) 2020; 34 Li (CR199) 2021; 35 Smibert, Yang, Azzam, Liu, Lai (CR133) 2013; 20 Maillard (CR173) 2013; 342 Ma, Wu, Choi, Wu (CR29) 2013; 110 Hafner (CR62) 2010; 141 Li, Lu, Han, Fan, Ding (CR172) 2013; 342 Iwasaki (CR100) 2015; 521 Lau, Lim, Weinstein, Bartel (CR7) 2001; 294 Zhang (CR69) 2018; 25 Thornton, Chang, Piskounova, Gregory (CR119) 2012; 18 Piwecka (CR195) 2017 de la Mata (CR188) 2015 Song, Smith, Hannon, Joshua-Tor (CR80) 2004; 305 Martinez, Gregory (CR135) 2013; 19 Frank, Sonenberg, Nagar (CR55) 2010; 465 Schirle, MacRae (CR19) 2012; 336 Kleaveland, Shi, Stefano, Bartel (CR197) 2018; 174 Katoh (CR203) 2009; 23 Mansur (CR206) 2016; 22 Vieux (CR207) 2021; 49 Shang (CR151) 2020; 78 van Rooij (CR175) 2007; 316 Auyeung, Ulitsky, McGeary, Bartel (CR30) 2013; 152 Han (CR137) 2009; 136 Lai, Tam, Rubin (CR15) 2005; 19 Han (CR26) 2006; 125 Maurin, Cazalla, Yang, Bortolamiol-Becet, Lai (CR13) 2012; 18 Meister (CR22) 2004; 15 Becker (CR63) 2019; 75 Faehnle, Walleshauser, Joshua-Tor (CR121) 2014; 514 Fang, Bartel (CR31) 2015; 60 Wang (CR78) 2008; 456 Li, Nguyen, Nguyen, Nguyen (CR36) 2020; 11 J Han (611_CR137) 2009; 136 K Zhang (611_CR69) 2018; 25 S Su (611_CR96) 2022; 607 G Michlewski (611_CR125) 2019; 25 RC Lee (611_CR8) 2001; 294 F Mansur (611_CR206) 2016; 22 IJ MacRae (611_CR49) 2007; 14 K Jouravleva (611_CR92) 2022; 82 K Kim (611_CR40) 2021; 81 A Grimson (611_CR66) 2007; 27 M Truscott (611_CR144) 2016; 22 CY Shi (611_CR193) 2020 JE Park (611_CR52) 2011; 475 GB Loeb (611_CR61) 2012; 48 I Barr (611_CR84) 2011; 286 M Morlando (611_CR157) 2008; 15 SM Klum (611_CR106) 2018; 37 I Ulitsky (611_CR196) 2011; 147 YY Lee (611_CR90) 2023; 615 VA Church (611_CR159) 2017; 20 S Li (611_CR36) 2020; 11 Y Li (611_CR172) 2013; 342 H Kobayashi (611_CR110) 2022; 13 JE Thornton (611_CR119) 2012; 18 B Derrien (611_CR136) 2012; 109 T Watanabe (611_CR164) 2008; 453 W Jin (611_CR86) 2020; 78 Y Zeng (611_CR28) 2005; 24 MA Carmell (611_CR89) 2004; 11 A Vermeulen (611_CR50) 2005; 11 A Lal (611_CR60) 2009; 35 WE Salomon (611_CR103) 2015; 162 BP Lewis (611_CR16) 2005; 120 NT Schirle (611_CR57) 2015 EC Lai (611_CR4) 1997; 124 WR Becker (611_CR63) 2019; 75 D Cazalla (611_CR185) 2010; 328 D Cifuentes (611_CR222) 2010; 328 SL Ameres (611_CR190) 2013; 14 JS Yang (611_CR12) 2011; 43 M de la Mata (611_CR188) 2015 F Ghini (611_CR187) 2018; 9 TA Nguyen (611_CR33) 2018; 46 W Fang (611_CR31) 2015; 60 HR Chiang (611_CR42) 2010; 24 A Yang (611_CR192) 2022; 13 IJ Macrae (611_CR48) 2006; 311 B Fromm (611_CR44) 2022 TD Nguyen (611_CR54) 2022; 13 S Willkomm (611_CR102) 2022; 13 K Okamura (611_CR216) 2007; 130 H Zhang (611_CR51) 2002; 21 W Kang (611_CR41) 2021; 37 S Yamaguchi (611_CR95) 2022; 607 CA Cialek (611_CR109) 2022; 13 TL Nguyen (611_CR45) 2020; 48 B Yang (611_CR213) 2020; 34 S Tokumaru (611_CR130) 2008; 29 I Heo (611_CR123) 2012; 151 S Baskerville (611_CR141) 2005; 11 JR Zamudio (611_CR220) 2014; 156 D Gibbings (611_CR177) 2012; 14 T Katoh (611_CR203) 2009; 23 Y Wang (611_CR78) 2008; 456 C Yao (611_CR104) 2015; 59 JG Ruby (611_CR217) 2007; 448 CR Faehnle (611_CR121) 2014; 514 M Piwecka (611_CR195) 2017 SL Ameres (611_CR189) 2010; 328 SD Chandradoss (611_CR105) 2015; 162 J Sheu-Gruttadauria (611_CR72) 2019; 38 ER Kingston (611_CR176) 2019; 29 Y Wang (611_CR79) 2009; 461 A Yang (611_CR191) 2020; 11 YY Lee (611_CR38) 2023; 615 R Shang (611_CR211) 2022; 50 DL Garaulet (611_CR215) 2020; 54 SE McGeary (611_CR65) 2022 AO Donayo (611_CR143) 2019; 75 A Boland (611_CR56) 2010; 11 Y Yu (611_CR182) 2017; 15 S Kim (611_CR77) 2021; 12 K Kim (611_CR34) 2018; 24 JK Nussbacher (611_CR128) 2018; 69 YK Kim (611_CR155) 2007; 26 S Gu (611_CR53) 2012; 151 M Vilimova (611_CR147) 2021; 49 MA Newman (611_CR114) 2008; 14 H Ma (611_CR29) 2013; 110 EC Lai (611_CR15) 2005; 19 TJ Cui (611_CR107) 2019; 10 Y Wang (611_CR18) 2008; 456 P Smibert (611_CR139) 2011; 17 D Zapletal (611_CR91) 2022; 82 S Iwasaki (611_CR100) 2015; 521 OH Tam (611_CR165) 2008; 453 A Rybak (611_CR117) 2008; 10 HM Nguyen (611_CR25) 2019; 58 S Li (611_CR37) 2021; 18 J Krol (611_CR179) 2010; 141 N Fernandez (611_CR35) 2017; 8 HH Kim (611_CR74) 2009; 23 SE McGeary (611_CR64) 2019 M Hafner (611_CR62) 2010; 141 SC Kwon (611_CR83) 2016; 164 E Elkayam (611_CR20) 2012; 150 B Reichholf (611_CR178) 2019; 75 DP Bartel (611_CR10) 2018; 173 MP Gantier (611_CR174) 2011; 39 J Sheu-Gruttadauria (611_CR113) 2019 KM Herbert (611_CR98) 2016; 22 N Suh (611_CR166) 2010; 20 B Czech (611_CR11) 2010; 12 M Flemr (611_CR163) 2013; 155 K Tsuboyama (611_CR101) 2018; 70 NJ Martinez (611_CR135) 2013; 19 J Haar (611_CR146) 2016; 44 S Kataruka (611_CR168) 2020; 48 HM Chang (611_CR120) 2013 L Lataniotis (611_CR145) 2017; 7 J Han (611_CR194) 2020 MW Leviten (611_CR3) 1997; 124 JM Pawlicki (611_CR160) 2008; 182 H Kobayashi (611_CR134) 2019; 73 Y Cui (611_CR140) 2021; 593 EM Kennedy (611_CR170) 2015; 112 P Smibert (611_CR133) 2013; 20 P Du (611_CR142) 2015; 162 J Brennecke (611_CR17) 2005; 3 P Gutierrez-Perez (611_CR212) 2021; 7 K Nakanishi (611_CR112) 2022; 50 A Bitetti (611_CR200) 2018; 25 H Liu (611_CR158) 2016; 63 EC Lai (611_CR5) 1998; 125 M Ecsedi (611_CR214) 2015; 32 N Lau (611_CR7) 2001; 294 HC Jeong (611_CR205) 2023; 379 Z Shi (611_CR88) 2011; 39 S Ruijtenberg (611_CR108) 2020; 27 J Sheu-Gruttadauria (611_CR111) 2017; 429 M Xie (611_CR219) 2013; 155 M Schnall-Levin (611_CR68) 2011; 21 R Shang (611_CR14) 2015; 6 R Shang (611_CR151) 2020; 78 EP Murchison (611_CR167) 2007; 21 A Yang (611_CR71) 2019; 75 BF Donnelly (611_CR198) 2022; 40 R Consortium (611_CR43) 2021; 49 X Wei (611_CR93) 2021; 7 NT Schirle (611_CR19) 2012; 336 A D’Ambrogio (611_CR204) 2012 L Li (611_CR199) 2021; 35 AC Partin (611_CR32) 2017; 8 Z Liu (611_CR81) 2018; 173 I Heo (611_CR118) 2009; 138 TA Nguyen (611_CR82) 2015; 161 QJ Luo (611_CR46) 2021; 12 SC Kwon (611_CR154) 2020; 48 VC Auyeung (611_CR30) 2013; 152 S Kadener (611_CR138) 2009; 15 F Ibrahim (611_CR183) 2010; 107 S Gu (611_CR67) 2009; 16 EZ Poirier (611_CR171) 2021; 373 DA Kretov (611_CR150) 2020; 78 KF Vieux (611_CR207) 2021; 49 HP Bogerd (611_CR218) 2010; 37 H Kim (611_CR124) 2020; 78 JJ Song (611_CR80) 2004; 305 G Michlewski (611_CR127) 2008; 32 T Maurin (611_CR13) 2012; 18 M Kedde (611_CR76) 2007; 131 I Heo (611_CR115) 2008; 32 J Liu (611_CR21) 2004; 305 M Naganuma (611_CR99) 2021; 12 S Yu (611_CR70) 2020 M Drake (611_CR210) 2014; 31 J Quick-Cleveland (611_CR85) 2014; 7 G Meister (611_CR22) 2004; 15 D Wang (611_CR132) 2020; 48 D Ustianenko (611_CR122) 2013; 19 F Frank (611_CR55) 2010; 465 JS Yang (611_CR223) 2010; 107 C Shin (611_CR58) 2010; 38 G Hutvagner (611_CR162) 2001; 293 MS Park (611_CR24) 2020; 117 D Jee (611_CR149) 2018; 69 KM Nishida (611_CR209) 2013; 49 S Shukla (611_CR181) 2019; 73 JS Yang (611_CR148) 2010; 9 SW Chi (611_CR59) 2012; 19 T Treiber (611_CR129) 2017; 66 W Fang (611_CR152) 2020; 78 B Kleaveland (611_CR197) 2018; 174 S Schuster (611_CR169) 2019 E Lai (611_CR6) 2002; 30 T Treiber (611_CR126) 2019; 20 G Sim (611_CR73) 2022; 119 H Zhang (611_CR47) 2004; 118 M Lagos-Quintana (611_CR9) 2001; 294 GM Rice (611_CR39) 2020; 80 M Fareh (611_CR94) 2016; 7 S Chatterjee (611_CR184) 2009; 461 J Han (611_CR26) 2006; 125 SR Viswanathan (611_CR116) 2008; 320 Q Wang (611_CR97) 2021; 374 MS Park (611_CR23) 2017; 45 PV Maillard (611_CR173) 2013; 342 ER Kingston (611_CR201) 2022; 82 S Lee (611_CR208) 2023; 42 RC Lee (611_CR1) 1993; 75 E van Rooij (611_CR175) 2007; 316 K Hutter (611_CR153) 2020; 78 G Martello (611_CR131) 2010; 141 V Ramachandran (611_CR180) 2008; 321 P Sheng (611_CR202) 2023; 14 AC Partin (611_CR87) 2020; 78 B Wightman (611_CR2) 1993; 75 L Marcinowski (611_CR186) 2012; 8 Y Zeng (611_CR27) 2005; 280 S Cheloufi (611_CR221) 2010; 465 E Bernstein (611_CR161) 2001; 409 EL Sternburg (611_CR75) 2018; 8 M Ballarino (611_CR156) 2009; 29 |
| References_xml | – volume: 78 start-page: 303 year: 2020 end-page: 316.e4 ident: CR151 article-title: Genomic clustering facilitates nuclear processing of suboptimal pri-miRNA loci publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.009 – volume: 173 start-page: 20 year: 2018 end-page: 51 ident: CR10 article-title: Metazoan microRNAs publication-title: Cell doi: 10.1016/j.cell.2018.03.006 – volume: 14 start-page: 934 year: 2007 end-page: 940 ident: CR49 article-title: Structural determinants of RNA recognition and cleavage by Dicer publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1293 – volume: 429 start-page: 2619 year: 2017 end-page: 2639 ident: CR111 article-title: Structural foundations of RNA silencing by Argonaute publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.07.018 – volume: 59 start-page: 125 year: 2015 end-page: 132 ident: CR104 article-title: Single-molecule analysis of the target cleavage reaction by the RNAi enzyme complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.015 – volume: 78 start-page: 1224 year: 2020 end-page: 1236.e5 ident: CR124 article-title: A mechanism for microRNA arm switching regulated by uridylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.030 – volume: 13 year: 2022 ident: CR109 article-title: Imaging translational control by Argonaute with single-molecule resolution in live cells publication-title: Nat. Commun. doi: 10.1038/s41467-022-30976-3 – volume: 9 start-page: 4455 year: 2010 end-page: 4460 ident: CR148 article-title: Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates publication-title: Cell Cycle doi: 10.4161/cc.9.22.13958 – volume: 7 year: 2016 ident: CR94 article-title: TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments publication-title: Nat. Commun. doi: 10.1038/ncomms13694 – volume: 110 start-page: 20687 year: 2013 end-page: 20692 ident: CR29 article-title: Lower and upper stem-single-stranded RNA junctions together determine the Drosha cleavage site publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1311639110 – volume: 26 start-page: 775 year: 2007 end-page: 783 ident: CR155 article-title: Processing of intronic microRNAs publication-title: EMBO J. doi: 10.1038/sj.emboj.7601512 – volume: 465 start-page: 818 year: 2010 end-page: 822 ident: CR55 article-title: Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2 publication-title: Nature doi: 10.1038/nature09039 – volume: 328 start-page: 1563 year: 2010 end-page: 1566 ident: CR185 article-title: Down-regulation of a host microRNA by a noncoding RNA publication-title: Science doi: 10.1126/science.1187197 – volume: 80 start-page: 892 year: 2020 end-page: 902.e4 ident: CR39 article-title: Functional atlas of primary miRNA maturation by the microprocessor publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.10.028 – volume: 118 start-page: 57 year: 2004 end-page: 68 ident: CR47 article-title: Single processing center models for human Dicer and bacterial RNase III publication-title: Cell doi: 10.1016/j.cell.2004.06.017 – volume: 18 start-page: 1716 year: 2021 end-page: 1726 ident: CR37 article-title: Bulges control pri-miRNA processing in a position and strand-dependent manner publication-title: RNA Biol. doi: 10.1080/15476286.2020.1868139 – volume: 155 start-page: 807 year: 2013 end-page: 816 ident: CR163 article-title: A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes publication-title: Cell doi: 10.1016/j.cell.2013.10.001 – volume: 465 start-page: 584 year: 2010 end-page: 589 ident: CR221 article-title: A dicer-independent miRNA biogenesis pathway that requires Ago catalysis publication-title: Nature doi: 10.1038/nature09092 – volume: 75 start-page: 511 year: 2019 end-page: 522.e4 ident: CR71 article-title: 3′ uridylation confers miRNAs with non-canonical target repertoires publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.05.014 – volume: 173 start-page: 1191 year: 2018 end-page: 1203.e12 ident: CR81 article-title: Cryo-EM structure of human dicer and its complexes with a pre-miRNA substrate publication-title: Cell doi: 10.1016/j.cell.2018.03.080 – volume: 32 start-page: 276 year: 2008 end-page: 284 ident: CR115 article-title: Lin28 mediates the terminal uridylation of let-7 precursor microRNA publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.09.014 – volume: 320 start-page: 97 year: 2008 end-page: 100 ident: CR116 article-title: Selective blockade of microRNA processing by Lin28 publication-title: Science doi: 10.1126/science.1154040 – volume: 147 start-page: 1537 year: 2011 end-page: 1550 ident: CR196 article-title: Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution publication-title: Cell doi: 10.1016/j.cell.2011.11.055 – volume: 125 start-page: 4077 year: 1998 end-page: 4088 ident: CR5 article-title: The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of complex transcripts publication-title: Development doi: 10.1242/dev.125.20.4077 – year: 2015 ident: CR57 article-title: Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets publication-title: eLife doi: 10.7554/eLife.07646 – volume: 50 start-page: 6618 year: 2022 end-page: 6638 ident: CR112 article-title: Anatomy of four human Argonaute proteins publication-title: Nucleic acids Res. doi: 10.1093/nar/gkac519 – volume: 75 start-page: 855 year: 1993 end-page: 862 ident: CR2 article-title: Posttranscriptional regulation of the heterochronic gene by mediates temporal pattern formation in publication-title: Cell doi: 10.1016/0092-8674(93)90530-4 – volume: 294 start-page: 862 year: 2001 end-page: 864 ident: CR8 article-title: An extensive class of small RNAs in publication-title: Science doi: 10.1126/science.1065329 – year: 2015 ident: CR188 article-title: Potent degradation of neuronal miRNAs induced by highly complementary targets publication-title: EMBO Rep. doi: 10.15252/embr.201540078 – volume: 45 start-page: 11867 year: 2017 end-page: 11877 ident: CR23 article-title: Human Argonaute3 has slicer activity publication-title: Nucleic acids Res. doi: 10.1093/nar/gkx916 – volume: 10 year: 2019 ident: CR107 article-title: Argonaute bypasses cellular obstacles without hindrance during target search publication-title: Nat. Commun. doi: 10.1038/s41467-019-12415-y – volume: 124 start-page: 4039 year: 1997 end-page: 4051 ident: CR3 article-title: The gene encodes a novel small protein and shares 3′ UTR sequence motifs with multiple complex genes publication-title: Development doi: 10.1242/dev.124.20.4039 – volume: 342 start-page: 235 year: 2013 end-page: 238 ident: CR173 article-title: Antiviral RNA interference in mammalian cells publication-title: Science doi: 10.1126/science.1241930 – volume: 9 year: 2018 ident: CR187 article-title: Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation publication-title: Nat. Commun. doi: 10.1038/s41467-018-05182-9 – volume: 448 start-page: 83 year: 2007 end-page: 86 ident: CR217 article-title: Intronic microRNA precursors that bypass Drosha processing publication-title: Nature doi: 10.1038/nature05983 – volume: 13 year: 2022 ident: CR54 article-title: Secondary structure RNA elements control the cleavage activity of DICER publication-title: Nat. Commun. doi: 10.1038/s41467-022-29822-3 – volume: 109 start-page: 15942 year: 2012 end-page: 15946 ident: CR136 article-title: Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1209487109 – volume: 328 start-page: 1534 year: 2010 end-page: 1539 ident: CR189 article-title: Target RNA-directed trimming and tailing of small silencing RNAs publication-title: Science doi: 10.1126/science.1187058 – volume: 44 start-page: 1326 year: 2016 end-page: 1341 ident: CR146 article-title: The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation publication-title: Nucleic acids Res. doi: 10.1093/nar/gkv1330 – volume: 107 start-page: 3906 year: 2010 end-page: 3911 ident: CR183 article-title: Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0912632107 – volume: 32 start-page: 335 year: 2015 end-page: 344 ident: CR214 article-title: The let-7 microRNA directs vulval development through a single target publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.12.018 – volume: 12 year: 2021 ident: CR46 article-title: RNA structure probing reveals the structural basis of Dicer binding and cleavage publication-title: Nat. Commun. doi: 10.1038/s41467-021-23607-w – volume: 162 start-page: 84 year: 2015 end-page: 95 ident: CR103 article-title: Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides publication-title: Cell doi: 10.1016/j.cell.2015.06.029 – volume: 15 start-page: 902 year: 2008 end-page: 909 ident: CR157 article-title: Primary microRNA transcripts are processed co-transcriptionally publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1475 – volume: 461 start-page: 546 year: 2009 end-page: 549 ident: CR184 article-title: Active turnover modulates mature microRNA activity in publication-title: Nature doi: 10.1038/nature08349 – volume: 286 start-page: 16716 year: 2011 end-page: 16725 ident: CR84 article-title: DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.180844 – volume: 19 start-page: 321 year: 2012 end-page: 327 ident: CR59 article-title: An alternative mode of microRNA target recognition publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2230 – volume: 25 start-page: 244 year: 2018 end-page: 251 ident: CR200 article-title: microRNA degradation by a conserved target RNA regulates animal behavior publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0032-x – volume: 22 start-page: 1492 year: 2016 end-page: 1499 ident: CR206 article-title: Gld2-catalyzed 3′ monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior publication-title: RNA doi: 10.1261/rna.056937.116 – volume: 13 year: 2022 ident: CR192 article-title: TENT2, TUT4, and TUT7 selectively regulate miRNA sequence and abundance publication-title: Nat. Commun. doi: 10.1038/s41467-022-32969-8 – volume: 25 start-page: 1 year: 2019 end-page: 16 ident: CR125 article-title: Post-transcriptional control of miRNA biogenesis publication-title: RNA doi: 10.1261/rna.068692.118 – volume: 49 start-page: 680 year: 2013 end-page: 691 ident: CR209 article-title: Roles of R2D2, a cytoplasmic D2 body component, in the endogenous siRNA pathway in publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.12.024 – volume: 150 start-page: 100 year: 2012 end-page: 110 ident: CR20 article-title: The structure of human Argonaute-2 in complex with miR-20a publication-title: Cell doi: 10.1016/j.cell.2012.05.017 – volume: 75 start-page: 756 year: 2019 end-page: 768.e7 ident: CR178 article-title: Time-resolved small RNA sequencing unravels the molecular principles of microRNA homeostasis publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.018 – volume: 22 start-page: 129 year: 2016 end-page: 138 ident: CR144 article-title: Novel regulation and functional interaction of polycistronic miRNAs publication-title: RNA doi: 10.1261/rna.053264.115 – volume: 49 start-page: D212 year: 2021 end-page: D220 ident: CR43 article-title: RNAcentral 2021: secondary structure integration, improved sequence search and new member databases publication-title: Nucleic acids Res. doi: 10.1093/nar/gkaa921 – volume: 162 start-page: 885 year: 2015 end-page: 899 ident: CR142 article-title: A biogenesis step upstream of microprocessor controls miR-17 approximately 92 expression publication-title: Cell doi: 10.1016/j.cell.2015.07.008 – volume: 293 start-page: 834 year: 2001 end-page: 838 ident: CR162 article-title: A cellular function for the RNA-interference enzyme Dicer in the maturation of the small temporal RNA publication-title: Science doi: 10.1126/science.1062961 – volume: 46 start-page: 5726 year: 2018 end-page: 5736 ident: CR33 article-title: Microprocessor depends on hemin to recognize the apical loop of primary microRNA publication-title: Nucleic acids Res. doi: 10.1093/nar/gky248 – volume: 305 start-page: 1437 year: 2004 end-page: 1441 ident: CR21 article-title: Argonaute2 is the catalytic engine of mammalian RNAi publication-title: Science doi: 10.1126/science.1102513 – volume: 48 start-page: 4681 year: 2020 end-page: 4697 ident: CR132 article-title: Uncovering the cellular capacity for intensive and specific feedback self-control of the argonautes and microRNA targeting activity publication-title: Nucleic acids Res. doi: 10.1093/nar/gkaa209 – volume: 40 start-page: 111154 year: 2022 ident: CR198 article-title: The developmentally timed decay of an essential microRNA family is seed-sequence dependent publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111154 – volume: 156 start-page: 920 year: 2014 end-page: 934 ident: CR220 article-title: Argonaute-bound small RNAs from promoter-proximal RNA polymerase II publication-title: Cell doi: 10.1016/j.cell.2014.01.041 – volume: 29 start-page: 5632 year: 2009 end-page: 5638 ident: CR156 article-title: Coupled RNA processing and transcription of intergenic primary microRNAs publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00664-09 – volume: 521 start-page: 533 year: 2015 end-page: 536 ident: CR100 article-title: Defining fundamental steps in the assembly of the RNAi enzyme complex publication-title: Nature doi: 10.1038/nature14254 – volume: 321 start-page: 1490 year: 2008 end-page: 1492 ident: CR180 article-title: Degradation of microRNAs by a family of exoribonucleases in publication-title: Science doi: 10.1126/science.1163728 – volume: 162 start-page: 96 year: 2015 end-page: 107 ident: CR105 article-title: A dynamic search process underlies microRNA targeting publication-title: Cell doi: 10.1016/j.cell.2015.06.032 – volume: 75 start-page: 843 year: 1993 end-page: 854 ident: CR1 article-title: The heterochronic gene encodes small RNAs with antisense complementarity to publication-title: Cell doi: 10.1016/0092-8674(93)90529-Y – volume: 8 year: 2018 ident: CR75 article-title: Antagonistic and cooperative AGO2–PUM interactions in regulating mRNAs publication-title: Sci. Rep. doi: 10.1038/s41598-018-33596-4 – volume: 17 start-page: 1997 year: 2011 end-page: 2010 ident: CR139 article-title: A genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs publication-title: RNA doi: 10.1261/rna.2983511 – volume: 130 start-page: 89 year: 2007 end-page: 100 ident: CR216 article-title: The mirtron pathway generates microRNA-class regulatory RNAs in publication-title: Cell doi: 10.1016/j.cell.2007.06.028 – volume: 37 start-page: 135 year: 2010 end-page: 142 ident: CR218 article-title: A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral microRNAs publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.12.016 – volume: 49 start-page: 10018 year: 2021 end-page: 10033 ident: CR147 article-title: regulation within a cluster of viral microRNAs publication-title: Nucleic acids Res. doi: 10.1093/nar/gkab731 – volume: 78 start-page: 876 year: 2020 end-page: 889 ident: CR153 article-title: SAFB2 enables the processing of suboptimal stem–loop structures in clustered primary miRNA transcripts publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.05.011 – volume: 60 start-page: 131 year: 2015 end-page: 145 ident: CR31 article-title: The menu of features that define primary microRNAs and enable de novo design of microRNA genes publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.08.015 – year: 2017 ident: CR195 article-title: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function publication-title: Science doi: 10.1126/science.aam8526 – volume: 155 start-page: 1568 year: 2013 end-page: 1580 ident: CR219 article-title: Mammalian 5′-capped microRNA precursors that generate a single microRNA publication-title: Cell doi: 10.1016/j.cell.2013.11.027 – volume: 182 start-page: 61 year: 2008 end-page: 76 ident: CR160 article-title: Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production publication-title: J. Cell Biol. doi: 10.1083/jcb.200803111 – volume: 21 start-page: 1395 year: 2011 end-page: 1403 ident: CR68 article-title: Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs publication-title: Genome Res. doi: 10.1101/gr.121210.111 – volume: 38 year: 2019 ident: CR72 article-title: Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2 publication-title: EMBO J. doi: 10.15252/embj.2018101153 – volume: 119 year: 2022 ident: CR73 article-title: Manganese-dependent microRNA trimming by 3′ → 5′ exonucleases generates 14-nucleotide or shorter tiny RNAs publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2214335119 – volume: 615 start-page: 323 year: 2023 end-page: 330 ident: CR38 article-title: Sequence determinant of small RNA production by DICER publication-title: Nature doi: 10.1038/s41586-023-05722-4 – volume: 11 start-page: 674 year: 2005 end-page: 682 ident: CR50 article-title: The contributions of dsRNA structure to Dicer specificity and efficiency publication-title: RNA doi: 10.1261/rna.7272305 – volume: 12 year: 2021 ident: CR99 article-title: Single-molecule analysis of processive double-stranded RNA cleavage by Dicer-2 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24555-1 – year: 2019 ident: CR113 article-title: Structural basis for target-directed microRNA degradation publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.019 – volume: 50 start-page: 7637 year: 2022 end-page: 7654 ident: CR211 article-title: Regulated dicing of pre-mir-144 via reshaping of its terminal loop publication-title: Nucleic acids Res. doi: 10.1093/nar/gkac568 – volume: 14 start-page: 1539 year: 2008 end-page: 1549 ident: CR114 article-title: Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing publication-title: RNA doi: 10.1261/rna.1155108 – volume: 37 start-page: 110015 year: 2021 ident: CR41 article-title: MapToCleave: high-throughput profiling of microRNA biogenesis in living cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.110015 – volume: 70 start-page: 722 year: 2018 end-page: 729.e4 ident: CR101 article-title: Conformational activation of argonaute by distinct yet coordinated actions of the Hsp70 and Hsp90 chaperone systems publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.04.010 – year: 2022 ident: CR65 article-title: microRNA 3′-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position publication-title: eLife doi: 10.7554/eLife.69803 – volume: 22 start-page: 175 year: 2016 end-page: 183 ident: CR98 article-title: A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting publication-title: RNA doi: 10.1261/rna.054684.115 – year: 2013 ident: CR120 article-title: A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway publication-title: Nature doi: 10.1038/nature12119 – volume: 18 start-page: 2166 year: 2012 end-page: 2173 ident: CR13 article-title: RNase III-independent microRNA biogenesis in mammalian cells publication-title: RNA doi: 10.1261/rna.036194.112 – volume: 48 start-page: 760 year: 2012 end-page: 770 ident: CR61 article-title: Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.002 – volume: 11 year: 2020 ident: CR191 article-title: AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16533-w – volume: 43 start-page: 892 year: 2011 end-page: 903 ident: CR12 article-title: Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.07.024 – volume: 20 start-page: 5 year: 2019 end-page: 20 ident: CR126 article-title: Regulation of microRNA biogenesis and its crosstalk with other cellular pathways publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0059-1 – volume: 58 start-page: 189 year: 2019 end-page: 198 ident: CR25 article-title: Orientation of human microprocessor on primary microRNAs publication-title: Biochemistry doi: 10.1021/acs.biochem.8b00944 – volume: 11 year: 2020 ident: CR36 article-title: Mismatched and wobble base pairs govern primary microRNA processing by human microprocessor publication-title: Nat. Commun. doi: 10.1038/s41467-020-15674-2 – volume: 7 year: 2017 ident: CR145 article-title: CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function publication-title: Sci. Rep. doi: 10.1038/s41598-017-09268-0 – volume: 13 year: 2022 ident: CR102 article-title: Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31480-4 – volume: 20 start-page: 3123 year: 2017 end-page: 3134 ident: CR159 article-title: Microprocessor recruitment to elongating RNA polymerase II is required for differential expression of microRNAs publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.010 – volume: 23 start-page: 1743 year: 2009 end-page: 1748 ident: CR74 article-title: HuR recruits let-7/RISC to repress c-Myc expression publication-title: Genes Dev. doi: 10.1101/gad.1812509 – volume: 141 start-page: 1195 year: 2010 end-page: 1207 ident: CR131 article-title: A microRNA targeting dicer for metastasis control publication-title: Cell doi: 10.1016/j.cell.2010.05.017 – volume: 117 start-page: 28576 year: 2020 end-page: 28578 ident: CR24 article-title: Human Argonaute2 and Argonaute3 are catalytically activated by different lengths of guide RNA publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2015026117 – volume: 7 start-page: 1994 year: 2014 end-page: 2005 ident: CR85 article-title: The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.013 – volume: 78 start-page: 317 year: 2020 end-page: 328.e6 ident: CR150 article-title: Ago2-dependent processing allows miR-451 to evade the global microRNA turnover elicited during erythropoiesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.020 – volume: 13 year: 2022 ident: CR110 article-title: Single-molecule imaging of microRNA-mediated gene silencing in cells publication-title: Nat. Commun. doi: 10.1038/s41467-022-29046-5 – volume: 75 start-page: 340 year: 2019 end-page: 356 ident: CR143 article-title: Oncogenic biogenesis of pri-miR-17-92 reveals hierarchy and competition among polycistronic microRNAs publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.05.033 – volume: 607 start-page: 393 year: 2022 end-page: 398 ident: CR95 article-title: Structure of the Dicer-2–R2D2 heterodimer bound to a small RNA duplex publication-title: Nature doi: 10.1038/s41586-022-04790-2 – volume: 316 start-page: 575 year: 2007 end-page: 579 ident: CR175 article-title: Control of stress-dependent cardiac growth and gene expression by a microRNA publication-title: Science doi: 10.1126/science.1139089 – volume: 15 start-page: 537 year: 2009 end-page: 545 ident: CR138 article-title: Genome-wide identification of targets of the Drosha-Pasha/DGCR8 complex publication-title: RNA doi: 10.1261/rna.1319309 – volume: 11 start-page: 522 year: 2010 end-page: 527 ident: CR56 article-title: Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein publication-title: EMBO Rep. doi: 10.1038/embor.2010.81 – volume: 35 start-page: 1595 year: 2021 end-page: 1609 ident: CR199 article-title: Widespread microRNA degradation elements in target mRNAs can assist the encoded proteins publication-title: Genes Dev. doi: 10.1101/gad.348874.121 – volume: 82 start-page: 3872 year: 2022 end-page: 3884.e9 ident: CR201 article-title: Endogenous transcripts direct microRNA degradation in , and this targeted degradation is required for proper embryonic development publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.08.029 – volume: 69 start-page: 265 year: 2018 end-page: 278.e6 ident: CR149 article-title: Dual strategies for Argonaute2-mediated biogenesis of erythroid miRNAs underlie conserved requirements for slicing in mammals publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.027 – volume: 12 start-page: 19 year: 2010 end-page: 31 ident: CR11 article-title: Small RNA sorting: matchmaking for Argonautes publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2916 – volume: 11 start-page: 214 year: 2004 end-page: 218 ident: CR89 article-title: RNase III enzymes and the initiation of gene silencing publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb729 – volume: 305 start-page: 1434 year: 2004 end-page: 1437 ident: CR80 article-title: Crystal structure of Argonaute and its implications for RISC slicer activity publication-title: Science doi: 10.1126/science.1102514 – volume: 16 start-page: 144 year: 2009 end-page: 150 ident: CR67 article-title: Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1552 – volume: 20 start-page: 789 year: 2013 end-page: 795 ident: CR133 article-title: Homeostatic control of Argonaute stability by microRNA availability publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2606 – volume: 141 start-page: 618 year: 2010 end-page: 631 ident: CR179 article-title: Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs publication-title: Cell doi: 10.1016/j.cell.2010.03.039 – volume: 18 start-page: 1875 year: 2012 end-page: 1885 ident: CR119 article-title: Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7) publication-title: RNA doi: 10.1261/rna.034538.112 – volume: 73 start-page: 119 year: 2019 end-page: 129.e5 ident: CR134 article-title: Iruka eliminates dysfunctional argonaute by selective ubiquitination of its empty state publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.033 – volume: 151 start-page: 900 year: 2012 end-page: 911 ident: CR53 article-title: The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo publication-title: Cell doi: 10.1016/j.cell.2012.09.042 – volume: 19 start-page: 605 year: 2013 end-page: 612 ident: CR135 article-title: Argonaute2 expression is post-transcriptionally coupled to microRNA abundance publication-title: RNA doi: 10.1261/rna.036434.112 – volume: 42 start-page: 112111 year: 2023 ident: CR208 article-title: Promiscuous splicing-derived hairpins are dominant substrates of tailing-mediated defense of miRNA biogenesis in mammals publication-title: Cell Rep. doi: 10.1016/j.celrep.2023.112111 – volume: 409 start-page: 363 year: 2001 end-page: 366 ident: CR161 article-title: Role for a bidentate ribonuclease in the initiation step of RNA interference publication-title: Nature doi: 10.1038/35053110 – volume: 8 year: 2017 ident: CR35 article-title: Genetic variation and RNA structure regulate microRNA biogenesis publication-title: Nat. Commun. doi: 10.1038/ncomms15114 – volume: 131 start-page: 1273 year: 2007 end-page: 1286 ident: CR76 article-title: RNA-binding protein Dnd1 inhibits microRNA access to target mRNA publication-title: Cell doi: 10.1016/j.cell.2007.11.034 – volume: 24 start-page: 992 year: 2010 end-page: 1009 ident: CR42 article-title: Mammalian microRNAs: experimental evaluation of novel and previously annotated genes publication-title: Genes Dev. doi: 10.1101/gad.1884710 – volume: 141 start-page: 129 year: 2010 end-page: 141 ident: CR62 article-title: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP publication-title: Cell doi: 10.1016/j.cell.2010.03.009 – volume: 24 start-page: 138 year: 2005 end-page: 148 ident: CR28 article-title: Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha publication-title: EMBO J. doi: 10.1038/sj.emboj.7600491 – year: 2019 ident: CR64 article-title: The biochemical basis of microRNA targeting efficacy publication-title: Science doi: 10.1126/science.aav1741 – volume: 49 start-page: 11167 year: 2021 end-page: 11180 ident: CR207 article-title: Screening by deep sequencing reveals mediators of microRNA tailing in publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab840 – volume: 138 start-page: 696 year: 2009 end-page: 708 ident: CR118 article-title: TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation publication-title: Cell doi: 10.1016/j.cell.2009.08.002 – volume: 34 start-page: 1227 year: 2020 end-page: 1238 ident: CR213 article-title: In vivo CRISPR screening for phenotypic targets of the mir-35-42 family in publication-title: Genes Dev. doi: 10.1101/gad.339333.120 – volume: 112 start-page: E6945 year: 2015 end-page: E6954 ident: CR170 article-title: Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1513421112 – volume: 107 start-page: 15163 year: 2010 end-page: 15168 ident: CR223 article-title: Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1006432107 – volume: 461 start-page: 754 year: 2009 end-page: 761 ident: CR79 article-title: Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes publication-title: Nature doi: 10.1038/nature08434 – volume: 615 start-page: 331 year: 2023 end-page: 338 ident: CR90 article-title: Structure of the human DICER–pre-miRNA complex in a dicing state publication-title: Nature doi: 10.1038/s41586-023-05723-3 – volume: 125 start-page: 887 year: 2006 end-page: 901 ident: CR26 article-title: Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex publication-title: Cell doi: 10.1016/j.cell.2006.03.043 – volume: 73 start-page: 1204 year: 2019 end-page: 1216.e4 ident: CR181 article-title: The RNase PARN controls the levels of specific miRNAs that contribute to p53 regulation publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.01.010 – volume: 54 start-page: 410 year: 2020 end-page: 423 ident: CR215 article-title: miRNAs and neural alternative polyadenylation specify the virgin behavioral state publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.06.004 – volume: 374 start-page: 1152 year: 2021 end-page: 1157 ident: CR97 article-title: Mechanism of siRNA production by a plant Dicer–RNA complex in dicing-competent conformation publication-title: Science doi: 10.1126/science.abl4546 – year: 2020 ident: CR194 article-title: A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming publication-title: Science doi: 10.1126/science.abc9546 – volume: 456 start-page: 209 year: 2008 end-page: 213 ident: CR18 article-title: Structure of the guide-strand-containing Argonaute silencing complex publication-title: Nature doi: 10.1038/nature07315 – volume: 25 start-page: 1019 year: 2018 end-page: 1027 ident: CR69 article-title: A novel class of microRNA-recognition elements that function only within open reading frames publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0136-3 – volume: 607 start-page: 399 year: 2022 end-page: 406 ident: CR96 article-title: Structural insights into dsRNA processing by Dicer-2–Loqs-PD publication-title: Nature doi: 10.1038/s41586-022-04911-x – volume: 174 start-page: 350 year: 2018 end-page: 362.e17 ident: CR197 article-title: A network of noncoding regulatory RNAs acts in the mammalian brain publication-title: Cell doi: 10.1016/j.cell.2018.05.022 – volume: 8 year: 2012 ident: CR186 article-title: Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002510 – volume: 373 start-page: 231 year: 2021 end-page: 236 ident: CR171 article-title: An isoform of Dicer protects mammalian stem cells against multiple RNA viruses publication-title: Science doi: 10.1126/science.abg2264 – volume: 24 start-page: 892 year: 2018 end-page: 898 ident: CR34 article-title: SRSF3 recruits DROSHA to the basal junction of primary microRNAs publication-title: RNA doi: 10.1261/rna.065862.118 – volume: 20 start-page: 271 year: 2010 end-page: 277 ident: CR166 article-title: microRNA function is globally suppressed in mouse oocytes and early embryos publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.12.044 – volume: 21 start-page: 5875 year: 2002 end-page: 5885 ident: CR51 article-title: Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP publication-title: EMBO J. doi: 10.1093/emboj/cdf582 – volume: 453 start-page: 539 year: 2008 end-page: 543 ident: CR164 article-title: Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes publication-title: Nature doi: 10.1038/nature06908 – volume: 81 start-page: 3422 year: 2021 end-page: 3439.e11 ident: CR40 article-title: A quantitative map of human primary microRNA processing sites publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.07.002 – volume: 336 start-page: 1037 year: 2012 end-page: 1040 ident: CR19 article-title: The crystal structure of human Argonaute2 publication-title: Science doi: 10.1126/science.1221551 – volume: 23 start-page: 433 year: 2009 end-page: 438 ident: CR203 article-title: Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2 publication-title: Genes Dev. doi: 10.1101/gad.1761509 – volume: 15 year: 2017 ident: CR182 article-title: ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2001272 – volume: 294 start-page: 853 year: 2001 end-page: 858 ident: CR9 article-title: Identification of novel genes coding for small expressed RNAs publication-title: Science doi: 10.1126/science.1064921 – volume: 11 start-page: 241 year: 2005 end-page: 247 ident: CR141 article-title: Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes publication-title: RNA doi: 10.1261/rna.7240905 – volume: 453 start-page: 534 year: 2008 end-page: 538 ident: CR165 article-title: Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes publication-title: Nature doi: 10.1038/nature06904 – volume: 48 start-page: 8050 year: 2020 end-page: 8062 ident: CR168 article-title: microRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes publication-title: Nucleic acids Res. doi: 10.1093/nar/gkaa543 – volume: 342 start-page: 231 year: 2013 end-page: 234 ident: CR172 article-title: RNA interference functions as an antiviral immunity mechanism in mammals publication-title: Science doi: 10.1126/science.1241911 – volume: 19 start-page: 1067 year: 2005 end-page: 1080 ident: CR15 article-title: Pervasive regulation of Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs publication-title: Genes Dev. doi: 10.1101/gad.1291905 – volume: 164 start-page: 81 year: 2016 end-page: 90 ident: CR83 article-title: Structure of human DROSHA publication-title: Cell doi: 10.1016/j.cell.2015.12.019 – volume: 6 year: 2015 ident: CR14 article-title: Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects publication-title: Nat. Commun. doi: 10.1038/ncomms9430 – volume: 12 year: 2021 ident: CR77 article-title: The regulatory impact of RNA-binding proteins on microRNA targeting publication-title: Nat. Commun. doi: 10.1038/s41467-021-25078-5 – volume: 280 start-page: 27595 year: 2005 end-page: 27603 ident: CR27 article-title: Efficient processing of primary microRNA hairpins by Drosha requires flanking non-structured RNA sequences publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504714200 – volume: 78 start-page: 289 year: 2020 end-page: 302.e6 ident: CR152 article-title: microRNA clustering assists processing of suboptimal microRNA hairpins through the action of the ERH protein publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.01.026 – volume: 15 start-page: 185 year: 2004 end-page: 197 ident: CR22 article-title: Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.07.007 – volume: 38 start-page: 789 year: 2010 end-page: 802 ident: CR58 article-title: Expanding the microRNA targeting code: functional sites with centered pairing publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.06.005 – volume: 69 start-page: 1005 year: 2018 end-page: 1016.e7 ident: CR128 article-title: Systematic discovery of RNA binding proteins that regulate microRNA levels publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.02.012 – volume: 136 start-page: 75 year: 2009 end-page: 84 ident: CR137 article-title: Posttranscriptional crossregulation between Drosha and DGCR8 publication-title: Cell doi: 10.1016/j.cell.2008.10.053 – volume: 14 start-page: 1314 year: 2012 end-page: 1321 ident: CR177 article-title: Selective autophagy degrades DICER and AGO2 and regulates miRNA activity publication-title: Nat. Cell Biol. doi: 10.1038/ncb2611 – volume: 78 start-page: 411 year: 2020 end-page: 422 e414 ident: CR87 article-title: Cryo-EM structures of human Drosha and DGCR8 in complex with primary microRNA publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.016 – volume: 10 start-page: 987 year: 2008 end-page: 993 ident: CR117 article-title: A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment publication-title: Nat. Cell Biol. doi: 10.1038/ncb1759 – volume: 593 start-page: 602 year: 2021 end-page: 606 ident: CR140 article-title: Global miRNA dosage control of embryonic germ layer specification publication-title: Nature doi: 10.1038/s41586-021-03524-0 – volume: 14 start-page: 2108 year: 2023 ident: CR202 article-title: Screening of Drosophila microRNA-degradation sequences reveals Argonaute1 mRNA’s role in regulating miR-999 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37819-9 – volume: 37 start-page: 75 year: 2018 end-page: 88 ident: CR106 article-title: Helix-7 in argonaute2 shapes the microRNA seed region for rapid target recognition publication-title: EMBO J. doi: 10.15252/embj.201796474 – volume: 32 start-page: 383 year: 2008 end-page: 393 ident: CR127 article-title: Posttranscriptional regulation of miRNAs harboring conserved terminal loops publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.10.013 – volume: 48 start-page: 2579 year: 2020 end-page: 2593 ident: CR45 article-title: The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human microprocessor publication-title: Nucleic acids Res. doi: 10.1093/nar/gkaa018 – volume: 27 start-page: 790 year: 2020 end-page: 801 ident: CR108 article-title: mRNA structural dynamics shape Argonaute–target interactions publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0461-1 – volume: 8 year: 2017 ident: CR32 article-title: Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs publication-title: Nat. Commun. doi: 10.1038/s41467-017-01713-y – volume: 21 start-page: 682 year: 2007 end-page: 693 ident: CR167 article-title: Critical roles for Dicer in the female germline publication-title: Genes Dev. doi: 10.1101/gad.1521307 – volume: 29 start-page: 2073 year: 2008 end-page: 2077 ident: CR130 article-title: let-7 regulates Dicer expression and constitutes a negative feedback loop publication-title: Carcinogenesis doi: 10.1093/carcin/bgn187 – volume: 14 start-page: 475 year: 2013 end-page: 488 ident: CR190 article-title: Diversifying microRNA sequence and function publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3611 – volume: 124 start-page: 4847 year: 1997 end-page: 4856 ident: CR4 article-title: The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of and complex gene expression publication-title: Development doi: 10.1242/dev.124.23.4847 – volume: 39 start-page: 2756 year: 2011 end-page: 2768 ident: CR88 article-title: Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates publication-title: Nucleic acids Res. doi: 10.1093/nar/gkq1030 – volume: 29 start-page: 1777 year: 2019 end-page: 1790 ident: CR176 article-title: Global analyses of the dynamics of mammalian microRNA metabolism publication-title: Genome Res. doi: 10.1101/gr.251421.119 – volume: 120 start-page: 15 year: 2005 end-page: 20 ident: CR16 article-title: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets publication-title: Cell doi: 10.1016/j.cell.2004.12.035 – volume: 456 start-page: 921 year: 2008 end-page: 926 ident: CR78 article-title: Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex publication-title: Nature doi: 10.1038/nature07666 – year: 2020 ident: CR70 article-title: A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0246-8 – volume: 82 start-page: 4049 year: 2022 end-page: 4063.e6 ident: CR92 article-title: Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.09.002 – volume: 328 start-page: 1694 year: 2010 end-page: 1698 ident: CR222 article-title: A novel miRNA processing pathway independent of dicer requires Argonaute2 catalytic activity publication-title: Science doi: 10.1126/science.1190809 – volume: 514 start-page: 252 year: 2014 end-page: 256 ident: CR121 article-title: Mechanism of Dis3l2 substrate recognition in the Lin28–let-7 pathway publication-title: Nature doi: 10.1038/nature13553 – year: 2022 ident: CR44 article-title: The limits of human microRNA annotation have been met publication-title: RNA doi: 10.1261/rna.079098.122 – volume: 152 start-page: 844 year: 2013 end-page: 858 ident: CR30 article-title: Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing publication-title: Cell doi: 10.1016/j.cell.2013.01.031 – volume: 31 start-page: 614 year: 2014 end-page: 628 ident: CR210 article-title: A requirement for ERK dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.11.004 – volume: 27 start-page: 91 year: 2007 end-page: 105 ident: CR66 article-title: microRNA targeting specificity in mammals: determinants beyond seed pairing publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.06.017 – volume: 39 start-page: 5692 year: 2011 end-page: 5703 ident: CR174 article-title: Analysis of microRNA turnover in mammalian cells following Dicer1 ablation publication-title: Nucleic acids Res. doi: 10.1093/nar/gkr148 – year: 2020 ident: CR193 article-title: The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation publication-title: Science doi: 10.1126/science.abc9359 – volume: 75 start-page: 741 year: 2019 end-page: 755.e11 ident: CR63 article-title: High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.012 – volume: 161 start-page: 1374 year: 2015 end-page: 1387 ident: CR82 article-title: Functional anatomy of the human microprocessor publication-title: Cell doi: 10.1016/j.cell.2015.05.010 – volume: 475 start-page: 201 year: 2011 end-page: 205 ident: CR52 article-title: Dicer recognizes the 5′ end of RNA for efficient and accurate processing publication-title: Nature doi: 10.1038/nature10198 – volume: 30 start-page: 363 year: 2002 end-page: 364 ident: CR6 article-title: microRNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation publication-title: Nat. Genet. doi: 10.1038/ng865 – volume: 78 start-page: 423 year: 2020 end-page: 433.e5 ident: CR86 article-title: Structural basis for pri-miRNA recognition by Drosha publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.024 – volume: 48 start-page: 11097 year: 2020 end-page: 11112 ident: CR154 article-title: ERH facilitates microRNA maturation through the interaction with the N-terminus of DGCR8 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkaa827 – volume: 82 start-page: 4064 year: 2022 end-page: 4079.e13 ident: CR91 article-title: Structural and functional basis of mammalian microRNA biogenesis by Dicer publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.10.010 – volume: 63 start-page: 420 year: 2016 end-page: 432 ident: CR158 article-title: HP1BP3, a chromatin retention factor for co-transcriptional microRNA processing publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.06.014 – volume: 66 start-page: 270 year: 2017 end-page: 284.e13 ident: CR129 article-title: A compendium of RNA-binding proteins that regulate microRNA biogenesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.03.014 – volume: 3 year: 2005 ident: CR17 article-title: Principles of microRNA–target recognition publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030085 – year: 2012 ident: CR204 article-title: Specific miRNA stabilization by Gld2-catalyzed monoadenylation publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.10.023 – volume: 151 start-page: 521 year: 2012 end-page: 532 ident: CR123 article-title: Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs publication-title: Cell doi: 10.1016/j.cell.2012.09.022 – volume: 379 start-page: 901 year: 2023 end-page: 907 ident: CR205 article-title: USB1 is a miRNA deadenylase that regulates hematopoietic development publication-title: Science doi: 10.1126/science.abj8379 – volume: 311 start-page: 195 year: 2006 end-page: 198 ident: CR48 article-title: Structural basis for double-stranded RNA processing by Dicer publication-title: Science doi: 10.1126/science.1121638 – year: 2019 ident: CR169 article-title: Antiviral RNAi in insects and mammals: parallels and differences publication-title: Viruses doi: 10.3390/v11050448 – volume: 7 start-page: 1389 year: 2021 end-page: 1396 ident: CR93 article-title: Structural basis of microRNA processing by Dicer-like 1 publication-title: Nat. Plants doi: 10.1038/s41477-021-01000-1 – volume: 19 start-page: 1632 year: 2013 end-page: 1638 ident: CR122 article-title: Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs publication-title: RNA doi: 10.1261/rna.040055.113 – volume: 294 start-page: 858 year: 2001 end-page: 862 ident: CR7 article-title: An abundant class of tiny RNAs with probable regulatory roles in publication-title: Science doi: 10.1126/science.1065062 – volume: 35 start-page: 610 year: 2009 end-page: 625 ident: CR60 article-title: miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.08.020 – volume: 7 start-page: eabh1434 year: 2021 ident: CR212 article-title: miR-1 sustains muscle physiology by controlling V-ATPase complex assembly publication-title: Sci. Adv. doi: 10.1126/sciadv.abh1434 – volume: 22 start-page: 129 year: 2016 ident: 611_CR144 publication-title: RNA doi: 10.1261/rna.053264.115 – volume: 48 start-page: 4681 year: 2020 ident: 611_CR132 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkaa209 – volume: 54 start-page: 410 year: 2020 ident: 611_CR215 publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.06.004 – volume: 49 start-page: D212 year: 2021 ident: 611_CR43 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkaa921 – volume: 19 start-page: 1632 year: 2013 ident: 611_CR122 publication-title: RNA doi: 10.1261/rna.040055.113 – volume: 6 year: 2015 ident: 611_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms9430 – volume: 29 start-page: 2073 year: 2008 ident: 611_CR130 publication-title: Carcinogenesis doi: 10.1093/carcin/bgn187 – volume: 456 start-page: 209 year: 2008 ident: 611_CR18 publication-title: Nature doi: 10.1038/nature07315 – volume: 78 start-page: 411 year: 2020 ident: 611_CR87 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.016 – volume: 38 start-page: 789 year: 2010 ident: 611_CR58 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.06.005 – volume: 294 start-page: 858 year: 2001 ident: 611_CR7 publication-title: Science doi: 10.1126/science.1065062 – volume: 78 start-page: 1224 year: 2020 ident: 611_CR124 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.030 – volume: 82 start-page: 3872 year: 2022 ident: 611_CR201 publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.08.029 – volume: 75 start-page: 756 year: 2019 ident: 611_CR178 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.018 – volume: 448 start-page: 83 year: 2007 ident: 611_CR217 publication-title: Nature doi: 10.1038/nature05983 – volume: 461 start-page: 546 year: 2009 ident: 611_CR184 publication-title: Nature doi: 10.1038/nature08349 – volume: 7 start-page: 1389 year: 2021 ident: 611_CR93 publication-title: Nat. Plants doi: 10.1038/s41477-021-01000-1 – volume: 328 start-page: 1563 year: 2010 ident: 611_CR185 publication-title: Science doi: 10.1126/science.1187197 – volume: 23 start-page: 1743 year: 2009 ident: 611_CR74 publication-title: Genes Dev. doi: 10.1101/gad.1812509 – volume: 78 start-page: 876 year: 2020 ident: 611_CR153 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.05.011 – volume: 280 start-page: 27595 year: 2005 ident: 611_CR27 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504714200 – volume: 20 start-page: 3123 year: 2017 ident: 611_CR159 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.010 – volume: 155 start-page: 1568 year: 2013 ident: 611_CR219 publication-title: Cell doi: 10.1016/j.cell.2013.11.027 – volume: 294 start-page: 853 year: 2001 ident: 611_CR9 publication-title: Science doi: 10.1126/science.1064921 – volume: 18 start-page: 2166 year: 2012 ident: 611_CR13 publication-title: RNA doi: 10.1261/rna.036194.112 – volume: 373 start-page: 231 year: 2021 ident: 611_CR171 publication-title: Science doi: 10.1126/science.abg2264 – volume: 25 start-page: 1019 year: 2018 ident: 611_CR69 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0136-3 – volume: 17 start-page: 1997 year: 2011 ident: 611_CR139 publication-title: RNA doi: 10.1261/rna.2983511 – volume: 8 year: 2017 ident: 611_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms15114 – volume: 12 year: 2021 ident: 611_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23607-w – volume: 11 year: 2020 ident: 611_CR191 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16533-w – volume: 37 start-page: 75 year: 2018 ident: 611_CR106 publication-title: EMBO J. doi: 10.15252/embj.201796474 – volume: 320 start-page: 97 year: 2008 ident: 611_CR116 publication-title: Science doi: 10.1126/science.1154040 – volume: 37 start-page: 110015 year: 2021 ident: 611_CR41 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.110015 – volume: 16 start-page: 144 year: 2009 ident: 611_CR67 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1552 – volume: 82 start-page: 4064 year: 2022 ident: 611_CR91 publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.10.010 – volume: 147 start-page: 1537 year: 2011 ident: 611_CR196 publication-title: Cell doi: 10.1016/j.cell.2011.11.055 – volume: 30 start-page: 363 year: 2002 ident: 611_CR6 publication-title: Nat. Genet. doi: 10.1038/ng865 – volume: 48 start-page: 2579 year: 2020 ident: 611_CR45 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkaa018 – volume: 321 start-page: 1490 year: 2008 ident: 611_CR180 publication-title: Science doi: 10.1126/science.1163728 – volume: 409 start-page: 363 year: 2001 ident: 611_CR161 publication-title: Nature doi: 10.1038/35053110 – volume: 465 start-page: 584 year: 2010 ident: 611_CR221 publication-title: Nature doi: 10.1038/nature09092 – volume: 138 start-page: 696 year: 2009 ident: 611_CR118 publication-title: Cell doi: 10.1016/j.cell.2009.08.002 – year: 2015 ident: 611_CR188 publication-title: EMBO Rep. doi: 10.15252/embr.201540078 – volume: 22 start-page: 1492 year: 2016 ident: 611_CR206 publication-title: RNA doi: 10.1261/rna.056937.116 – volume: 151 start-page: 521 year: 2012 ident: 611_CR123 publication-title: Cell doi: 10.1016/j.cell.2012.09.022 – year: 2019 ident: 611_CR169 publication-title: Viruses doi: 10.3390/v11050448 – volume: 117 start-page: 28576 year: 2020 ident: 611_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2015026117 – volume: 110 start-page: 20687 year: 2013 ident: 611_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1311639110 – volume: 152 start-page: 844 year: 2013 ident: 611_CR30 publication-title: Cell doi: 10.1016/j.cell.2013.01.031 – volume: 131 start-page: 1273 year: 2007 ident: 611_CR76 publication-title: Cell doi: 10.1016/j.cell.2007.11.034 – volume: 8 year: 2017 ident: 611_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01713-y – volume: 130 start-page: 89 year: 2007 ident: 611_CR216 publication-title: Cell doi: 10.1016/j.cell.2007.06.028 – year: 2017 ident: 611_CR195 publication-title: Science doi: 10.1126/science.aam8526 – volume: 521 start-page: 533 year: 2015 ident: 611_CR100 publication-title: Nature doi: 10.1038/nature14254 – volume: 32 start-page: 276 year: 2008 ident: 611_CR115 publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.09.014 – volume: 70 start-page: 722 year: 2018 ident: 611_CR101 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.04.010 – volume: 109 start-page: 15942 year: 2012 ident: 611_CR136 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1209487109 – volume: 13 year: 2022 ident: 611_CR110 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29046-5 – volume: 40 start-page: 111154 year: 2022 ident: 611_CR198 publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111154 – volume: 15 start-page: 902 year: 2008 ident: 611_CR157 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1475 – volume: 18 start-page: 1716 year: 2021 ident: 611_CR37 publication-title: RNA Biol. doi: 10.1080/15476286.2020.1868139 – volume: 124 start-page: 4039 year: 1997 ident: 611_CR3 publication-title: Development doi: 10.1242/dev.124.20.4039 – volume: 125 start-page: 887 year: 2006 ident: 611_CR26 publication-title: Cell doi: 10.1016/j.cell.2006.03.043 – volume: 615 start-page: 323 year: 2023 ident: 611_CR38 publication-title: Nature doi: 10.1038/s41586-023-05722-4 – volume: 73 start-page: 1204 year: 2019 ident: 611_CR181 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.01.010 – volume: 118 start-page: 57 year: 2004 ident: 611_CR47 publication-title: Cell doi: 10.1016/j.cell.2004.06.017 – volume: 19 start-page: 1067 year: 2005 ident: 611_CR15 publication-title: Genes Dev. doi: 10.1101/gad.1291905 – volume: 461 start-page: 754 year: 2009 ident: 611_CR79 publication-title: Nature doi: 10.1038/nature08434 – volume: 174 start-page: 350 year: 2018 ident: 611_CR197 publication-title: Cell doi: 10.1016/j.cell.2018.05.022 – volume: 49 start-page: 680 year: 2013 ident: 611_CR209 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.12.024 – volume: 8 year: 2018 ident: 611_CR75 publication-title: Sci. Rep. doi: 10.1038/s41598-018-33596-4 – volume: 155 start-page: 807 year: 2013 ident: 611_CR163 publication-title: Cell doi: 10.1016/j.cell.2013.10.001 – year: 2020 ident: 611_CR70 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0246-8 – volume: 32 start-page: 335 year: 2015 ident: 611_CR214 publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.12.018 – volume: 336 start-page: 1037 year: 2012 ident: 611_CR19 publication-title: Science doi: 10.1126/science.1221551 – volume: 162 start-page: 96 year: 2015 ident: 611_CR105 publication-title: Cell doi: 10.1016/j.cell.2015.06.032 – volume: 514 start-page: 252 year: 2014 ident: 611_CR121 publication-title: Nature doi: 10.1038/nature13553 – volume: 7 year: 2016 ident: 611_CR94 publication-title: Nat. Commun. doi: 10.1038/ncomms13694 – volume: 37 start-page: 135 year: 2010 ident: 611_CR218 publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.12.016 – volume: 78 start-page: 303 year: 2020 ident: 611_CR151 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.009 – volume: 29 start-page: 1777 year: 2019 ident: 611_CR176 publication-title: Genome Res. doi: 10.1101/gr.251421.119 – volume: 43 start-page: 892 year: 2011 ident: 611_CR12 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.07.024 – volume: 39 start-page: 2756 year: 2011 ident: 611_CR88 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkq1030 – volume: 305 start-page: 1434 year: 2004 ident: 611_CR80 publication-title: Science doi: 10.1126/science.1102514 – volume: 13 year: 2022 ident: 611_CR102 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31480-4 – volume: 141 start-page: 1195 year: 2010 ident: 611_CR131 publication-title: Cell doi: 10.1016/j.cell.2010.05.017 – volume: 48 start-page: 11097 year: 2020 ident: 611_CR154 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkaa827 – year: 2012 ident: 611_CR204 publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.10.023 – volume: 20 start-page: 789 year: 2013 ident: 611_CR133 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2606 – volume: 456 start-page: 921 year: 2008 ident: 611_CR78 publication-title: Nature doi: 10.1038/nature07666 – volume: 156 start-page: 920 year: 2014 ident: 611_CR220 publication-title: Cell doi: 10.1016/j.cell.2014.01.041 – volume: 24 start-page: 992 year: 2010 ident: 611_CR42 publication-title: Genes Dev. doi: 10.1101/gad.1884710 – volume: 75 start-page: 340 year: 2019 ident: 611_CR143 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.05.033 – volume: 20 start-page: 271 year: 2010 ident: 611_CR166 publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.12.044 – volume: 141 start-page: 129 year: 2010 ident: 611_CR62 publication-title: Cell doi: 10.1016/j.cell.2010.03.009 – volume: 293 start-page: 834 year: 2001 ident: 611_CR162 publication-title: Science doi: 10.1126/science.1062961 – volume: 107 start-page: 3906 year: 2010 ident: 611_CR183 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0912632107 – volume: 453 start-page: 539 year: 2008 ident: 611_CR164 publication-title: Nature doi: 10.1038/nature06908 – volume: 24 start-page: 892 year: 2018 ident: 611_CR34 publication-title: RNA doi: 10.1261/rna.065862.118 – volume: 9 year: 2018 ident: 611_CR187 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05182-9 – volume: 19 start-page: 321 year: 2012 ident: 611_CR59 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2230 – year: 2019 ident: 611_CR64 publication-title: Science doi: 10.1126/science.aav1741 – volume: 73 start-page: 119 year: 2019 ident: 611_CR134 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.033 – volume: 342 start-page: 231 year: 2013 ident: 611_CR172 publication-title: Science doi: 10.1126/science.1241911 – volume: 305 start-page: 1437 year: 2004 ident: 611_CR21 publication-title: Science doi: 10.1126/science.1102513 – volume: 112 start-page: E6945 year: 2015 ident: 611_CR170 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1513421112 – volume: 46 start-page: 5726 year: 2018 ident: 611_CR33 publication-title: Nucleic acids Res. doi: 10.1093/nar/gky248 – year: 2015 ident: 611_CR57 publication-title: eLife doi: 10.7554/eLife.07646 – volume: 119 year: 2022 ident: 611_CR73 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2214335119 – volume: 18 start-page: 1875 year: 2012 ident: 611_CR119 publication-title: RNA doi: 10.1261/rna.034538.112 – volume: 311 start-page: 195 year: 2006 ident: 611_CR48 publication-title: Science doi: 10.1126/science.1121638 – volume: 294 start-page: 862 year: 2001 ident: 611_CR8 publication-title: Science doi: 10.1126/science.1065329 – volume: 32 start-page: 383 year: 2008 ident: 611_CR127 publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.10.013 – volume: 453 start-page: 534 year: 2008 ident: 611_CR165 publication-title: Nature doi: 10.1038/nature06904 – volume: 50 start-page: 7637 year: 2022 ident: 611_CR211 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkac568 – volume: 75 start-page: 843 year: 1993 ident: 611_CR1 publication-title: Cell doi: 10.1016/0092-8674(93)90529-Y – volume: 607 start-page: 399 year: 2022 ident: 611_CR96 publication-title: Nature doi: 10.1038/s41586-022-04911-x – volume: 12 start-page: 19 year: 2010 ident: 611_CR11 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2916 – volume: 78 start-page: 289 year: 2020 ident: 611_CR152 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.01.026 – volume: 66 start-page: 270 year: 2017 ident: 611_CR129 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.03.014 – volume: 49 start-page: 11167 year: 2021 ident: 611_CR207 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab840 – volume: 3 year: 2005 ident: 611_CR17 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030085 – year: 2022 ident: 611_CR65 publication-title: eLife doi: 10.7554/eLife.69803 – volume: 10 year: 2019 ident: 611_CR107 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12415-y – volume: 78 start-page: 317 year: 2020 ident: 611_CR150 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.020 – volume: 42 start-page: 112111 year: 2023 ident: 611_CR208 publication-title: Cell Rep. doi: 10.1016/j.celrep.2023.112111 – volume: 21 start-page: 1395 year: 2011 ident: 611_CR68 publication-title: Genome Res. doi: 10.1101/gr.121210.111 – volume: 316 start-page: 575 year: 2007 ident: 611_CR175 publication-title: Science doi: 10.1126/science.1139089 – volume: 12 year: 2021 ident: 611_CR99 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24555-1 – volume: 63 start-page: 420 year: 2016 ident: 611_CR158 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.06.014 – volume: 13 year: 2022 ident: 611_CR192 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32969-8 – volume: 19 start-page: 605 year: 2013 ident: 611_CR135 publication-title: RNA doi: 10.1261/rna.036434.112 – volume: 69 start-page: 265 year: 2018 ident: 611_CR149 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.027 – year: 2020 ident: 611_CR194 publication-title: Science doi: 10.1126/science.abc9546 – volume: 429 start-page: 2619 year: 2017 ident: 611_CR111 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.07.018 – volume: 173 start-page: 1191 year: 2018 ident: 611_CR81 publication-title: Cell doi: 10.1016/j.cell.2018.03.080 – volume: 13 year: 2022 ident: 611_CR54 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29822-3 – volume: 21 start-page: 682 year: 2007 ident: 611_CR167 publication-title: Genes Dev. doi: 10.1101/gad.1521307 – volume: 342 start-page: 235 year: 2013 ident: 611_CR173 publication-title: Science doi: 10.1126/science.1241930 – volume: 7 year: 2017 ident: 611_CR145 publication-title: Sci. Rep. doi: 10.1038/s41598-017-09268-0 – volume: 607 start-page: 393 year: 2022 ident: 611_CR95 publication-title: Nature doi: 10.1038/s41586-022-04790-2 – volume: 69 start-page: 1005 year: 2018 ident: 611_CR128 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.02.012 – volume: 162 start-page: 84 year: 2015 ident: 611_CR103 publication-title: Cell doi: 10.1016/j.cell.2015.06.029 – volume: 15 start-page: 185 year: 2004 ident: 611_CR22 publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.07.007 – volume: 82 start-page: 4049 year: 2022 ident: 611_CR92 publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.09.002 – volume: 328 start-page: 1694 year: 2010 ident: 611_CR222 publication-title: Science doi: 10.1126/science.1190809 – volume: 120 start-page: 15 year: 2005 ident: 611_CR16 publication-title: Cell doi: 10.1016/j.cell.2004.12.035 – volume: 59 start-page: 125 year: 2015 ident: 611_CR104 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.015 – volume: 75 start-page: 855 year: 1993 ident: 611_CR2 publication-title: Cell doi: 10.1016/0092-8674(93)90530-4 – volume: 15 start-page: 537 year: 2009 ident: 611_CR138 publication-title: RNA doi: 10.1261/rna.1319309 – volume: 35 start-page: 610 year: 2009 ident: 611_CR60 publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.08.020 – volume: 14 start-page: 934 year: 2007 ident: 611_CR49 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1293 – volume: 150 start-page: 100 year: 2012 ident: 611_CR20 publication-title: Cell doi: 10.1016/j.cell.2012.05.017 – volume: 44 start-page: 1326 year: 2016 ident: 611_CR146 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkv1330 – volume: 12 year: 2021 ident: 611_CR77 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25078-5 – volume: 31 start-page: 614 year: 2014 ident: 611_CR210 publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.11.004 – volume: 21 start-page: 5875 year: 2002 ident: 611_CR51 publication-title: EMBO J. doi: 10.1093/emboj/cdf582 – volume: 27 start-page: 91 year: 2007 ident: 611_CR66 publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.06.017 – volume: 13 year: 2022 ident: 611_CR109 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30976-3 – volume: 182 start-page: 61 year: 2008 ident: 611_CR160 publication-title: J. Cell Biol. doi: 10.1083/jcb.200803111 – volume: 136 start-page: 75 year: 2009 ident: 611_CR137 publication-title: Cell doi: 10.1016/j.cell.2008.10.053 – volume: 22 start-page: 175 year: 2016 ident: 611_CR98 publication-title: RNA doi: 10.1261/rna.054684.115 – volume: 20 start-page: 5 year: 2019 ident: 611_CR126 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0059-1 – year: 2019 ident: 611_CR113 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.019 – volume: 7 start-page: eabh1434 year: 2021 ident: 611_CR212 publication-title: Sci. Adv. doi: 10.1126/sciadv.abh1434 – volume: 81 start-page: 3422 year: 2021 ident: 611_CR40 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.07.002 – volume: 29 start-page: 5632 year: 2009 ident: 611_CR156 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00664-09 – volume: 328 start-page: 1534 year: 2010 ident: 611_CR189 publication-title: Science doi: 10.1126/science.1187058 – volume: 48 start-page: 8050 year: 2020 ident: 611_CR168 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkaa543 – volume: 38 year: 2019 ident: 611_CR72 publication-title: EMBO J. doi: 10.15252/embj.2018101153 – volume: 75 start-page: 741 year: 2019 ident: 611_CR63 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.06.012 – volume: 7 start-page: 1994 year: 2014 ident: 611_CR85 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.013 – volume: 11 start-page: 522 year: 2010 ident: 611_CR56 publication-title: EMBO Rep. doi: 10.1038/embor.2010.81 – volume: 50 start-page: 6618 year: 2022 ident: 611_CR112 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkac519 – volume: 60 start-page: 131 year: 2015 ident: 611_CR31 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.08.015 – volume: 14 start-page: 475 year: 2013 ident: 611_CR190 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3611 – volume: 141 start-page: 618 year: 2010 ident: 611_CR179 publication-title: Cell doi: 10.1016/j.cell.2010.03.039 – volume: 374 start-page: 1152 year: 2021 ident: 611_CR97 publication-title: Science doi: 10.1126/science.abl4546 – volume: 14 start-page: 1314 year: 2012 ident: 611_CR177 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2611 – volume: 475 start-page: 201 year: 2011 ident: 611_CR52 publication-title: Nature doi: 10.1038/nature10198 – volume: 24 start-page: 138 year: 2005 ident: 611_CR28 publication-title: EMBO J. doi: 10.1038/sj.emboj.7600491 – volume: 162 start-page: 885 year: 2015 ident: 611_CR142 publication-title: Cell doi: 10.1016/j.cell.2015.07.008 – volume: 11 year: 2020 ident: 611_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15674-2 – volume: 9 start-page: 4455 year: 2010 ident: 611_CR148 publication-title: Cell Cycle doi: 10.4161/cc.9.22.13958 – volume: 125 start-page: 4077 year: 1998 ident: 611_CR5 publication-title: Development doi: 10.1242/dev.125.20.4077 – volume: 11 start-page: 214 year: 2004 ident: 611_CR89 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb729 – volume: 8 year: 2012 ident: 611_CR186 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002510 – volume: 11 start-page: 674 year: 2005 ident: 611_CR50 publication-title: RNA doi: 10.1261/rna.7272305 – volume: 14 start-page: 1539 year: 2008 ident: 611_CR114 publication-title: RNA doi: 10.1261/rna.1155108 – volume: 80 start-page: 892 year: 2020 ident: 611_CR39 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.10.028 – volume: 593 start-page: 602 year: 2021 ident: 611_CR140 publication-title: Nature doi: 10.1038/s41586-021-03524-0 – volume: 75 start-page: 511 year: 2019 ident: 611_CR71 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.05.014 – volume: 286 start-page: 16716 year: 2011 ident: 611_CR84 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.180844 – volume: 23 start-page: 433 year: 2009 ident: 611_CR203 publication-title: Genes Dev. doi: 10.1101/gad.1761509 – volume: 14 start-page: 2108 year: 2023 ident: 611_CR202 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37819-9 – volume: 379 start-page: 901 year: 2023 ident: 611_CR205 publication-title: Science doi: 10.1126/science.abj8379 – volume: 124 start-page: 4847 year: 1997 ident: 611_CR4 publication-title: Development doi: 10.1242/dev.124.23.4847 – volume: 11 start-page: 241 year: 2005 ident: 611_CR141 publication-title: RNA doi: 10.1261/rna.7240905 – year: 2022 ident: 611_CR44 publication-title: RNA doi: 10.1261/rna.079098.122 – volume: 615 start-page: 331 year: 2023 ident: 611_CR90 publication-title: Nature doi: 10.1038/s41586-023-05723-3 – year: 2020 ident: 611_CR193 publication-title: Science doi: 10.1126/science.abc9359 – volume: 39 start-page: 5692 year: 2011 ident: 611_CR174 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkr148 – volume: 151 start-page: 900 year: 2012 ident: 611_CR53 publication-title: Cell doi: 10.1016/j.cell.2012.09.042 – volume: 35 start-page: 1595 year: 2021 ident: 611_CR199 publication-title: Genes Dev. doi: 10.1101/gad.348874.121 – volume: 27 start-page: 790 year: 2020 ident: 611_CR108 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0461-1 – year: 2013 ident: 611_CR120 publication-title: Nature doi: 10.1038/nature12119 – volume: 34 start-page: 1227 year: 2020 ident: 611_CR213 publication-title: Genes Dev. doi: 10.1101/gad.339333.120 – volume: 25 start-page: 1 year: 2019 ident: 611_CR125 publication-title: RNA doi: 10.1261/rna.068692.118 – volume: 45 start-page: 11867 year: 2017 ident: 611_CR23 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkx916 – volume: 58 start-page: 189 year: 2019 ident: 611_CR25 publication-title: Biochemistry doi: 10.1021/acs.biochem.8b00944 – volume: 10 start-page: 987 year: 2008 ident: 611_CR117 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1759 – volume: 48 start-page: 760 year: 2012 ident: 611_CR61 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.002 – volume: 161 start-page: 1374 year: 2015 ident: 611_CR82 publication-title: Cell doi: 10.1016/j.cell.2015.05.010 – volume: 49 start-page: 10018 year: 2021 ident: 611_CR147 publication-title: Nucleic acids Res. doi: 10.1093/nar/gkab731 – volume: 15 year: 2017 ident: 611_CR182 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2001272 – volume: 78 start-page: 423 year: 2020 ident: 611_CR86 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.024 – volume: 107 start-page: 15163 year: 2010 ident: 611_CR223 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1006432107 – volume: 26 start-page: 775 year: 2007 ident: 611_CR155 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601512 – volume: 25 start-page: 244 year: 2018 ident: 611_CR200 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0032-x – volume: 465 start-page: 818 year: 2010 ident: 611_CR55 publication-title: Nature doi: 10.1038/nature09039 – volume: 173 start-page: 20 year: 2018 ident: 611_CR10 publication-title: Cell doi: 10.1016/j.cell.2018.03.006 – volume: 164 start-page: 81 year: 2016 ident: 611_CR83 publication-title: Cell doi: 10.1016/j.cell.2015.12.019 |
| SSID | ssj0016173 |
| Score | 2.7556958 |
| SecondaryResourceType | review_article |
| Snippet | Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 816 |
| SubjectTerms | 631/337/505 631/535 Agriculture Animal Genetics and Genomics Biomedical and Life Sciences Biomedicine Biosynthesis Cancer Research CRISPR Electron microscopy Gene Function Human Genetics MicroRNAs MicroRNAs - genetics miRNA Review Article Transcriptome Transcriptomes |
| Title | microRNAs in action: biogenesis, function and regulation |
| URI | https://link.springer.com/article/10.1038/s41576-023-00611-y https://www.ncbi.nlm.nih.gov/pubmed/37380761 https://www.proquest.com/docview/2889800882 https://www.proquest.com/docview/2831295474 |
| Volume | 24 |
| WOSCitedRecordID | wos001018014400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1471-0064 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0016173 issn: 1471-0056 databaseCode: 7RV dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-Clkm7DMY-yChVkLgNi9oOxOaCAIE4TFVVAeotsh1nqrSl0JRJ_e_3XpwWoQouXCw5sRPLz36_Z78vgANlteQm7zHvTo5ZcqwdM0okrEB0t65Allmb_N__Svt9NRrpQXPhVjVmlQueWDPqfOLojvxIKKVRuEGB8OzhkVHWKNKuNik01qFNURJEbbo3WGoRToKGmSMDZhTzsnGa6Ul1VCFwpWR-KxmhOGfzl8C0Im2uaEprALrefO_Qt-BTI3rG52GtfIY1X27Dh5CMcv4F1F-yzRv2z6t4XMbB3-E0tuPJb2KH4-owJgykp7Ep83gakthj9SvcXV_dXt6wJq8CcwnXM6ZFaijUl1LSI0BbQc6tKOlYFC0KbU1uhOoJL4XTObd4YHOucAjt2mLNulx-g1Y5Kf0OxMrxlBvsq0yRiNwp5x252ibeG2m0jIAvJjVzTdBxyn3xJ6uV31JlgRAZEiKrCZHNI_i57PMQQm682bqzmPSs2X5V9jzjEewvX-PGIW2IKf3kidpITkrONInge6Dx8ncU7okueCI4XBD9-eOvj-XH22PZhY-UrD4Yw3SgNZs--T3YcP9m42rahfV0eE_lKK1LhaW65F1oX1z1B8NuvbT_A3ym9fw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTxQxEJ8gSuAFFRQWQWuCT9Jw2y5sa2IMQQmE82IMGt5K2-2SS2APbg_I_VP-jc7sxxFC5I0HH3e37Tad6fymnS-AdeW0jG3W4cFvb_FkS3tulUh4jujufI4is3L5_91Nez11fKx_TMGfNhaG3CpbmVgJ6mzg6Y58UyilUblBhfDLxSWnqlFkXW1LaNRscRjGN3hkKz8ffEX6fhBi79vR7j5vqgpwn8R6xLVILSW6UkoGhCcnKLQTcd4hsOba2cwK1RFBCq-z2OFxxfvcI7Bph0_OZxLHfQJPKZMd7Si1O3EpoaNC5dCPAp9Tjs0mSKcj1WaJQJmSu6_kpDXEfHwXCO9pt_cssxXg7T3_35bqBcw3qjXbqffCS5gKxQLM1MU2x4ugzsn38Gdvp2T9gtXxHJ-Y6w9OSdz3yw1GGE9vmS0yNgynTWWzV_DrUab9GqaLQRGWgSkfp7HFvsrmici88sFTKHESgpVWywjilojGN0nVqbbHmamM-1KZmvAGCW8qwptxBB8nfS7qlCIPtl5tiWwa8VKaWwpH8H7yGQUDWXtsEQZX1EbGZMRNkwiWap6a_I7SWdEFVgQbLZPdDv7vuaw8PJd3MLt_9L1ruge9wzcwJ4jZK8efVZgeDa_CGjzz16N-OXxbbRsGJ4_NfH8B0oJLqQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVRceLcECgQJTtTatZ02NhJChXZF1SpaVYB6M7bjVCuVbNlsW-1f49cxk8dWqKK3HjgmsRMr_jzf2PMCeKOcltzmAxb81iZLNrVnVomEFcjuzhcoMmuX_-8HaZapoyM9WoLfXSwMuVV2MrEW1PnE0xl5XyilUblBhbBftG4Ro53hx9NfjCpIkaW1K6fRQGQ_zC9w-1Z92NvBuX4rxHD36-cvrK0wwHzC9YxpkVpKeqWUDEhVTlCYJ3K-Q5IttLO5FWogghRe59zh1sX7wiPJaYdXzucS33sLllNUMpIeLH_azUaHCxvGVmPf5ij-GWXcbEN2BlL1K6TNlJx_JSMdgrP537R4Rde9Yqet6W94_3_-cQ_gXqt0x9vNKnkIS6F8BHeaMpzzx6B-klfiYbZdxeMybiI93sduPDkmIhhXGzGxP92NbZnH03Dc1jx7At9uZNir0CsnZXgKsfI85Rb7KlskIvfKB09BxkkIVlotI-DdhBrfplunqh8npjb7S2UaEBgEgalBYOYRvFv0OW2SjVzber2bcNMKnspcznYErxePUWSQHciWYXJGbSQn826aRLDW4GvxOUp0RUdbEWx0gLt8-b_H8uz6sbyCFcScOdjL9p_DXUG4rz2C1qE3m56FF3Dbn8_G1fRlu4Zi-HHT6PsDPZNWBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=microRNAs+in+action%3A+biogenesis%2C+function+and+regulation&rft.jtitle=Nature+reviews.+Genetics&rft.au=Shang%2C+Renfu&rft.au=Lee%2C+Seungjae&rft.au=Senavirathne%2C+Gayan&rft.au=Lai%2C+Eric+C&rft.date=2023-12-01&rft.issn=1471-0064&rft.eissn=1471-0064&rft.volume=24&rft.issue=12&rft.spage=816&rft_id=info:doi/10.1038%2Fs41576-023-00611-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon |