On the rates of convergence of parallelized averaged stochastic gradient algorithms

The growing interest for high-dimensional and functional data analysis led in the last decade to important research developing a consequent amount of techniques. Parallelized algorithms, which consist of distributing and treat the data into different machines, for example, are a good answer to deal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics (Berlin, DDR) Jg. 54; H. 3; S. 618 - 635
Hauptverfasser: Godichon-Baggioni, Antoine, Saadane, Sofiane
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 03.05.2020
Taylor & Francis Ltd
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Schlagworte:
ISSN:0233-1888, 1029-4910
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The growing interest for high-dimensional and functional data analysis led in the last decade to important research developing a consequent amount of techniques. Parallelized algorithms, which consist of distributing and treat the data into different machines, for example, are a good answer to deal with large samples taking values in high-dimensional spaces. We introduce here a parallelized averaged stochastic gradient algorithm, which enables to treat efficiently and recursively the data, and so, without taking care if the distribution of the data into the machines is uniform. The rate of convergence in quadratic mean, as well as the asymptotic normality of the parallelized estimates are given, for strongly and locally strongly convex objectives.
AbstractList The growing interest for high-dimensional and functional data analysis led in the last decade to important research developing a consequent amount of techniques. Parallelized algorithms, which consist of distributing and treat the data into different machines, for example, are a good answer to deal with large samples taking values in high-dimensional spaces. We introduce here a parallelized averaged stochastic gradient algorithm, which enables to treat efficiently and recursively the data, and so, without taking care if the distribution of the data into the machines is uniform. The rate of convergence in quadratic mean, as well as the asymptotic normality of the parallelized estimates are given, for strongly and locally strongly convex objectives.
The growing interest for high dimensional and functional data analysis led in the last decade to an important research developing a consequent amount of techniques. Parallelized algorithms, which consist in distributing and treat the data into different machines, for example, are a good answer to deal with large samples taking values in high dimensional spaces. We introduce here a parallelized averaged stochastic gradient algorithm, which enables to treat efficiently and recursively the data, and so, without taking care if the distribution of the data into the machines is uniform. The rate of convergence in quadratic mean as well as the asymptotic normality of the parallelized estimates are given, for strongly and locally strongly convex objectives.
Author Saadane, Sofiane
Godichon-Baggioni, Antoine
Author_xml – sequence: 1
  givenname: Antoine
  surname: Godichon-Baggioni
  fullname: Godichon-Baggioni, Antoine
  email: antoine.godichon@insa-rouen.fr, antoine.godichon_baggioni@upmc.fr
  organization: Laboratoire de Mathématiques de l'INSA de Rouen, INSA de Rouen
– sequence: 2
  givenname: Sofiane
  surname: Saadane
  fullname: Saadane, Sofiane
  organization: Institut de Mathématiques de Toulouse, INSA de Toulouse
BackLink https://hal.science/hal-01620943$$DView record in HAL
BookMark eNqFkEtPGzEUha0qSA2hP6HSSF11MXBtj-ehbopQIUiRsgDW1q3nTmLk2KltqODXM6PQLljA6r6-c3R1jtnMB0-MfeVwyqGFMxBS8rZtTwWIcdXUlVLNJzbnILqy6jjM2Hxiygn6zI5TugeAWspmzm7WvshbKiJmSkUYChP8I8UNeUPTuMeIzpGzz9QXOF5wMzYpB7PFlK0pNhF7Sz4X6DYh2rzdpRN2NKBL9OW1Ltjd5a_bi2W5Wl9dX5yvSlPxLpcdGC7ISOSIqjFVjQ2ogVd93RApI1QHFcpO_UbqW-ywaQAFtLWhQameBrlg3w--W3R6H-0O45MOaPXyfKWnHfBaQFfJRz6y3w7sPoY_D5Syvg8P0Y_vaVGBUiBaKUZKHSgTQ0qRhv-2HPSUtf6XtZ6y1q9Zj7ofb3TGZsw2-BzRug_VPw9q64cQd_g3RNfrjE8uxCGiNzZp-b7FC8vHmVk
CitedBy_id crossref_primary_10_1515_jiip_2020_0068
Cites_doi 10.1016/j.jmva.2015.09.013
10.1137/0330046
10.1137/S0363012998308169
10.1007/s12532-013-0053-8
10.1093/biomet/35.3-4.414
10.1214/aoms/1177729586
10.1109/TIT.2013.2275131
10.1016/S0304-4149(98)00029-5
10.3150/11-BEJ390
10.1137/110848864
10.1214/16-AOS1460
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1080/02331888.2020.1764557
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1029-4910
EndPage 635
ExternalDocumentID oai:HAL:hal-01620943v1
10_1080_02331888_2020_1764557
1764557
Genre Article
GroupedDBID .7F
.QJ
0BK
0R~
123
29Q
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c419t-90c12ec3a1aa57c46a705f14d67ee5c25904a395baed8a9a770a2086cef55def3
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000534091300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1888
IngestDate Sat Oct 25 06:46:10 EDT 2025
Sat Nov 15 02:41:08 EST 2025
Sat Nov 29 06:23:09 EST 2025
Tue Nov 18 22:26:14 EST 2025
Mon Oct 20 23:48:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Distributed estimation
Averaging
Central Limit Theorem
Stochastic Gradient Descent
Asynchronous parallel optimization
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-90c12ec3a1aa57c46a705f14d67ee5c25904a395baed8a9a770a2086cef55def3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2399-3792
OpenAccessLink https://hal.science/hal-01620943
PQID 2405502832
PQPubID 216163
PageCount 18
ParticipantIDs hal_primary_oai_HAL_hal_01620943v1
crossref_citationtrail_10_1080_02331888_2020_1764557
proquest_journals_2405502832
informaworld_taylorfrancis_310_1080_02331888_2020_1764557
crossref_primary_10_1080_02331888_2020_1764557
PublicationCentury 2000
PublicationDate 2020-05-03
PublicationDateYYYYMMDD 2020-05-03
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Statistics (Berlin, DDR)
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis: STM, Behavioural Science and Public Health Titles
References Bach F. (CIT0021) 2014; 15
CIT0012
CIT0023
CIT0022
CIT0002
CIT0024
CIT0016
CIT0004
CIT0015
CIT0026
Jakubowski A. (CIT0027) 1988; 9
Liu J (CIT0003) 2015; 16
CIT0009
CIT0008
References_xml – ident: CIT0026
  doi: 10.1016/j.jmva.2015.09.013
– ident: CIT0009
  doi: 10.1137/0330046
– ident: CIT0016
  doi: 10.1137/S0363012998308169
– ident: CIT0002
  doi: 10.1007/s12532-013-0053-8
– ident: CIT0024
  doi: 10.1093/biomet/35.3-4.414
– ident: CIT0008
  doi: 10.1214/aoms/1177729586
– ident: CIT0004
  doi: 10.1109/TIT.2013.2275131
– ident: CIT0015
  doi: 10.1016/S0304-4149(98)00029-5
– ident: CIT0023
  doi: 10.3150/11-BEJ390
– volume: 9
  start-page: 95
  issue: 1
  year: 1988
  ident: CIT0027
  publication-title: Probab Math Statist
– volume: 15
  start-page: 595
  issue: 1
  year: 2014
  ident: CIT0021
  publication-title: J Machine Learn Res
– volume: 16
  start-page: 1
  issue: 285
  year: 2015
  ident: CIT0003
  publication-title: J Mach Learn Res
– ident: CIT0012
  doi: 10.1137/110848864
– ident: CIT0022
  doi: 10.1214/16-AOS1460
SSID ssj0006337
Score 2.2414865
Snippet The growing interest for high-dimensional and functional data analysis led in the last decade to important research developing a consequent amount of...
The growing interest for high dimensional and functional data analysis led in the last decade to an important research developing a consequent amount of...
SourceID hal
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 618
SubjectTerms Algorithms
asynchronous parallel optimization
averaging
Central limit theorem
Convergence
Data analysis
Dimensional analysis
distributed estimation
Machinery
Normality
Parallel processing
Statistics
Stochastic gradient descent
Title On the rates of convergence of parallelized averaged stochastic gradient algorithms
URI https://www.tandfonline.com/doi/abs/10.1080/02331888.2020.1764557
https://www.proquest.com/docview/2405502832
https://hal.science/hal-01620943
Volume 54
WOSCitedRecordID wos000534091300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-4910
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006337
  issn: 0233-1888
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYK6gEO0PJQF2hlIa6BPOx4fUSIFQdKKxUoN2vWDxYp7FabwIFfz4yTrEBVxaEc_RhHscfjGevzN4wdlCBysAKSUHqXiFy4RLsgEqttGEOWuixmUbg-VxcXw5sb_bNDE9YdrJJi6NASRURbTZsbxnWPiDvCYwY1cUjArByrVCmkpPfk6NkTqO9y9Hthi8uiZc1EiYRE-jc8_xrl1em0NInYyJcMpn9Z7HgMjdbf4Qc-sbXOB-XHrdJ8Zh_8dIOtfl8QuNYbbIWc0JbDeZP9-jHl2MaJVaLms8AjVD2-2vRUJPrwqvLV3ZN3HLAFbZTj6FXaCdAQ_HYegWUNh-p2Nr9rJvf1FrsanV6enCVdMobEikw3iU5tlntbQAYglRUlqFSGTLhSeS8tRlGpgELLMXg3BA1KpZBjvGR9kNL5UGyz5els6r8wXspc2bHDjuitDdHMlYUAr0UISjjQ-YCJfhGM7ZjKKWFGZbKe0LSbQEMTaLoJHLDDhdiflqrjLYF9XOFFXyLaPjs-N1SHjnBOmMvHbMD0SwUwTbxICW3WE1O88YG9XltMZxpqgy4URoWUIWrnP4beZStUjNDLYo8tN_MH_5V9tI-oG_NvcRM8A3JTAZA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB7RgkQ58ChFDRSwENeFfXjX8bFCREGk4UCA3qyJH02lJamSpQd-PTPe3SgIoR7guLbHK9vj8Yz1-RuA1xXKHK3EJFTeJTKXLtEuyMRqG-aYpS6LWRS-TtR0Ojw_17tvYRhWyTF0aIkioq3mzc2X0T0k7i2dM6SKQ0Zm5VSkKlmWag9uc3Y6DsBmo29ba1wVLW8miSQs07_i-Vs3v51Pe4uIjtzlMP3DZseDaPTgfwzhIdzv3FBx2urNI7jll4dw72zL4bo5hAP2Q1sa58fw-dNSUJ1gYomNWAUR0erx4abnT2YQr2tfX_70TiDVkJlyghxLu0DuQlysI7asEVhfrNaXzeL75gi-jN7P3o2TLh9DYmWmm0SnNsu9LTBDLJWVFaq0DJl0lfK-tBRIpRILXc7RuyFqVCrFnEIm60NZOh-KJ7C_XC39MYiqzJWdO2pIDtuQLF1VSPRahqCkQ50PQParYGxHVs45M2qT9Zym3QQankDTTeAA3mzFrlq2jpsEXtESb9sy1_b4dGK4jHzhnGGX19kA9K4GmCbepYQ28YkpbvjBSa8uprMOG0NeFAWGnCTq6T90_RLujmdnEzP5MP34DA64KiIxixPYb9Y__HO4Y69JT9Yv4o74BbLMBbM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTxQxEJ8IGAMPoqjxELQxvq7uR7u9PhLkgvE8SUTlrZnrB0ey3pHbhQf_eqfd3QvGEB7wcdtONzudTmc2v_4G4F2JPEfDMfGlswnPuU2U9TwxyvgpZqnNYhWFH2M5mQzPztRJhyasO1hlyKF9SxQRfXXY3JfW94i4D3TMkCUOAzArpyZZciHkGmxQ6CyCYZ-Ofq6ccVm0tJkkkgSZ_hLPbdP8dTytzSI48iaF6T8uO55Do-3_8AVP4HEXhLKD1mqewgM334GtLysG13oHNkMU2pI4P4NvX-eM-liglajZwrOIVY_XNl14DPzhVeWqi9_OMqQeclKWUVhpZhimYOfLiCxrGFbni-VFM_tVP4fvo6PTw-Okq8aQGJ6pJlGpyXJnCswQhTS8RJkKn3FbSueEoTQq5VgoMUVnh6hQyhRzSpiM80JY54sXsD5fzN1LYKXIpZlaGkjh2pD8XFlwdIp7L7lFlQ-A94ugTUdVHipmVDrrGU07BeqgQN0pcADvV2KXLVfHXQJvaYVXYwPT9vHBWIc2ioTzALq8zgagbhqAbuKfFN-WPdHFHS_Y661Fd76h1hRDUVoYSkTt3mPqN_Do5ONIjz9NPr-CzdATYZjFHqw3yyu3Dw_NNZnJ8nXcD38Aj7QEZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+rates+of+convergence+of+parallelized+averaged+stochastic+gradient+algorithms&rft.jtitle=Statistics+%28Berlin%2C+DDR%29&rft.au=Godichon-Baggioni%2C+Antoine&rft.au=Saadane%2C+Sofiane&rft.date=2020-05-03&rft.issn=0233-1888&rft.eissn=1029-4910&rft.volume=54&rft.issue=3&rft.spage=618&rft.epage=635&rft_id=info:doi/10.1080%2F02331888.2020.1764557&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331888_2020_1764557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1888&client=summon