Estimation of the radiation dose in pregnancy: an automated patient-specific model using convolutional neural networks

Objectives The conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. The aim of this work is to develop a methodology for automated construction of patient-specific computational phantoms ba...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European radiology Ročník 29; číslo 12; s. 6805 - 6815
Hlavní autori: Xie, Tianwu, Zaidi, Habib
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Springer Nature B.V
Predmet:
ISSN:0938-7994, 1432-1084, 1432-1084
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Objectives The conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. The aim of this work is to develop a methodology for automated construction of patient-specific computational phantoms based on actual patient CT images to enable accurate estimation of conceptus dose. Methods We developed a 3D deep convolutional network algorithm for automated segmentation of CT images to build realistic computational phantoms. The neural network architecture consists of analysis and synthesis paths with four resolution levels each, trained on manually labeled CT scans of six identified anatomical structures. Thirty-two CT exams were augmented to 128 datasets and randomly split into 80%/20% for training/testing. The absorbed doses for six segmented organs/tissues from abdominal CT scans were estimated using Monte Carlo calculations. The resulting radiation doses were then compared between the computational models generated using automated segmentation and manual segmentation, serving as reference. Results The Dice similarity coefficient for identified internal organs between manual segmentation and automated segmentation results varies from 0.92 to 0.98 while the mean Hausdorff distance for the uterus is 16.1 mm. The mean absorbed dose for the uterus is 2.9 mGy whereas the mean organ dose differences between manual and automated segmentation techniques are 0.07%, − 0.45%, − 1.55%, − 0.48%, − 0.12%, and 0.28% for the kidney, liver, lung, skeleton, uterus, and total body, respectively. Conclusion The proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures. Key Points • The conceptus dose during diagnostic radiology and nuclear medicine imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. • The proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures. • The dosimetric results can be used for the risk-benefit analysis of radiation hazards to conceptus from diagnostic imaging procedures, thus guiding the decision-making process.
AbstractList ObjectivesThe conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. The aim of this work is to develop a methodology for automated construction of patient-specific computational phantoms based on actual patient CT images to enable accurate estimation of conceptus dose.MethodsWe developed a 3D deep convolutional network algorithm for automated segmentation of CT images to build realistic computational phantoms. The neural network architecture consists of analysis and synthesis paths with four resolution levels each, trained on manually labeled CT scans of six identified anatomical structures. Thirty-two CT exams were augmented to 128 datasets and randomly split into 80%/20% for training/testing. The absorbed doses for six segmented organs/tissues from abdominal CT scans were estimated using Monte Carlo calculations. The resulting radiation doses were then compared between the computational models generated using automated segmentation and manual segmentation, serving as reference.ResultsThe Dice similarity coefficient for identified internal organs between manual segmentation and automated segmentation results varies from 0.92 to 0.98 while the mean Hausdorff distance for the uterus is 16.1 mm. The mean absorbed dose for the uterus is 2.9 mGy whereas the mean organ dose differences between manual and automated segmentation techniques are 0.07%, − 0.45%, − 1.55%, − 0.48%, − 0.12%, and 0.28% for the kidney, liver, lung, skeleton, uterus, and total body, respectively.ConclusionThe proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures.Key Points• The conceptus dose during diagnostic radiology and nuclear medicine imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus.• The proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures.• The dosimetric results can be used for the risk-benefit analysis of radiation hazards to conceptus from diagnostic imaging procedures, thus guiding the decision-making process.
The conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. The aim of this work is to develop a methodology for automated construction of patient-specific computational phantoms based on actual patient CT images to enable accurate estimation of conceptus dose. We developed a 3D deep convolutional network algorithm for automated segmentation of CT images to build realistic computational phantoms. The neural network architecture consists of analysis and synthesis paths with four resolution levels each, trained on manually labeled CT scans of six identified anatomical structures. Thirty-two CT exams were augmented to 128 datasets and randomly split into 80%/20% for training/testing. The absorbed doses for six segmented organs/tissues from abdominal CT scans were estimated using Monte Carlo calculations. The resulting radiation doses were then compared between the computational models generated using automated segmentation and manual segmentation, serving as reference. The Dice similarity coefficient for identified internal organs between manual segmentation and automated segmentation results varies from 0.92 to 0.98 while the mean Hausdorff distance for the uterus is 16.1 mm. The mean absorbed dose for the uterus is 2.9 mGy whereas the mean organ dose differences between manual and automated segmentation techniques are 0.07%, - 0.45%, - 1.55%, - 0.48%, - 0.12%, and 0.28% for the kidney, liver, lung, skeleton, uterus, and total body, respectively. The proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures. • The conceptus dose during diagnostic radiology and nuclear medicine imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. • The proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures. • The dosimetric results can be used for the risk-benefit analysis of radiation hazards to conceptus from diagnostic imaging procedures, thus guiding the decision-making process.
Objectives The conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. The aim of this work is to develop a methodology for automated construction of patient-specific computational phantoms based on actual patient CT images to enable accurate estimation of conceptus dose. Methods We developed a 3D deep convolutional network algorithm for automated segmentation of CT images to build realistic computational phantoms. The neural network architecture consists of analysis and synthesis paths with four resolution levels each, trained on manually labeled CT scans of six identified anatomical structures. Thirty-two CT exams were augmented to 128 datasets and randomly split into 80%/20% for training/testing. The absorbed doses for six segmented organs/tissues from abdominal CT scans were estimated using Monte Carlo calculations. The resulting radiation doses were then compared between the computational models generated using automated segmentation and manual segmentation, serving as reference. Results The Dice similarity coefficient for identified internal organs between manual segmentation and automated segmentation results varies from 0.92 to 0.98 while the mean Hausdorff distance for the uterus is 16.1 mm. The mean absorbed dose for the uterus is 2.9 mGy whereas the mean organ dose differences between manual and automated segmentation techniques are 0.07%, − 0.45%, − 1.55%, − 0.48%, − 0.12%, and 0.28% for the kidney, liver, lung, skeleton, uterus, and total body, respectively. Conclusion The proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures. Key Points • The conceptus dose during diagnostic radiology and nuclear medicine imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. • The proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures. • The dosimetric results can be used for the risk-benefit analysis of radiation hazards to conceptus from diagnostic imaging procedures, thus guiding the decision-making process.
The conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. The aim of this work is to develop a methodology for automated construction of patient-specific computational phantoms based on actual patient CT images to enable accurate estimation of conceptus dose.OBJECTIVESThe conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. The aim of this work is to develop a methodology for automated construction of patient-specific computational phantoms based on actual patient CT images to enable accurate estimation of conceptus dose.We developed a 3D deep convolutional network algorithm for automated segmentation of CT images to build realistic computational phantoms. The neural network architecture consists of analysis and synthesis paths with four resolution levels each, trained on manually labeled CT scans of six identified anatomical structures. Thirty-two CT exams were augmented to 128 datasets and randomly split into 80%/20% for training/testing. The absorbed doses for six segmented organs/tissues from abdominal CT scans were estimated using Monte Carlo calculations. The resulting radiation doses were then compared between the computational models generated using automated segmentation and manual segmentation, serving as reference.METHODSWe developed a 3D deep convolutional network algorithm for automated segmentation of CT images to build realistic computational phantoms. The neural network architecture consists of analysis and synthesis paths with four resolution levels each, trained on manually labeled CT scans of six identified anatomical structures. Thirty-two CT exams were augmented to 128 datasets and randomly split into 80%/20% for training/testing. The absorbed doses for six segmented organs/tissues from abdominal CT scans were estimated using Monte Carlo calculations. The resulting radiation doses were then compared between the computational models generated using automated segmentation and manual segmentation, serving as reference.The Dice similarity coefficient for identified internal organs between manual segmentation and automated segmentation results varies from 0.92 to 0.98 while the mean Hausdorff distance for the uterus is 16.1 mm. The mean absorbed dose for the uterus is 2.9 mGy whereas the mean organ dose differences between manual and automated segmentation techniques are 0.07%, - 0.45%, - 1.55%, - 0.48%, - 0.12%, and 0.28% for the kidney, liver, lung, skeleton, uterus, and total body, respectively.RESULTSThe Dice similarity coefficient for identified internal organs between manual segmentation and automated segmentation results varies from 0.92 to 0.98 while the mean Hausdorff distance for the uterus is 16.1 mm. The mean absorbed dose for the uterus is 2.9 mGy whereas the mean organ dose differences between manual and automated segmentation techniques are 0.07%, - 0.45%, - 1.55%, - 0.48%, - 0.12%, and 0.28% for the kidney, liver, lung, skeleton, uterus, and total body, respectively.The proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures.CONCLUSIONThe proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures.• The conceptus dose during diagnostic radiology and nuclear medicine imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. • The proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures. • The dosimetric results can be used for the risk-benefit analysis of radiation hazards to conceptus from diagnostic imaging procedures, thus guiding the decision-making process.KEY POINTS• The conceptus dose during diagnostic radiology and nuclear medicine imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing embryo/fetus. • The proposed methodology allows automated construction of realistic computational models that can be exploited to estimate patient-specific organ radiation doses from radiological imaging procedures. • The dosimetric results can be used for the risk-benefit analysis of radiation hazards to conceptus from diagnostic imaging procedures, thus guiding the decision-making process.
Author Zaidi, Habib
Xie, Tianwu
Author_xml – sequence: 1
  givenname: Tianwu
  surname: Xie
  fullname: Xie, Tianwu
  organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital
– sequence: 2
  givenname: Habib
  orcidid: 0000-0001-7559-5297
  surname: Zaidi
  fullname: Zaidi, Habib
  email: habib.zaidi@hcuge.ch
  organization: Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva University Neurocenter, Geneva University, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine, University of Southern Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31227881$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PFjEQhxsDkRf0C3gwTbx4WZn-2d3WmyEoJCRe4NzU7uxrcd92bbsQvr3lXdSEA71MMnme6WR-x-QgxICEvGPwiQH0pxlACGiA6QY6rrtGviIbJgVvGCh5QDaghWp6reUROc75FgA0k_1rciQY571SbEPuznPxO1t8DDSOtPxEmuzg18YQM1If6JxwG2xwD5-pDdQuJVYDBzpXDENp8ozOj97RXRxwokv2YUtdDHdxWh4H2YkGXNK-lPuYfuU35HC0U8a3T_WE3Hw9vz67aK6-f7s8-3LVOMl0aRTrWA9ggYMbJLSMWclRdFp2fY-at0xoMY4MdGdV7Ti0ApXjapBtK4dOnJCP69w5xd8L5mJ2PjucJhswLtlwLttOSlCsoh-eobdxSXX3PVUf1wwq9f6JWn7scDBzqtdLD-bvRSvAV8ClmHPC8R_CwDzGZtbYTI3N7GMzskrqmeR82WdQkvXTy6pY1Vz_CVtM_9d-wfoD4uerlQ
CitedBy_id crossref_primary_10_1088_1361_6560_ab7686
crossref_primary_10_1007_s12350_020_02119_y
crossref_primary_10_1093_rpd_ncac283
crossref_primary_10_1016_j_radphyschem_2022_110478
crossref_primary_10_1016_j_ejmp_2025_104911
crossref_primary_10_1016_j_ejmp_2021_03_008
crossref_primary_10_1007_s00259_020_05013_4
crossref_primary_10_1088_2057_1976_ac9414
crossref_primary_10_1002_mp_16304
crossref_primary_10_1007_s00330_023_09424_3
crossref_primary_10_1038_s41598_025_09212_7
crossref_primary_10_1088_1361_6560_ab6b45
crossref_primary_10_1016_j_ejrad_2021_109780
crossref_primary_10_1097_MNM_0000000000001381
crossref_primary_10_1146_annurev_bioeng_082420_020343
crossref_primary_10_1177_20552076221111941
Cites_doi 10.1007/s00330-016-4389-0
10.1177/0146645317717209
10.1148/radiol.2018181432
10.1007/s11517-007-0207-9
10.1007/978-3-319-46723-8_49
10.1088/0031-9155/55/8/010
10.1148/radiol.10092397
10.1148/radiol.2242011581
10.1007/s00330-006-0286-2
10.1007/s10278-018-0052-4
10.2967/jnumed.115.157032
10.1093/rpd/ncs312
10.2967/jnumed.117.205286
10.2214/AJR.10.4497
10.1093/rpd/ncv097
10.1016/j.media.2017.07.005
10.2967/jnumed.114.141309
10.1148/radiol.2512080736
10.1007/s00259-016-3448-8
10.1109/72.105413
10.1148/radiol.2491071665
10.1002/mp.13047
10.1109/TNNLS.2018.2889072
10.1146/annurev.bioeng.9.060906.151934
10.1016/S0146-6453(00)00037-3
10.1007/s00330-014-3505-2
10.1007/s00330-017-5000-z
10.1093/jrr/rrt223
10.1148/rg.274065149
10.1007/s00330-018-5573-1
10.1016/j.ejrad.2014.04.020
10.1016/S0140-6736(12)60815-0
10.1109/TASL.2011.2109382
10.1118/1.3517187
10.2214/AJR.08.2274
10.1118/1.597525
10.1088/0031-9155/59/15/4325
10.1145/3065386
10.21437/Interspeech.2010-343
10.1016/j.icrp.2008.07.001
10.1117/12.2254201
ContentType Journal Article
Copyright European Society of Radiology 2019
European Radiology is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: European Society of Radiology 2019
– notice: European Radiology is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-019-06296-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
ProQuest Central Health & Medical Collection (via ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1432-1084
EndPage 6815
ExternalDocumentID 31227881
10_1007_s00330_019_06296_4
Genre Journal Article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: Grant SNSF 320030_176052
  funderid: http://dx.doi.org/10.13039/501100001711
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: Grant SNSF 320030_176052
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c419t-8161700a020cd40511a42e3694677e9251393ff1096a877ecea3e8c28d4554d63
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000500979400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0938-7994
1432-1084
IngestDate Sun Nov 09 12:02:47 EST 2025
Tue Dec 02 18:42:40 EST 2025
Mon Jul 21 05:52:48 EDT 2025
Sat Nov 29 04:37:10 EST 2025
Tue Nov 18 22:26:34 EST 2025
Fri Feb 21 02:33:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Radiation dosimetry
Multidetector-row computed tomography
Radiologic phantoms
Patient-specific computational modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-8161700a020cd40511a42e3694677e9251393ff1096a877ecea3e8c28d4554d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7559-5297
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00330-019-06296-4.pdf
PMID 31227881
PQID 2244442910
PQPubID 54162
PageCount 11
ParticipantIDs proquest_miscellaneous_2245644081
proquest_journals_2244442910
pubmed_primary_31227881
crossref_primary_10_1007_s00330_019_06296_4
crossref_citationtrail_10_1007_s00330_019_06296_4
springer_journals_10_1007_s00330_019_06296_4
PublicationCentury 2000
PublicationDate 20191200
2019-12-00
2019-Dec
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Gu, Xu, Caracappa, Liu (CR17) 2013; 155
Poletti, Botsikas, Becker (CR4) 2019; 29
Zaidi, Xu (CR29) 2007; 9
Weston, Korfiatis, Kline (CR42) 2018; 290
Gilet, Dunkin, Fernandez, Button, Budorick (CR24) 2011; 196
CR34
CR33
McCollough, Schueler, Atwell (CR9) 2007; 27
Jaffe, Neville, Anderson-Evans (CR26) 2009; 193
Lopez-Rendon, Walgraeve, Woussen (CR20) 2017; 27
Xie, Zaidi (CR2) 2014; 55
Hoseinian-Azghadi, Rafat-Motavalli, Miri-Hakimabad (CR19) 2014; 55
Kelaranta, Kaasalainen, Seuri, Toroi, Kortesniemi (CR28) 2015; 165
Solomou, Papadakis, Damilakis (CR27) 2015; 25
Nasrabadi, Choo (CR36) 1992; 3
Damilakis, Tzedakis, Perisinakis, Papadakis (CR15) 2010; 37
Krizhevsky, Sutskever, Hinton (CR39) 2017; 60
CR5
CR8
Angel, Wellnitz, Goodsitt (CR13) 2008; 249
Winer-Muram, Boone, Brown, Jennings, Mabie, Lombardo (CR18) 2002; 224
Xie, Poletti, Platon, Becker, Zaidi (CR31) 2018; 28
Vañó, Miller, Martin, Rehani, Kang, Rosenstein, Ortiz-López, Mattsson, Padovani, Rogers (CR12) 2017; 46
CR46
CR45
Zanotti-Fregonara, Laforest, Wallis (CR3) 2015; 56
CR40
Emami, Dong, Nejad-Davarani, Glide-Hurst (CR37) 2018; 45
Maynard, Long, Moawad (CR21) 2014; 59
Liu, Guo, Yang (CR41) 2018; 31
Damilakis, Perisinakis, Tzedakis, Papadakis, Karantanas (CR14) 2010; 257
Pelowitz (CR48) 2005
(CR6) 2000; 30
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (CR44) 2016
Xie, Zaidi (CR22) 2016; 43
Pearce, Salotti, Little (CR10) 2012; 380
Helmrot, Pettersson, Sandborg, Altén (CR16) 2007; 17
Litjens, Kooi, Bejnordi (CR32) 2017; 42
CR11
Akbarzadeh, Ay, Ghadiri, Sarkar, Zaidi (CR47) 2010; 55
Chatterson, Leswick, Fladeland, Hunt, Webster, Lim (CR25) 2014; 83
Stovall, Blackwell, Cundiff (CR49) 1995; 22
Xie, Zanotti-Fregonara, Edet-Sanson, Zaidi (CR23) 2018; 59
Zaidi, Ay (CR30) 2007; 45
Sum, Leung (CR38) 2019; 30
Mohamed, Dahl, Hinton (CR35) 2012; 20
Ronneberger, Fischer, Brox (CR43) 2015
Lazarus, Debenedectis, North, Spencer, Mayo-Smith (CR1) 2009; 251
(CR7) 2003; 33
DB Pelowitz (6296_CR48) 2005
AD Weston (6296_CR42) 2018; 290
J Damilakis (6296_CR14) 2010; 257
A Akbarzadeh (6296_CR47) 2010; 55
J Damilakis (6296_CR15) 2010; 37
J Gu (6296_CR17) 2013; 155
6296_CR33
Özgün Çiçek (6296_CR44) 2016
6296_CR34
H Zaidi (6296_CR30) 2007; 45
6296_CR5
PA Poletti (6296_CR4) 2019; 29
6296_CR8
E Hoseinian-Azghadi (6296_CR19) 2014; 55
E Helmrot (6296_CR16) 2007; 17
LC Chatterson (6296_CR25) 2014; 83
A Krizhevsky (6296_CR39) 2017; 60
CH McCollough (6296_CR9) 2007; 27
MR Maynard (6296_CR21) 2014; 59
AG Gilet (6296_CR24) 2011; 196
MS Pearce (6296_CR10) 2012; 380
H Emami (6296_CR37) 2018; 45
M Stovall (6296_CR49) 1995; 22
P Zanotti-Fregonara (6296_CR3) 2015; 56
T Xie (6296_CR22) 2016; 43
T Xie (6296_CR31) 2018; 28
G Litjens (6296_CR32) 2017; 42
E. Vañó (6296_CR12) 2017; 46
A Kelaranta (6296_CR28) 2015; 165
X Liu (6296_CR41) 2018; 31
ICRP (6296_CR7) 2003; 33
John Sum (6296_CR38) 2019; 30
6296_CR11
X Lopez-Rendon (6296_CR20) 2017; 27
T Xie (6296_CR2) 2014; 55
G Solomou (6296_CR27) 2015; 25
A Mohamed (6296_CR35) 2012; 20
ICRP (6296_CR6) 2000; 30
NM Nasrabadi (6296_CR36) 1992; 3
T Xie (6296_CR23) 2018; 59
E Lazarus (6296_CR1) 2009; 251
HT Winer-Muram (6296_CR18) 2002; 224
Olaf Ronneberger (6296_CR43) 2015
H Zaidi (6296_CR29) 2007; 9
6296_CR46
6296_CR45
E Angel (6296_CR13) 2008; 249
6296_CR40
TA Jaffe (6296_CR26) 2009; 193
References_xml – ident: CR45
– volume: 27
  start-page: 851
  year: 2017
  end-page: 858
  ident: CR20
  article-title: Comparing different methods for estimating radiation dose to the conceptus
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4389-0
– volume: 46
  start-page: 1
  issue: 1
  year: 2017
  end-page: 144
  ident: CR12
  article-title: ICRP Publication 135: Diagnostic Reference Levels in Medical Imaging
  publication-title: Annals of the ICRP
  doi: 10.1177/0146645317717209
– volume: 290
  start-page: 669
  year: 2018
  end-page: 679
  ident: CR42
  article-title: Automated abdominal segmentation of CT scans for body composition analysis using deep learning
  publication-title: Radiology
  doi: 10.1148/radiol.2018181432
– volume: 45
  start-page: 809
  year: 2007
  end-page: 817
  ident: CR30
  article-title: Current status and new horizons in Monte Carlo simulation of X-ray CT scanners
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-007-0207-9
– start-page: 424
  year: 2016
  end-page: 432
  ident: CR44
  article-title: 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
  doi: 10.1007/978-3-319-46723-8_49
– volume: 33
  start-page: 5
  year: 2003
  end-page: 206
  ident: CR7
  article-title: ICRP publication 90: biological effects after prenatal irradiation (embryo and fetus)
  publication-title: Ann ICRP
– volume: 55
  start-page: 2269
  year: 2010
  end-page: 2280
  ident: CR47
  article-title: Measurement of scattered radiation in a volumetric 64-slice CT scanner using three experimental techniques
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/55/8/010
– volume: 257
  start-page: 483
  year: 2010
  end-page: 489
  ident: CR14
  article-title: Radiation dose to the conceptus from multidetector CT during early gestation: a method that allows for variations in maternal body size and conceptus position
  publication-title: Radiology
  doi: 10.1148/radiol.10092397
– volume: 224
  start-page: 487
  year: 2002
  end-page: 492
  ident: CR18
  article-title: Pulmonary embolism in pregnant patients: fetal radiation dose with helical CT
  publication-title: Radiology
  doi: 10.1148/radiol.2242011581
– ident: CR8
– volume: 17
  start-page: 205
  year: 2007
  end-page: 209
  ident: CR16
  article-title: Estimation of dose to the unborn child at diagnostic X-ray examinations based on data registered in RIS/PACS
  publication-title: Eur Radiol
  doi: 10.1007/s00330-006-0286-2
– volume: 31
  start-page: 748
  year: 2018
  end-page: 760
  ident: CR41
  article-title: Automatic organ segmentation for CT scans based on super-pixel and convolutional neural networks
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0052-4
– ident: CR46
– volume: 56
  start-page: 1218
  year: 2015
  end-page: 1222
  ident: CR3
  article-title: Fetal radiation dose from [18F]-FDG in pregnant patients imaged with PET, PET/CT and PET/MRI
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.115.157032
– volume: 155
  start-page: 64
  year: 2013
  end-page: 72
  ident: CR17
  article-title: Fetal doses to pregnant patients from CT with tube current modulation calculated using Monte Carlo simulations and realistic phantoms
  publication-title: Radiat Prot Dosimetry
  doi: 10.1093/rpd/ncs312
– volume: 59
  start-page: 1451
  year: 2018
  end-page: 1458
  ident: CR23
  article-title: Patient-specific computational model and dosimetry calculations for a patient pregnant with twins undergoing a PET/CT examination
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.117.205286
– volume: 196
  start-page: 1133
  year: 2011
  end-page: 1137
  ident: CR24
  article-title: Fetal radiation dose during gestation estimated on an anthropomorphic phantom for three generations of CT scanners
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.10.4497
– volume: 165
  start-page: 226
  year: 2015
  end-page: 230
  ident: CR28
  article-title: Fetal radiation dose in computed tomography
  publication-title: Radiat Prot Dosimetry
  doi: 10.1093/rpd/ncv097
– ident: CR11
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR32
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 55
  start-page: 1459
  year: 2014
  end-page: 1166
  ident: CR2
  article-title: Fetal and maternal absorbed dose estimates for positron-emitting molecular imaging probes
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.114.141309
– ident: CR5
– volume: 251
  start-page: 517
  year: 2009
  end-page: 524
  ident: CR1
  article-title: Utilization of imaging in pregnant patients: 10-year review of 5270 examinations in 3285 patients—1997–2006
  publication-title: Radiology
  doi: 10.1148/radiol.2512080736
– volume: 43
  start-page: 2290
  year: 2016
  end-page: 2300
  ident: CR22
  article-title: Development of computational pregnant female and fetus models and assessment of radiation dose from positron-emitting tracers
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-016-3448-8
– volume: 3
  start-page: 5
  year: 1992
  end-page: 13
  ident: CR36
  article-title: Hopfield network for stereo vision correspondence
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.105413
– volume: 249
  start-page: 220
  year: 2008
  end-page: 227
  ident: CR13
  article-title: Radiation dose to the fetus for pregnant patients undergoing multidetector CT imaging: Monte Carlo simulations estimating fetal dose for a range of gestational age and patient size
  publication-title: Radiology
  doi: 10.1148/radiol.2491071665
– volume: 45
  start-page: 3627
  year: 2018
  end-page: 3636
  ident: CR37
  article-title: Generating synthetic CTs from magnetic resonance images using generative adversarial networks
  publication-title: Med Phys
  doi: 10.1002/mp.13047
– volume: 30
  start-page: 3200
  issue: 10
  year: 2019
  end-page: 3204
  ident: CR38
  article-title: Learning Algorithm for Boltzmann Machines With Additive Weight and Bias Noise
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2889072
– volume: 9
  start-page: 471
  year: 2007
  end-page: 500
  ident: CR29
  article-title: Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in medical imaging
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.9.060906.151934
– volume: 30
  start-page: iii
  year: 2000
  end-page: viii, 1-43
  ident: CR6
  article-title: ICRP publication 84: pregnancy and medical radiation
  publication-title: Ann ICRP
  doi: 10.1016/S0146-6453(00)00037-3
– start-page: 234
  year: 2015
  end-page: 241
  ident: CR43
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Lecture Notes in Computer Science
– volume: 25
  start-page: 911
  year: 2015
  end-page: 921
  ident: CR27
  article-title: Abdominal CT during pregnancy: a phantom study on the effect of patient centering on conceptus radiation dose and image quality
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3505-2
– volume: 28
  start-page: 1054
  year: 2018
  end-page: 1065
  ident: CR31
  article-title: Assessment of CT dose to the fetus and pregnant female patient using patient-specific computational models
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5000-z
– ident: CR33
– volume: 55
  start-page: 730
  year: 2014
  end-page: 747
  ident: CR19
  article-title: Development of a 9-months pregnant hybrid phantom and its internal dosimetry for thyroid agents
  publication-title: J Radiat Res
  doi: 10.1093/jrr/rrt223
– volume: 27
  start-page: 909
  year: 2007
  end-page: 917
  ident: CR9
  article-title: Radiation exposure and pregnancy: when should we be concerned?
  publication-title: Radiographics
  doi: 10.1148/rg.274065149
– ident: CR40
– volume: 29
  start-page: 345
  year: 2019
  end-page: 352
  ident: CR4
  article-title: Suspicion of appendicitis in pregnant women: emergency evaluation by sonography and low-dose CT with oral contrast
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5573-1
– volume: 83
  start-page: 1199
  year: 2014
  end-page: 1204
  ident: CR25
  article-title: Fetal shielding combined with state of the art CT dose reduction strategies during maternal chest CT
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2014.04.020
– volume: 380
  start-page: 499
  year: 2012
  end-page: 505
  ident: CR10
  article-title: Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60815-0
– volume: 20
  start-page: 14
  year: 2012
  end-page: 22
  ident: CR35
  article-title: Acoustic modeling using deep belief networks
  publication-title: IEEE Trans Audio Speech Lang Process
  doi: 10.1109/TASL.2011.2109382
– volume: 37
  start-page: 6411
  year: 2010
  end-page: 6420
  ident: CR15
  article-title: A method of estimating conceptus doses resulting from multidetector CT examinations during all stages of gestation
  publication-title: Med Phys
  doi: 10.1118/1.3517187
– volume: 193
  start-page: 1019
  year: 2009
  end-page: 1024
  ident: CR26
  article-title: Early first trimester fetal dose estimation method in a multivendor study of 16- and 64-MDCT scanners and low-dose imaging protocols
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.08.2274
– year: 2005
  ident: CR48
  publication-title: MCNPX user’s manual Version 2.5.0
– ident: CR34
– volume: 22
  start-page: 63
  year: 1995
  end-page: 82
  ident: CR49
  article-title: Fetal dose from radiotherapy with photon beams: report of AAPM Radiation Therapy Committee Task Group No. 36
  publication-title: Med Phys
  doi: 10.1118/1.597525
– volume: 59
  start-page: 4325
  year: 2014
  end-page: 4343
  ident: CR21
  article-title: The UF family of hybrid phantoms of the pregnant female for computational radiation dosimetry
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/59/15/4325
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: CR39
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 46
  start-page: 1
  issue: 1
  year: 2017
  ident: 6296_CR12
  publication-title: Annals of the ICRP
  doi: 10.1177/0146645317717209
– ident: 6296_CR33
  doi: 10.21437/Interspeech.2010-343
– volume: 28
  start-page: 1054
  year: 2018
  ident: 6296_CR31
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5000-z
– volume: 22
  start-page: 63
  year: 1995
  ident: 6296_CR49
  publication-title: Med Phys
  doi: 10.1118/1.597525
– ident: 6296_CR5
– volume: 43
  start-page: 2290
  year: 2016
  ident: 6296_CR22
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-016-3448-8
– volume: 17
  start-page: 205
  year: 2007
  ident: 6296_CR16
  publication-title: Eur Radiol
  doi: 10.1007/s00330-006-0286-2
– volume: 37
  start-page: 6411
  year: 2010
  ident: 6296_CR15
  publication-title: Med Phys
  doi: 10.1118/1.3517187
– ident: 6296_CR46
– volume: 380
  start-page: 499
  year: 2012
  ident: 6296_CR10
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60815-0
– volume: 33
  start-page: 5
  year: 2003
  ident: 6296_CR7
  publication-title: Ann ICRP
– ident: 6296_CR11
  doi: 10.1016/j.icrp.2008.07.001
– volume: 196
  start-page: 1133
  year: 2011
  ident: 6296_CR24
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.10.4497
– volume-title: MCNPX user’s manual Version 2.5.0
  year: 2005
  ident: 6296_CR48
– volume: 3
  start-page: 5
  year: 1992
  ident: 6296_CR36
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.105413
– volume: 30
  start-page: 3200
  issue: 10
  year: 2019
  ident: 6296_CR38
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2889072
– volume: 45
  start-page: 3627
  year: 2018
  ident: 6296_CR37
  publication-title: Med Phys
  doi: 10.1002/mp.13047
– start-page: 424
  volume-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
  year: 2016
  ident: 6296_CR44
  doi: 10.1007/978-3-319-46723-8_49
– start-page: 234
  volume-title: Lecture Notes in Computer Science
  year: 2015
  ident: 6296_CR43
– volume: 9
  start-page: 471
  year: 2007
  ident: 6296_CR29
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.9.060906.151934
– volume: 224
  start-page: 487
  year: 2002
  ident: 6296_CR18
  publication-title: Radiology
  doi: 10.1148/radiol.2242011581
– volume: 31
  start-page: 748
  year: 2018
  ident: 6296_CR41
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0052-4
– volume: 60
  start-page: 84
  year: 2017
  ident: 6296_CR39
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 20
  start-page: 14
  year: 2012
  ident: 6296_CR35
  publication-title: IEEE Trans Audio Speech Lang Process
  doi: 10.1109/TASL.2011.2109382
– volume: 56
  start-page: 1218
  year: 2015
  ident: 6296_CR3
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.115.157032
– volume: 257
  start-page: 483
  year: 2010
  ident: 6296_CR14
  publication-title: Radiology
  doi: 10.1148/radiol.10092397
– volume: 193
  start-page: 1019
  year: 2009
  ident: 6296_CR26
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.08.2274
– volume: 25
  start-page: 911
  year: 2015
  ident: 6296_CR27
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3505-2
– ident: 6296_CR40
  doi: 10.1117/12.2254201
– volume: 155
  start-page: 64
  year: 2013
  ident: 6296_CR17
  publication-title: Radiat Prot Dosimetry
  doi: 10.1093/rpd/ncs312
– volume: 55
  start-page: 730
  year: 2014
  ident: 6296_CR19
  publication-title: J Radiat Res
  doi: 10.1093/jrr/rrt223
– volume: 29
  start-page: 345
  year: 2019
  ident: 6296_CR4
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5573-1
– volume: 30
  start-page: iii
  year: 2000
  ident: 6296_CR6
  publication-title: Ann ICRP
  doi: 10.1016/S0146-6453(00)00037-3
– volume: 27
  start-page: 909
  year: 2007
  ident: 6296_CR9
  publication-title: Radiographics
  doi: 10.1148/rg.274065149
– volume: 290
  start-page: 669
  year: 2018
  ident: 6296_CR42
  publication-title: Radiology
  doi: 10.1148/radiol.2018181432
– volume: 249
  start-page: 220
  year: 2008
  ident: 6296_CR13
  publication-title: Radiology
  doi: 10.1148/radiol.2491071665
– volume: 42
  start-page: 60
  year: 2017
  ident: 6296_CR32
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– ident: 6296_CR34
– volume: 55
  start-page: 2269
  year: 2010
  ident: 6296_CR47
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/55/8/010
– volume: 45
  start-page: 809
  year: 2007
  ident: 6296_CR30
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-007-0207-9
– volume: 55
  start-page: 1459
  year: 2014
  ident: 6296_CR2
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.114.141309
– volume: 59
  start-page: 1451
  year: 2018
  ident: 6296_CR23
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.117.205286
– volume: 165
  start-page: 226
  year: 2015
  ident: 6296_CR28
  publication-title: Radiat Prot Dosimetry
  doi: 10.1093/rpd/ncv097
– volume: 59
  start-page: 4325
  year: 2014
  ident: 6296_CR21
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/59/15/4325
– ident: 6296_CR8
– volume: 27
  start-page: 851
  year: 2017
  ident: 6296_CR20
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4389-0
– volume: 83
  start-page: 1199
  year: 2014
  ident: 6296_CR25
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2014.04.020
– ident: 6296_CR45
– volume: 251
  start-page: 517
  year: 2009
  ident: 6296_CR1
  publication-title: Radiology
  doi: 10.1148/radiol.2512080736
SSID ssj0009147
Score 2.3845184
Snippet Objectives The conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the...
The conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the developing...
ObjectivesThe conceptus dose during diagnostic imaging procedures for pregnant patients raises health concerns owing to the high radiosensitivity of the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6805
SubjectTerms Adult
Algorithms
Artificial neural networks
Automation
Computation
Computed tomography
Computer applications
Computer Simulation
Construction
Decision making
Diagnostic Radiology
Diagnostic systems
Dosimetry
Embryos
Female
Fetuses
Hazards
Humans
Image processing
Image segmentation
Imaging
Internal Medicine
Interventional Radiology
Lungs
Mathematical models
Medical imaging
Medicine
Medicine & Public Health
Methodology
Metric space
Middle Aged
Monte Carlo Method
Neural networks
Neural Networks, Computer
Neuroradiology
Nuclear medicine
Organs
Phantoms, Imaging
Physics
Pregnancy
Radiation
Radiation Dosage
Radiation hazards
Radiography, Abdominal - methods
Radiography, Abdominal - statistics & numerical data
Radiology
Radiometry - methods
Radiosensitivity
Risk analysis
Risk assessment
Tomography, X-Ray Computed - methods
Tomography, X-Ray Computed - statistics & numerical data
Ultrasound
Uterus
Young Adult
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7WrpS9bF3XdtnaocHeOtHIUmxpL2OMhL2s9GGDvhlZP0qh2GmcFPbf705REkppX2o_GCTZFtxJOunuvg_gi6-0CSJarp1suBIxct2IyGMTvVBhZFzZJLKJ6vxcX16ai3zg1uewytWcmCZq3zk6Iz_DpQavAle379NbTqxR5F3NFBpb8JJQEmQK3bvYgO6KRDCGm3bNK2NUTppJqXNEYkYhWZSDX5iSq_sL0wNr84GnNC1AkzfP7foevM6mJ_ux1JW38CK0-7D7OzvX38HdGIf7MpORdZGhZchmhFyQCnzXB3bdsuksXBFGx79vzLbMLuYdvhE8y_isnDI3KfqIJYodRmH1V4xC27OKYwcIQjM9UgB6fwB_J-M_P3_xTMvAnRJmzjVtiYZDi4am82jvCWFVEWRpcM6tgkGDSRoZo8DNkdVY4oKVQbtCe4W2iy_lIWy3XRveA0Nrx7jRUDTaRyXsCG8ZDPlSTYl6Ug1ArGRSu4xZTtQZN_UabTnJsUY51kmOtRrA6fqd6RKx48nWxyuZ1Xn09vVGYAP4vK7GcUfOFNuGbpHajEqi6xYDOFqqyPp3UlCCMdV8XenM5uOP9-XD0335CK8K0tcUS3MM2_PZIpzAjrubX_ezT0nz_wNXoQez
  priority: 102
  providerName: ProQuest
Title Estimation of the radiation dose in pregnancy: an automated patient-specific model using convolutional neural networks
URI https://link.springer.com/article/10.1007/s00330-019-06296-4
https://www.ncbi.nlm.nih.gov/pubmed/31227881
https://www.proquest.com/docview/2244442910
https://www.proquest.com/docview/2245644081
Volume 29
WOSCitedRecordID wos000500979400044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_a9QwFH-4TYe_-GW6eXMeEfxNA5c2bRN_m3LDXzyOU8fhLyVNkzGQdlzvBvvvfS-XdshU0BZSaNI2JO81n_A-7z2AN3WhtBPecGXTikvhPVeV8NxXvhbSZdrmVUg2UcxmarnU8-gU1vVs994kGf7Ug7MbpR0jEhV5zSc653IH9nC5U6SOiy_nt6F2RUgrhlt1xQutZXSV-f07fl2O7mDMO_bRsOycPf6_Dj-BRxFmstOtXDyFe645gP3P0ZB-AA8C89N2z-B6ikq-9V9krWeIB9mK4hWEG3XbOXbZsKuVu6DIHDfvmWmY2axbfMLVLEZl5eSvSZwjFhLrMCLTXzAitEfBxq5Q4MxwCbTz7jl8O5t-_fiJx2QM3Eqh11zRRmgyMQgvbY0oTwgjE5fmGv-0hdMIk1Kdei9wS2QU3rHOpE7ZRNUSEUudp4ew27SNewEMMY622URUqvZSmAzP1GmyoOocpaMYgejnpLQxUjklzPhRDjGWw9CWOLRlGNpSjuDt8MzVNk7HX1uf9FNdRp3tSgQzeCSIn0bweqhGbSMTimlcuwltspySdIsRHG1FZPhcKsitmGre9fJw-_I_9-X435q_hIcJiVRg1JzA7nq1ca_gvr1eX3arMewUi3Mql0Uo1Rj2Pkxn88WYSK1zLOfZ93HQl5_mRwck
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgqAX3o8tBYwEJ7BYJ97ERkIIQatWbVcIFdRbcPyoKqFk2ey26p_qb2TGSXaFKnrrgeQQKXYSJ_nmkXhmPoBXLlfai2C4smnJpQiBq1IEHsrghPQjbbMykk3k47E6PNRfV-C8z4WhsMpeJ0ZF7WpL_8jfoanBJUHr9nHymxNrFM2u9hQaLSx2_dkpfrI1H3a-4Pt9nSRbmweft3nHKsCtFHrGFXn0w6FBP8k6dFeEMDLxaUZc87nXaO9TnYYg0Lc3CvdYb1KvbKKcRNPrshTPew2u01AohCz_9mNZ5FdEQrOhRiWSay27JJ2YqkekaRQCRjn_ic64_NsQXvBuL8zMRoO3ded_e1R34XbnWrNPrSzcgxVf3Yeb-13wwAM42UR11mZqsjow9HzZlCozxB2ubjw7rthk6o-oBsnZe2YqZuazGo_wjnX1ZzllplJ0FYsUQozSBo4Yhe53IowDoBKhcRMD7JuH8P1K7voRrFZ15Z8AQ29O29FQlMoFKcwI19RrmivWGcpBPgDRY6CwXU12ogb5VSyqSUfcFIibIuKmkAN4szhm0lYkubT3Ro-RotNOTbEEyABeLppRr9Bkkal8PY99RhnRkYsBPG4hubhcKiiBmlre9hhdnvzfY1m_fCwv4Nb2wf5esbcz3n0KawnJSowb2oDV2XTun8ENezI7bqbPo9Qx-HnV2P0DlzFghA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6Vgiou5VkIFFgkOMGqWXtj7yIhhGgjqkKUA0i9mfU-qkrITuOkqH-NX8fM2k6EKnrrAedgyc9N8s3D3m_mA3jlcqW9CIYrm5ZcihC4KkXgoQxOSD_SNiuj2EQ-majjYz3dgN99LQzRKnufGB21qy29I9_DUINLgtFtL3S0iOn--MPsjJOCFM209nIaLUSO_MUvfHxr3h_u43_9OknGB98-feadwgC3UugFV5TdD4cGcybrMHURwsjEpxnpzudeY-xPdRqCwDzfKNxivUm9solyEsOwy1K87g24mVPT8kgbnK4b_ooobjbU6FByrWVXsBPL9khAjehgVP-f6IzLv4PipUz30ixtDH7jO__zz3YXtruUm31sbeQebPjqPmx97UgFD-D8AN1cW8HJ6sAwI2Zz6tgQN7i68ey0YrO5P6HeJBfvmKmYWS5qPMM71vWl5VSxSqwrFqWFGJUTnDCi9HemjQOg1qFxFYn3zUP4fi3fegc2q7ryj4FhlqftaChK5YIUZoSf1GuaQ9YZ2kc-ANHjobBdr3aSDPlZrLpMRwwViKEiYqiQA3izOmfWdiq58ujdHi9F57WaYg2WAbxc7UZ_Q5NIpvL1Mh4zykimXAzgUQvP1e1SQYXVtOdtj9f1xf89lidXj-UFbCFkiy-Hk6OncDshs4l0ol3YXMyX_hncsueL02b-PBoggx_XDd0_lkBpJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+radiation+dose+in+pregnancy%3A+an+automated+patient-specific+model+using+convolutional+neural+networks&rft.jtitle=European+radiology&rft.au=Xie%2C+Tianwu&rft.au=Zaidi%2C+Habib&rft.date=2019-12-01&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=29&rft.issue=12&rft.spage=6805&rft.epage=6815&rft_id=info:doi/10.1007%2Fs00330-019-06296-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_019_06296_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon