Multidrug-resistant tuberculosis

Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Easte...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature reviews. Disease primers Ročník 10; číslo 1; s. 22
Hlavní autoři: Dheda, Keertan, Mirzayev, Fuad, Cirillo, Daniela Maria, Udwadia, Zarir, Dooley, Kelly E., Chang, Kwok-Chiu, Omar, Shaheed Vally, Reuter, Anja, Perumal, Tahlia, Horsburgh, C. Robert, Murray, Megan, Lange, Christoph
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 24.03.2024
Nature Publishing Group
Témata:
ISSN:2056-676X, 2056-676X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5–10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level. Multidrug-resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis that is resistant to several first-line drugs. MDR-TB is an increasing public health challenge. In this Primer, Dheda et al. summarize the epidemiology and mechanisms, and discuss diagnosis, management and quality of life of patients with MDR-TB.
AbstractList Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5–10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level.Multidrug-resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis that is resistant to several first-line drugs. MDR-TB is an increasing public health challenge. In this Primer, Dheda et al. summarize the epidemiology and mechanisms, and discuss diagnosis, management and quality of life of patients with MDR-TB.
Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5-10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level.
Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5–10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level. Multidrug-resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis that is resistant to several first-line drugs. MDR-TB is an increasing public health challenge. In this Primer, Dheda et al. summarize the epidemiology and mechanisms, and discuss diagnosis, management and quality of life of patients with MDR-TB.
Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5-10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level.Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5-10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level.
ArticleNumber 22
Author Horsburgh, C. Robert
Omar, Shaheed Vally
Murray, Megan
Cirillo, Daniela Maria
Chang, Kwok-Chiu
Perumal, Tahlia
Dheda, Keertan
Lange, Christoph
Mirzayev, Fuad
Dooley, Kelly E.
Udwadia, Zarir
Reuter, Anja
Author_xml – sequence: 1
  givenname: Keertan
  orcidid: 0000-0001-7709-5341
  surname: Dheda
  fullname: Dheda, Keertan
  email: keertan.dheda@uct.ac.za
  organization: Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine
– sequence: 2
  givenname: Fuad
  orcidid: 0000-0001-6658-0325
  surname: Mirzayev
  fullname: Mirzayev, Fuad
  organization: Global Tuberculosis Programme, WHO
– sequence: 3
  givenname: Daniela Maria
  surname: Cirillo
  fullname: Cirillo, Daniela Maria
  organization: Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute Milan
– sequence: 4
  givenname: Zarir
  surname: Udwadia
  fullname: Udwadia, Zarir
  organization: Department of Pulmonology, Hinduja Hospital & Research Center
– sequence: 5
  givenname: Kelly E.
  surname: Dooley
  fullname: Dooley, Kelly E.
  organization: Department of Medicine, Vanderbilt University Medical Center
– sequence: 6
  givenname: Kwok-Chiu
  orcidid: 0000-0002-3682-5069
  surname: Chang
  fullname: Chang, Kwok-Chiu
  organization: Tuberculosis and Chest Service, Centre for Health Protection, Department of Health
– sequence: 7
  givenname: Shaheed Vally
  surname: Omar
  fullname: Omar, Shaheed Vally
  organization: Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Department of Molecular Medicine & Haematology, School of Pathology, Faculty of Health Sciences, University of Witwatersrand
– sequence: 8
  givenname: Anja
  surname: Reuter
  fullname: Reuter, Anja
  organization: Sentinel Project on Paediatric Drug-Resistant Tuberculosis
– sequence: 9
  givenname: Tahlia
  surname: Perumal
  fullname: Perumal, Tahlia
  organization: Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine
– sequence: 10
  givenname: C. Robert
  orcidid: 0000-0001-6838-7895
  surname: Horsburgh
  fullname: Horsburgh, C. Robert
  organization: Department of Epidemiology, Boston University Schools of Public Health and Medicine
– sequence: 11
  givenname: Megan
  surname: Murray
  fullname: Murray, Megan
  organization: Department of Epidemiology, Harvard Medical School
– sequence: 12
  givenname: Christoph
  surname: Lange
  fullname: Lange, Christoph
  organization: Division of Clinical Infectious Diseases, Research Center Borstel, German Center for Infection Research (DZIF), TTU-TB, Respiratory Medicine & International Health, University of Lübeck, Department of Paediatrics, Baylor College of Medicine and Texas Children’s Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38523140$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOwzAUhi1URKH0BRhQJRaWwPEttkdUcZOKWEBisxzHqVKlSbGdgbfHkHJRh07HOvo--_d_gkZt1zqEzjBcYaDyOjDMBcmAsAyAA8vIATomwPMsF_nb6N95jKYhrAAAc5krmR-hMZWcUMzgGM2e-ibWpe-XmXehDtG0cRb7wnnbN11anKLDyjTBTbdzgl7vbl_mD9ni-f5xfrPILMMqZsJU3IA0UFimAFxZcZELyUEUpKgYKwsMyubGciutZAJjRgylBUjMTUUwnaDL4d6N7957F6Je18G6pjGt6_qgiZJcKCE4S-jFDrrqet-mdIkSVCglhUzU-Zbqi7Ur9cbXa-M_9M_fE0AGwPouBO-qXwSD_upYDx3r1LH-7liTJMkdydbRxLprozd1s1-lgxrSO-3S-b_Ye6xP_z2NdQ
CitedBy_id crossref_primary_10_1021_jacs_5c00506
crossref_primary_10_1038_s42003_025_08646_z
crossref_primary_10_3390_tropicalmed9110274
crossref_primary_10_1016_j_meegid_2025_105763
crossref_primary_10_1080_14760584_2024_2425283
crossref_primary_10_7717_peerj_19112
crossref_primary_10_1038_s41589_024_01624_2
crossref_primary_10_1016_j_sciaf_2025_e02627
crossref_primary_10_1186_s12879_025_11227_4
crossref_primary_10_1111_apm_70004
crossref_primary_10_1136_bmjopen_2024_089290
crossref_primary_10_1007_s00203_025_04415_y
crossref_primary_10_1109_JSEN_2025_3536976
crossref_primary_10_1016_j_sajce_2025_08_014
crossref_primary_10_1007_s11030_025_11117_6
crossref_primary_10_1038_s41591_025_03742_3
crossref_primary_10_1186_s12879_025_10970_y
crossref_primary_10_1111_febs_70265
crossref_primary_10_2147_IDR_S473195
crossref_primary_10_1128_spectrum_03258_24
crossref_primary_10_3389_bjbs_2024_13566
crossref_primary_10_3389_fcimb_2025_1638577
crossref_primary_10_3390_M1851
crossref_primary_10_1016_j_cmi_2024_10_013
crossref_primary_10_1007_s11030_024_10946_1
crossref_primary_10_1093_cid_ciaf313
crossref_primary_10_1016_j_ijid_2025_107955
crossref_primary_10_1097_JS9_0000000000002720
crossref_primary_10_1186_s12934_025_02740_x
crossref_primary_10_1515_revic_2024_0007
crossref_primary_10_2147_IDR_S484268
crossref_primary_10_1080_17568919_2025_2552642
crossref_primary_10_1128_spectrum_00030_25
crossref_primary_10_3390_ijms25147771
crossref_primary_10_3390_pathogens14040370
crossref_primary_10_1038_s41598_024_73209_x
crossref_primary_10_1128_spectrum_02289_24
crossref_primary_10_3390_cells13231953
crossref_primary_10_1007_s10534_024_00644_8
crossref_primary_10_1016_j_mehy_2025_111761
crossref_primary_10_1038_s41598_024_78978_z
crossref_primary_10_1038_s41598_025_10639_1
crossref_primary_10_1007_s10870_024_01035_0
crossref_primary_10_1007_s12223_025_01274_4
crossref_primary_10_2147_IDR_S504519
crossref_primary_10_7759_cureus_64353
crossref_primary_10_1016_j_ijtb_2025_06_010
crossref_primary_10_1080_17568919_2025_2485673
crossref_primary_10_3390_vaccines12121397
crossref_primary_10_3389_fpubh_2025_1634772
crossref_primary_10_7759_cureus_60412
crossref_primary_10_1186_s12916_025_04269_7
crossref_primary_10_2147_IDR_S542287
crossref_primary_10_1007_s13659_025_00533_8
crossref_primary_10_1016_S2213_2600_24_00300_X
crossref_primary_10_3390_pathogens14030218
crossref_primary_10_1016_j_ijbiomac_2024_137003
crossref_primary_10_1016_S0140_6736_25_00555_0
crossref_primary_10_3390_ijms26083779
crossref_primary_10_1007_s11030_025_11205_7
crossref_primary_10_1021_acs_jmedchem_4c02876
crossref_primary_10_1021_jacs_5c05490
crossref_primary_10_1038_s41598_025_18112_9
crossref_primary_10_1016_j_ebiom_2025_105685
crossref_primary_10_1016_j_drup_2025_101265
crossref_primary_10_1038_s41598_025_11949_0
crossref_primary_10_1186_s13054_024_05110_y
crossref_primary_10_36490_journal_jps_com_v8i3_1027
crossref_primary_10_3390_biomedicines12102238
crossref_primary_10_1016_j_jctube_2025_100520
crossref_primary_10_1007_s40121_025_01221_3
crossref_primary_10_4167_jbv_2024_54_3_167
crossref_primary_10_1080_17425255_2025_2525451
crossref_primary_10_1093_ofid_ofaf344
crossref_primary_10_1016_j_bmcl_2024_129846
crossref_primary_10_3390_pharmaceutics16060818
crossref_primary_10_1016_j_jctube_2025_100528
crossref_primary_10_1002_cpdd_1515
crossref_primary_10_1096_fba_2024_00166
crossref_primary_10_1128_spectrum_00380_25
crossref_primary_10_3389_fmed_2025_1611322
crossref_primary_10_1038_s44303_025_00082_2
crossref_primary_10_1007_s11696_025_04102_8
crossref_primary_10_1089_cbr_2025_0078
crossref_primary_10_1007_s00408_024_00732_z
crossref_primary_10_1016_j_synbio_2025_01_002
crossref_primary_10_1128_spectrum_02457_24
crossref_primary_10_3390_antibiotics13080746
Cites_doi 10.5588/ijtld.19.0508
10.1146/annurev-genet-022820-085940
10.1186/s12981-016-0106-y
10.1186/s12879-022-07598-7
10.1016/S2213-2600(23)00097-8
10.1371/journal.pone.0047533
10.1183/13993003.02122-2017
10.1016/j.cmi.2023.02.013
10.3390/antibiotics10111323
10.1371/journal.pone.0281097
10.1016/j.cmi.2022.07.026
10.1016/S2213-2600(16)30433-7
10.3389/fimmu.2020.566608
10.1093/jac/dkx317
10.1183/13993003.00765-2022
10.1183/16000617.0221-2022
10.1016/j.ijantimicag.2017.01.017
10.1016/S0140-6736(23)01301-6
10.1038/s41591-020-1092-0
10.1056/NEJMoa1901814
10.3389/fcimb.2022.959911
10.1093/cid/ciu572
10.1016/S2213-2600(17)30079-6
10.1016/j.eclinm.2023.101979
10.1093/jacamr/dlac029
10.4103/ijmy.ijmy_178_21
10.1101/2023.03.14.23287284
10.1056/NEJMoa1909953
10.1128/AAC.02266-17
10.5588/ijtld.21.0515
10.1111/febs.16170
10.1016/S2666-5247(23)00401-9
10.1093/infdis/jit352
10.1371/journal.pbio.3001721
10.1183/13993003.00537-2018
10.1038/s41598-021-98862-4
10.1111/bcp.14199
10.1016/S1473-3099(23)00194-9
10.1183/13993003.01617-2018
10.1007/s13318-019-00604-5
10.3389/fcimb.2022.990312
10.1056/NEJMoa1811867
10.1136/thx.2005.045963
10.1093/cid/ciw002
10.1128/am.20.5.810-814.1970
10.1128/spectrum.02605-22
10.1016/S1473-3099(15)00062-6
10.3390/antibiotics10121544
10.1183/13993003.03492-2020
10.1183/13993003.02544-2020
10.1007/978-1-4614-5800-5
10.5588/ijtld.15.0803
10.1186/s12879-020-05749-2
10.1093/jac/dkac070
10.1093/cid/ciab359
10.1097/QAI.0b013e31820b07ab
10.1016/S2213-2600(19)30263-2
10.1128/JCM.01477-18
10.1056/NEJMc1603274
10.1074/jbc.M113.538959
10.1056/NEJMoa1108789
10.1093/molbev/msad131
10.1056/NEJMoa2119430
10.1186/s13643-018-0828-0
10.1371/journal.ppat.0020061
10.1016/j.meegid.2020.104350
10.5588/ijtld.20.0458
10.1128/AAC.00191-13
10.1371/journal.pgph.0001357
10.1111/cbdd.13625
10.1080/14787210.2016.1225498
10.1183/13993003.02263-2021
10.1016/S2213-2600(20)30047-3
10.1093/intqhc/14.suppl_1.89
10.1093/cid/ciaa1402
10.1016/S2214-109X(14)70198-6
10.1038/nrmicro2797
10.1093/cid/ciu186
10.1164/rccm.202304-0670VP
10.1186/s12879-016-2171-1
10.1128/AAC.03332-14
10.1016/j.eclinm.2022.101728
10.1183/13993003.00621-2021
10.1371/journal.pmed.1002773
10.1056/NEJMoa2033400
10.1183/23120541.00026-2017
10.1016/S0140-6736(22)02078-5
10.1128/JCM.00717-19
10.1164/rccm.202107-1779OC
10.1093/infdis/jix337
10.1056/NEJMoa2117166
10.1093/ofid/ofab615
10.1016/j.jmii.2022.08.014
10.1183/13993003.03463-2020
10.1055/s-0040-1710583
10.1016/S0140-6736(13)62073-5
10.1111/phn.12582
10.1164/rccm.202006-2394PP
10.1128/AAC.06125-11
10.1016/S1473-3099(19)30420-7
10.1038/s41591-020-0940-2
10.1016/j.tube.2017.11.004
10.1371/journal.pone.0193491
10.1136/bmjgh-2018-000755
10.1007/s00228-007-0305-5
10.1164/rccm.201502-0372LE
10.1038/s41598-020-59558-3
10.1002/cpdd.898
10.1164/rccm.201208-1422OC
10.3389/fmicb.2021.724042
10.1016/j.ijantimicag.2021.106401
10.1016/j.jpainsymman.2017.03.019
10.5588/ijtld.18.0622
10.1016/j.dib.2018.09.057
10.1038/ng.3195
10.1183/13993003.01796-2020
10.1056/NEJMoa2104535
10.1056/NEJMoa1604544
10.1164/rccm.201909-1874ST
10.1016/S1473-3099(21)00481-3
10.1016/S2666-5247(23)00321-X
10.1016/j.pupt.2022.102132
10.1056/NEJMc1215305
10.1002/cpt.2685
10.1021/acs.analchem.1c03462
10.1093/cid/cit167
10.1038/ng.3767
10.1016/S2213-2600(18)30097-3
10.1183/13993003.00246-2018
10.1093/cid/ciac322
10.1016/S2666-5247(21)00301-3
10.1016/S2213-2600(18)30078-X
10.1128/AAC.00905-13
10.5588/ijtld.21.0420
10.1128/AAC.00915-19
10.1128/AAC.01550-17
10.1513/AnnalsATS.201711-885ED
10.21037/jtd.2018.05.11
10.1186/s12879-023-08765-0
10.1007/s40262-023-01220-y
10.1164/ajrccm.154.5.8912767
10.1128/AAC.03246-14
10.1186/s12879-022-07861-x
10.1248/bpb.b14-00311
10.5588/ijtld.21.0538
10.1128/AAC.02164-18
10.1080/22221751.2020.1852891
10.1016/j.cmi.2023.07.013
10.1016/j.ijtb.2020.07.020
10.1038/s41598-020-65766-8
10.5588/ijtld.19.0080
10.1016/j.jinf.2023.01.039
10.1186/s12941-021-00478-z
10.1016/S1473-3099(21)00811-2
10.1016/S0140-6736(18)30484-7
10.1016/S0140-6736(11)61062-3
10.1093/infdis/jiac024
10.1038/502S2a
10.7448/IAS.19.1.21484
10.1136/bmj.l5894
10.1136/bmjqs-2015-004315
10.1002/j.1875-9114.2012.01098.x
10.21037/atm-20-4576
10.1056/NEJMoa1800474
10.3390/pathogens9030166
10.1016/S1473-3099(11)70210-9
10.1164/rccm.201711-2333OC
10.1016/j.jctube.2022.100309
10.1093/cid/ciab699
10.1371/journal.pone.0029108
10.1164/rccm.201407-1264OC
10.1016/S2213-2600(22)00092-3
10.1016/S0140-6736(22)01883-9
10.1111/j.1469-0691.2008.02685.x
10.1038/ng.2878
10.1016/j.cell.2022.10.025
10.1016/S1473-3099(22)00875-1
10.1371/journal.pmed.1001358
10.5588/ijtld.18.0756
10.5588/ijtld.23.0031
10.1371/journal.pgph.0001287
10.3390/ph15091136
10.1093/jac/dkw044
10.1183/09031936.00078708
10.1038/s41467-023-37719-y
10.1093/cid/ciac528
10.1007/s40262-022-01133-2
10.1016/j.tube.2021.102051
10.1038/s41591-023-02247-1
10.1136/bmj.l5770
10.1111/eva.12654
ContentType Journal Article
Copyright Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. Springer Nature Limited.
Copyright_xml – notice: Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. Springer Nature Limited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1038/s41572-024-00504-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 2056-676X
ExternalDocumentID 38523140
10_1038_s41572_024_00504_2
Genre Journal Article
Review
GrantInformation_xml – fundername: World Health Organization
  grantid: 001
GroupedDBID 0R~
53G
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABJNI
ABLJU
ACGFS
ACMJI
ADBBV
AFSHS
AGAYW
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
AZQEC
BENPR
BKKNO
EBS
FQGFK
FSGXE
FZEXT
LGEZI
LOTEE
NADUK
NNMJJ
NXXTH
ODYON
R9-
RNR
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
7X7
88I
8FI
8FJ
AAYXX
ABFSG
ABUWG
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AFKRA
AGSTI
AHWEU
AIXLP
ATHPR
BBNVY
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
FYUFA
GNUQQ
HCIFZ
HMCUK
M2P
M7P
NFIDA
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
UKHRP
ACMFV
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FE
8FH
8FK
K9.
LK8
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c419t-7af5a08a0bc4900edf57678507b2bf44db109c6ac5c8c8471142a33b0815af213
IEDL.DBID M7P
ISICitedReferencesCount 117
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001190193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2056-676X
IngestDate Thu Oct 02 16:31:13 EDT 2025
Tue Oct 07 06:46:27 EDT 2025
Sat May 31 02:13:12 EDT 2025
Sat Nov 29 04:09:49 EST 2025
Tue Nov 18 22:22:03 EST 2025
Fri Feb 21 02:37:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-7af5a08a0bc4900edf57678507b2bf44db109c6ac5c8c8471142a33b0815af213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6838-7895
0000-0002-3682-5069
0000-0001-7709-5341
0000-0001-6658-0325
OpenAccessLink https://www.nature.com/articles/s41572-024-00504-2.pdf
PMID 38523140
PQID 2973799878
PQPubID 2069613
ParticipantIDs proquest_miscellaneous_2985797754
proquest_journals_2973799878
pubmed_primary_38523140
crossref_primary_10_1038_s41572_024_00504_2
crossref_citationtrail_10_1038_s41572_024_00504_2
springer_journals_10_1038_s41572_024_00504_2
PublicationCentury 2000
PublicationDate 2024-03-24
PublicationDateYYYYMMDD 2024-03-24
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Disease primers
PublicationTitleAbbrev Nat Rev Dis Primers
PublicationTitleAlternate Nat Rev Dis Primers
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Otto-KnappRLong-term multidrug- and rifampicin-resistant tuberculosis treatment outcome by new WHO definitions in GermanyEur. Respir. J.20226022007651:CAS:528:DC%2BB38XjtFGhtL%2FN3642391910.1183/13993003.00765-2022
FatimaSEpigenetic code during mycobacterial infections: therapeutic implications for tuberculosisFEBS J.2022289417241911:CAS:528:DC%2BB3MXitVGntL%2FL3445386510.1111/febs.16170
BatesonAAncient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanidJ. Antimicrob. Chemother.202277168516931:CAS:528:DC%2BB38Xhsl2gur3N35260883915560210.1093/jac/dkac070
GagneuxSImpact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosisPLoS Pathog.2006216789833147904610.1371/journal.ppat.0020061
PadmapriyadarsiniCBedaquiline, delamanid, linezolid, and clofazimine for treatment of pre-extensively drug-resistant tuberculosisClin. Infect. Dis.202276e938e94635767251990750010.1093/cid/ciac528
US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT04062201?term=NCT04062201&rank=1 (2022).
SaraCAExtensively drug-resistant tuberculosis in South Africa: genomic evidence supporting transmission in communitiesERJ201852180024610.1183/13993003.00246-2018
BehrMAEdelsteinPHRamakrishnanLIs Mycobacterium tuberculosis infection life long?BMJ2019367l577031649096681259510.1136/bmj.l5770
Golightly, L. K. et al. Renal Pharmacotherapy. Dosage Adjustment of Medications Eliminated by the Kidneys (Springer, 2013).
SossenBThe natural history of untreated pulmonary tuberculosis in adults: a systematic review and meta-analysisLancet Respir. Med.2023113673793696679510.1016/S2213-2600(23)00097-8
LeeGImpact of mental disorders on active TB treatment outcomes: a systematic review and meta-analysisInt. J. Tuberc. Lung Dis.202024127912841:STN:280:DC%2BB3sznsVyrtg%3D%3D3331767210.5588/ijtld.20.0458
AdamDCClustering and superspreading potential of SARS-CoV-2 infections in Hong KongNat. Med.202026171417191:CAS:528:DC%2BB3cXhvVGhtL3F3294378710.1038/s41591-020-1092-0
ManosuthiWWiboonchutikulSSungkanuparphSIntegrated therapy for HIV and tuberculosisAIDS Res. Ther.20161327182275486640510.1186/s12981-016-0106-y
BoereeMJUNITE4TB: a new consortium for clinical drug and regimen development for TBInt. J. Tuberc. Lung Dis.2021258868891:STN:280:DC%2BB2cjjvFSkug%3D%3D34686229854492210.5588/ijtld.21.0515
IvanovaOHoffmannVSLangeCHoelscherMRachowAPost-tuberculosis lung impairment: systematic review and meta-analysis of spirometry data from 14 621 peopleEur. Respir. Rev.202332220221370761751011395410.1183/16000617.0221-2022
PaulsonTEpidemiology: a mortal foeNature2013502S2S32410807810.1038/502S2a
ISRCTN registry. Tuberculosis Child Multidrug-Resistant Preventive Therapy: TB CHAMP trial. https://www.isrctn.com/ISRCTN92634082 (2022).
The Economist Intelligence Unit. It’s time to end drug-resistant tuberculosis. The Economisthttps://www.eiu.com/graphics/marketing/pdf/its-time-to-end-drug-resistant-tuberculosis-full-report.pdf (2019).
TheronGBacterial and host determinants of cough aerosol culture positivity in patients with drug-resistant versus drug-susceptible tuberculosisNat. Med.202026143514431:CAS:528:DC%2BB3cXht1yjtbfI32601338835387210.1038/s41591-020-0940-2Work indicating that DR-TB strains were as infectious as DS-TB strains, and that infectiousness was not associated withM. tuberculosisgenetic variants (suggesting that epigenetic factors or host–pathogen interactions are likely important in the pathogenesis of resistance amplification).
DhedaKMiglioriGBThe global rise of extensively drug-resistant tuberculosis: is the time to bring back sanatoria now overdueLancet20123797737752203302010.1016/S0140-6736(11)61062-3
KöserCUWhole-genome sequencing for rapid susceptibility testing of M. tuberculosisN. Engl. J. Med.20133692902922386307210.1056/NEJMc1215305
GuntherGTreatment outcomes in multidrug-resistant tuberculosisN. Engl. J. Med.2016375110311052762653910.1056/NEJMc1603274
NguyenQHContaminLNguyenTVABañulsALInsights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosisEvol. Appl.2018111498151130344622618345710.1111/eva.12654
LanZDrug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysisLancet Respir. Med.202083833941:CAS:528:DC%2BB3cXltFyrsbY%3D32192585738439810.1016/S2213-2600(20)30047-3
ConradieFBedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosisN. Engl. J. Med.20223878108231:CAS:528:DC%2BB38XitlCqu7%2FM36053506949030210.1056/NEJMoa2119430Demonstrates that the BPaL regimen performed well in patients with pre-XDR-TB, XDR-TB and MDR-TB treatment failures.
WHO Global Tuberculosis Programme. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. 2nd edn. World Health Organizationhttps://www.who.int/publications/i/item/9789240082410#:~:Text=The%20catalogue%20provides%20a%20reference,countries%20for%20the%2013%20medicines (2023).
WinterMAGuhrKNBergGMImpact of various body weights and serum creatinine concentrations on the bias and accuracy of the Cockcroft–Gault equationPharmacotherapy2012326046121:CAS:528:DC%2BC38Xht1OnsbrJ2257679110.1002/j.1875-9114.2012.01098.x
WuZmbtD and celA1 association with ethambutol resistance in Mycobacterium tuberculosis: a multiomics analysisFront. Cell. Infect. Microbiol.2022129599111:CAS:528:DC%2BB3sXkt1GjsL4%3D36118032947115210.3389/fcimb.2022.959911
Davies ForsmanLSuboptimal moxifloxacin and levofloxacin drug exposure during treatment of patients with multidrug-resistant tuberculosis: results from a prospective study in ChinaEur. Respir. J.20215720034633315402810.1183/13993003.03463-2020
XuGHuXLianYLiXDiabetes mellitus affects the treatment outcomes of drug-resistant tuberculosis: a systematic review and meta-analysisBMC Infect. Dis.202323379861461066265410.1186/s12879-023-08765-0
O’DonnellMIsoniazid monoresistance: a precursor to multidrug-resistant tuberculosisAnn. Am. Thorac. Soc.20181530630729493332588052510.1513/AnnalsATS.201711-885ED
Ethics Guidance for the Implementation of the End TB Strategy (WHO, 2017).
ButovDMultidrug-resistant tuberculosis in the Kharkiv region, UkraineInt. J. Tuberc. Lung Dis.2020244854911:STN:280:DC%2BB38vlvFGmtg%3D%3D3239819710.5588/ijtld.19.0508
HeyckendorfJPrediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic modelEur. Respir. J.20215820034921:CAS:528:DC%2BB3MXitV2lurzF3357407810.1183/13993003.03492-2020
VaziriFGenetic diversity of multi- and extensively drug-resistant Mycobacterium tuberculosis isolates in the capital of iran, revealed by whole-genome sequencingJ. Clin. Microbiol.201957e01477e015181:CAS:528:DC%2BC1MXhtFagsb%2FO30404943632247210.1128/JCM.01477-18
JanssensJPRiederHLAn ecological analysis of incidence of tuberculosis and ‘per capita′ gross domestic productEur. Respir. J.20083214151897814610.1183/09031936.00078708
DhedaKThe Lancet Respiratory Medicine Commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosisLancet Respir. Med.201978208261:CAS:528:DC%2BC1MXhslWnsrjF3148639310.1016/S2213-2600(19)30263-2
Kokesch-HimmelreichJDo anti-tuberculosis drugs reach their target? — high-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging provides information on drug penetration into necrotic granulomasAnal. Chem.202294548354921:CAS:528:DC%2BB38XotVOntrc%3D3534433910.1021/acs.analchem.1c03462
US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT02333799?term=NCT02333799&rank=1 (2020).
WalkerTMThe 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysisLancet Microbe20223e265e2731:CAS:528:DC%2BB38Xht1WmsLrI35373160761255410.1016/S2666-5247(21)00301-3
Global Fund. List of tuberculosis pharmaceutical products classified according to the global fund quality assurance policy. The Global Fundhttps://www.theglobalfund.org/media/4757/psm_productstb_list_en.pdf (2023).
PAN-TB collaboration. Project to accelerate new treatments for tuberculosis (PAN-TB). PAN-TBhttps://www.pan-tb.org/newsroom/ (2021).
WHO. WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment - Drug-Resistant Tuberculosis Treatment, 2022 Update. World Health Organizationhttps://www.who.int/publications/i/item/9789240063129 (2022).
WalkerTMWhole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort studyLancet Infect. Dis.201515119312021:CAS:528:DC%2BC2MXhtFSjtrrM26116186457948210.1016/S1473-3099(15)00062-6
NgKCSHow well do routine molecular diagnostics detect rifampin heteroresistance in Mycobacterium tuberculosis?J. Clin. Microbiol.201957e00717e007191:CAS:528:DC%2BB3cXovVWmt7w%3D31413081681299010.1128/JCM.00717-19
Allix-BéguecCPrediction of susceptibility to first-line tuberculosis drugs by DNA sequencingN. Engl. J. Med.2018379140314153028064610.1056/NEJMoa1800474
HoffmannHDelamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral beijing genotype causing extensively drug-resistant tuberculosis in a tibetan refugeeAm. J. Respir. Crit. Care Med.20161933373401:CAS:528:DC%2BC28XpsFOru7Y%3D2682942510.1164/rccm.201502-0372LE
AginsBDImproving the cascade of global tuberculosis care: moving from the “what” to the “how” of quality improvementLancet Infect. Dis.201919e437e4433144730510.1016/S1473-3099(19)30420-7
TornheimJAIncreased moxifloxacin dosing among patients with multidrug-resistant tuberculosis with low-level resistance to moxifloxacin did not improve treatment outcomes in a tertiary care center in Mumbai, IndiaOpen. Forum Infect. Dis.20229ofab6153509715210.1093/ofid/ofab615
ChuHHuYZhangBSunZZhuBDNA methyltransferase HsdM induce drug resistance on Mycobacterium tuberculosis via multiple effectsAntibiotics20211015441:CAS:528:DC%2BB38Xksl2isro%3D34943756869843610.3390/antibiot
NS Shah (504_CR34) 2017; 376
504_CR57
C Loiseau (504_CR35) 2023; 14
EC Jones-López (504_CR47) 2013; 187
504_CR50
K Dheda (504_CR209) 2017; 5
SY Wong (504_CR85) 2013; 57
The CRyPTIC Consortium. (504_CR68) 2022; 20
H Chu (504_CR81) 2021; 10
A Gupta (504_CR160) 2022; 2
JP Cegielski (504_CR102) 2014; 59
AR DiNardo (504_CR174) 2022; 60
504_CR159
P Nahid (504_CR145) 2019; 200
504_CR175
JP Janssens (504_CR21) 2008; 32
E Schena (504_CR62) 2016; 71
L Tanneau (504_CR92) 2022; 61
F Fregonese (504_CR136) 2018; 6
NR Mvelase (504_CR238) 2022; 22
AL Byrne (504_CR199) 2017; 3
JA Tornheim (504_CR72) 2022; 9
DW Haas (504_CR89) 2022; 226
G Xu (504_CR29) 2023; 23
AJ Nunn (504_CR153) 2019; 380
G Gunther (504_CR9) 2016; 375
A Esmail (504_CR156) 2022; 205
M Asaad (504_CR78) 2020; 83
504_CR185
504_CR187
504_CR188
N Koehler (504_CR70) 2023; 86
J Heyckendorf (504_CR173) 2021; 58
EM Svensson (504_CR90) 2017; 72
M Feng (504_CR19) 2019; 36
L Davies Forsman (504_CR63) 2021; 57
504_CR30
C Lange (504_CR172) 2020; 11
KJ Wilby (504_CR101) 2020; 45
H Pai (504_CR167) 2022; 22
MA Winter (504_CR224) 2012; 32
MX Rangaka (504_CR49) 2012; 12
N Strydom (504_CR67) 2019; 16
P Miotto (504_CR69) 2022; 12
MJ Boeree (504_CR247) 2021; 25
TM Walker (504_CR122) 2022; 3
K Dheda (504_CR15) 2022; 10
E Holt (504_CR242) 2024
A Ghosh (504_CR56) 2020; 10
504_CR46
FM Marx (504_CR31) 2014; 58
K Dheda (504_CR13) 2018; 198
JS Mallick (504_CR166) 2022; 4
D Menzies (504_CR212) 2008; 12
HE Jeong (504_CR18) 2023; 56
J Kokesch-Himmelreich (504_CR66) 2022; 94
RL Goodall (504_CR245) 2022; 400
G Gunther (504_CR10) 2023; 29
G Lee (504_CR203) 2020; 24
504_CR14
I Motta (504_CR244) 2023
504_CR12
PR Donald (504_CR131) 2007; 63
504_CR11
J Heyckendorf (504_CR71) 2018; 62
GJ Fox (504_CR182) 2016; 62
EM Svensson (504_CR87) 2013; 57
TS Brown (504_CR38) 2021; 7
CU Köser (504_CR121) 2013; 369
J Heyckendorf (504_CR179) 2018; 51
T Wingfield (504_CR20) 2018; 391
DA Maslov (504_CR75) 2020; 9
N Ismail (504_CR61) 2018; 20
A Esmail (504_CR161) 2018; 10
A Lazarchik (504_CR144) 2022; 26
PJ Gómez-González (504_CR37) 2021; 11
K Dheda (504_CR111) 2020; 41
N Rockwood (504_CR134) 2017; 216
A Polesky (504_CR139) 1996; 154
A Cattamanchi (504_CR48) 2011; 56
J Perdigão (504_CR41) 2020; 10
L Tanneau (504_CR95) 2022; 112
KL Ong (504_CR27) 2023; 402
D Chesov (504_CR176) 2019; 23
P Srilohasin (504_CR44) 2020; 9
JL Flynn (504_CR53) 2022; 185
TM Walker (504_CR127) 2015; 15
SE Dorman (504_CR147) 2021; 384
R Otto-Knapp (504_CR181) 2022; 60
A Ghodousi (504_CR240) 2019; 63
S Fatima (504_CR79) 2022; 289
B Bouchet (504_CR196) 2002; 14
GB Migliori (504_CR189) 2018; 52
BS Tegegne (504_CR28) 2018; 7
SR Connor (504_CR186) 2018; 55
I Mokrousov (504_CR55) 2022; 15
M O’Donnell (504_CR130) 2018; 15
EA Kendall (504_CR52) 2021; 203
E Pietersen (504_CR205) 2023; 18
C Gilpin (504_CR117) 2016; 3
A Faustini (504_CR17) 2006; 61
O Ivanova (504_CR201) 2023; 32
ZZ Sultana (504_CR25) 2021; 21
AH Diacon (504_CR214) 2012; 56
C Lange (504_CR215) 2019; 23
DC Adam (504_CR40) 2020; 26
A Esmail (504_CR114) 2023; 29
P Kambli (504_CR124) 2021; 127
DR Tait (504_CR143) 2019; 381
M Li (504_CR216) 2021; 10
I Bergval (504_CR58) 2012; 7
BN Said (504_CR65) 2021; 10
S Wasserman (504_CR98) 2019; 63
K Dheda (504_CR171) 2018; 6
JP Sarathy (504_CR133) 2018; 62
J Mok (504_CR243) 2022; 400
A Radhakrishnan (504_CR76) 2014; 289
SH Wu (504_CR125) 2022; 10
S Patankar (504_CR233) 2023; 208
F Conradie (504_CR155) 2020; 382
F Conradie (504_CR154) 2022; 387
T Paulson (504_CR3) 2013; 502
EM Svensson (504_CR88) 2014; 58
C Maier (504_CR180) 2023; 29
504_CR213
J Kamp (504_CR168) 2017; 49
C Lange (504_CR241) 2023; 4
Y Shimokawa (504_CR94) 2014; 37
AL Manson (504_CR129) 2017; 49
N Sharma (504_CR202) 2020; 67
JR Campbell (504_CR220) 2022; 75
504_CR207
504_CR208
PS Rao (504_CR169) 2023; 62
C Allix-Béguec (504_CR126) 2018; 379
M Pai (504_CR195) 2018; 3
504_CR221
504_CR222
GL Calligaro (504_CR183) 2023; 55
Z Lan (504_CR152) 2020; 8
D Butov (504_CR177) 2020; 24
C Sekaggya-Wiltshire (504_CR163) 2018; 108
N Casali (504_CR107) 2014; 46
C Lange (504_CR170) 2023; 388
BD Agins (504_CR190) 2019; 19
M Batalden (504_CR192) 2016; 25
MJ Boeree (504_CR165) 2015; 191
A Turkova (504_CR149) 2022; 386
504_CR218
504_CR219
504_CR230
EJ Ragan (504_CR204) 2020; 24
504_CR231
504_CR234
504_CR235
504_CR232
504_CR113
N Ndjeka (504_CR157) 2022; 22
HL David (504_CR59) 1970; 20
M Bastard (504_CR26) 2018; 13
S Feuerriegel (504_CR123) 2021; 57
A Bhargava (504_CR24) 2022; 27
Y Zhao (504_CR109) 2012; 366
G Theron (504_CR120) 2014; 383
504_CR228
504_CR225
504_CR226
504_CR229
B Frascella (504_CR51) 2021; 73
H Hoffmann (504_CR103) 2016; 193
QH Nguyen (504_CR64) 2018; 11
E Chesov (504_CR239) 2022; 59
K Dheda (504_CR60) 2017; 5
504_CR97
J Taylor (504_CR198) 2023; 59
HP Grobbel (504_CR128) 2021; 73
S Gagneux (504_CR106) 2009; 15
504_CR116
504_CR115
504_CR118
504_CR236
504_CR237
C Padmapriyadarsini (504_CR246) 2022; 76
504_CR119
AA Vatlin (504_CR77) 2021; 12
JG Pasipanodya (504_CR162) 2013; 208
JS Peters (504_CR80) 2020; 54
O Oxlade (504_CR23) 2012; 7
S Gagneux (504_CR110) 2006; 2
C Lienhardt (504_CR22) 2012; 10
Z Wu (504_CR84) 2022; 12
L Tanneau (504_CR91) 2020; 86
MC Becerra (504_CR32) 2019; 367
F Cobelens (504_CR191) 2012; 9
504_CR249
R Ragonnet (504_CR137) 2017; 17
W Manosuthi (504_CR86) 2016; 13
MA Behr (504_CR211) 2019; 367
D Chesov (504_CR178) 2021; 57
504_CR248
C Maugans (504_CR223) 2023; 27
HK Musonda (504_CR227) 2022; 26
S de Vallière (504_CR200) 2004; 8
HC Li (504_CR83) 2020; 95
504_CR141
504_CR140
504_CR142
P Ashley-Norman (504_CR206) 2023; 23
504_CR4
J Domínguez (504_CR54) 2023; 23
504_CR2
504_CR1
KCS Ng (504_CR105) 2019; 57
JG Pasipanodya (504_CR132) 2013; 57
504_CR146
MZ Imperial (504_CR99) 2022; 74
H Myburgh (504_CR184) 2023; 3
504_CR74
L Mota (504_CR164) 2016; 20
504_CR73
K Dheda (504_CR39) 2019; 7
H Fan (504_CR197) 2021; 9
A Bateson (504_CR36) 2022; 77
504_CR138
CA Sara (504_CR43) 2018; 52
A Grimsrud (504_CR194) 2016; 19
M Merker (504_CR108) 2015; 47
F Vaziri (504_CR45) 2019; 57
504_CR151
K Dheda (504_CR210) 2012; 379
M Pai (504_CR193) 2014; 2
BT Nyang’wa (504_CR158) 2022; 387
M Vree (504_CR135) 2007; 11
RS Salvato (504_CR42) 2021; 58
L Guglielmetti (504_CR93) 2018; 52
I Bykov (504_CR16) 2022; 22
B Sossen (504_CR112) 2023; 11
504_CR150
X Hu (504_CR82) 2021; 10
504_CR8
504_CR7
KE Dooley (504_CR96) 2014; 58
504_CR148
504_CR6
G Theron (504_CR33) 2020; 26
504_CR5
M Ye (504_CR104) 2021; 20
S Wasserman (504_CR100) 2016; 14
Y Liu (504_CR217) 2022; 73-74
References_xml – reference: TanneauLPopulation pharmacokinetics of delamanid and its main metabolite DM-6705 in drug-resistant tuberculosis patients receiving delamanid alone or coadministered with bedaquilineClin. Pharmacokinet.202261117711851:CAS:528:DC%2BB38XitV2mtrnP35668346934916010.1007/s40262-022-01133-2
– reference: GilpinCKorobitsynAWeyerKCurrent tools available for the diagnosis of drug-resistant tuberculosisTher. Adv. Infect. Dis.201631451511:CAS:528:DC%2BC2sXhslWitLvN283864075375090
– reference: IvanovaOHoffmannVSLangeCHoelscherMRachowAPost-tuberculosis lung impairment: systematic review and meta-analysis of spirometry data from 14 621 peopleEur. Respir. Rev.202332220221370761751011395410.1183/16000617.0221-2022
– reference: LangeCPerspective for precision medicine for tuberculosisFront. Immunol.2020115666081:CAS:528:DC%2BB3cXis1KjurvM33117351757824810.3389/fimmu.2020.566608
– reference: TB Alliance. SimpliciTB results and heapatic safety of pretomanid regimens +/− pyrazinamide. TB Alliancehttps://www.croiconference.org/abstract/simplicitb-results-and-hepatic-safety-of-pretomanid-regimens-pyrazinamide/#:~:Text=Conclusions%3A,6%2D7%25%20of%20patients (2023).
– reference: TaylorJResidual respiratory disability after successful treatment of pulmonary tuberculosis: a systematic review and meta-analysisEClinicalMedicine202359101979372059231018936410.1016/j.eclinm.2023.101979Demonstrates that there was significant pulmonary disability after successful treatment of pulmonary tuberculosis highlighting this condition as a non-communicable disease of global epidemic proportions.
– reference: LiuYSafety and pharmacokinetic profile of pretomanid in healthy Chinese adults: results of a phase I single dose escalation studyPulm. Pharmacol. Ther.202273-741021321:CAS:528:DC%2BB38XhtlGiurvO3559500310.1016/j.pupt.2022.102132
– reference: GagneuxSFitness cost of drug resistance in Mycobacterium tuberculosisClin. Microbiol. Infect.200915Suppl. 166681922036010.1111/j.1469-0691.2008.02685.x
– reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT01990274?term=NCT01990274&rank=1 (2015).
– reference: KoehlerNPretomanid-resistant tuberculosisJ. Infect.2023865205243673886210.1016/j.jinf.2023.01.039
– reference: MyburghHA scoping review of patient-centred tuberculosis care interventions: gaps and opportunitiesPLoS Glob. Public Health20233369630711002174410.1371/journal.pgph.0001357
– reference: TurkovaAShorter treatment for nonsevere tuberculosis in African and Indian childrenN. Engl. J. Med.20223869119221:CAS:528:DC%2BB38XnsVOnurc%3D35263517761249610.1056/NEJMoa2104535
– reference: HeyckendorfJWhat is resistance? Impact of phenotypic versus molecular drug resistance testing on therapy for multi- and extensively drug-resistant tuberculosisAntimicrob. Agents Chemother.201862e01550-1729133554578681410.1128/AAC.01550-17
– reference: WHO. Meeting Report of the WHO Expert Consultation on Drug-Resistant Tuberculosis Treatment Outcome Definitions. World Health Organizationhttps://www.who.int/publications/i/item/9789240022195 (2021).
– reference: Allix-BéguecCPrediction of susceptibility to first-line tuberculosis drugs by DNA sequencingN. Engl. J. Med.2018379140314153028064610.1056/NEJMoa1800474
– reference: GrobbelHPDesign of multidrug-resistant tuberculosis treatment regimens based on DNA sequencingClin. Infect. Dis.202173119412021:CAS:528:DC%2BB3MXit12rs7fP33900387849221410.1093/cid/ciab359
– reference: DhedaKMakambwaEEsmailAThe great masquerader: tuberculosis presenting as community-acquired pneumoniaSemin. Respir. Crit. Care Med.2020415926043256434710.1055/s-0040-1710583
– reference: BastardMOutcomes of HIV-infected versus HIV-non-infected patients treated for drug-resistance tuberculosis: multicenter cohort studyPLoS ONE20181329518098584327010.1371/journal.pone.0193491
– reference: LiHCGenome-wide DNA methylation and transcriptome and proteome changes in Mycobacterium tuberculosis with para-aminosalicylic acid resistanceChem. Biol. Drug Des.2020951041121:CAS:528:DC%2BC1MXitFWntbvF3156269010.1111/cbdd.13625
– reference: CalligaroGLOutcomes of patients undergoing lung resection for drug-resistant TB and the prognostic significance of pre-operative positron emission tomography/computed tomography (PET/CT) in predicting treatment failureEClinicalMedicine2023551017283638604010.1016/j.eclinm.2022.101728
– reference: BykovIFactors contributing to the high prevalence of multidrug-resistance/rifampicin-resistance in patients with tuberculosis: an epidemiological cross sectional and qualitative study from Khabarovsk Krai region of RussiaBMC Infect. Dis.20222235831812928117810.1186/s12879-022-07598-7
– reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT04062201?term=NCT04062201&rank=1 (2022).
– reference: The Economist Intelligence Unit. It’s time to end drug-resistant tuberculosis. The Economisthttps://www.eiu.com/graphics/marketing/pdf/its-time-to-end-drug-resistant-tuberculosis-full-report.pdf (2019).
– reference: SharmaNA comparison of patient treatment pathways among multidrug-resistant and drug-sensitive TB cases in Delhi, India: a cross-sectional studyIndian J. Tuberculosis20206750250810.1016/j.ijtb.2020.07.020
– reference: SaraCAExtensively drug-resistant tuberculosis in South Africa: genomic evidence supporting transmission in communitiesERJ201852180024610.1183/13993003.00246-2018
– reference: LangeCManagement of patients with multidrug-resistant tuberculosisInt. J. Tuberc. Lung Dis.2019236456621:STN:280:DC%2BB3Mzotleruw%3D%3D3131569610.5588/ijtld.18.0622
– reference: PoleskyARifampin preventive therapy for tuberculosis in Boston’s homelessAm. J. Respir. Crit. Care Med.1996154147314771:STN:280:DyaK2s%2FmvFOrtQ%3D%3D891276710.1164/ajrccm.154.5.8912767
– reference: Sekaggya-WiltshireCThe utility of pharmacokinetic studies for the evaluation of exposure-response relationships for standard dose anti-tuberculosis drugsTuberculosis201810877821:CAS:528:DC%2BC2sXhsl2qtbzN2952333110.1016/j.tube.2017.11.004
– reference: The CRyPTIC Consortium.A data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibioticsPLoS Biol.202220936301010.1371/journal.pbio.3001721
– reference: WHO. Tuberculosis preventive treatment: rapid communication. World Health Organizationhttps://www.who.int/publications/i/item/9789240089723 (2024).
– reference: ChesovDImpact of bedaquiline on treatment outcomes of multidrug-resistant tuberculosis in a high-burden countryEur. Respir. J.20215720025441:CAS:528:DC%2BB3MXhsFGrsL%2FF3333494210.1183/13993003.02544-2020
– reference: SarathyJPExtreme drug tolerance of Mycobacterium tuberculosis in caseumAntimicrob. Agents Chemother.201862e02266e0231729203492578676410.1128/AAC.02266-17
– reference: JeongHESocioeconomic disparities and multidrug-resistant tuberculosis in South Korea: focus on immigrants and income levelsJ. Microbiol. Immunol. Infect.2023564244283611579110.1016/j.jmii.2022.08.014
– reference: FanHPulmonary tuberculosis as a risk factor for chronic obstructive pulmonary disease: a systematic review and meta-analysisAnn. Transl. Med.2021939033842611803337610.21037/atm-20-4576
– reference: PAN-TB collaboration. Project to accelerate new treatments for tuberculosis (PAN-TB). PAN-TBhttps://www.pan-tb.org/newsroom/ (2021).
– reference: Golightly, L. K. et al. Renal Pharmacotherapy. Dosage Adjustment of Medications Eliminated by the Kidneys (Springer, 2013).
– reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT02589782?term=NCT02589782&rank=1 (2021).
– reference: MotaLTherapeutic drug monitoring in anti-tuberculosis treatment: a systematic review and meta-analysisInt. J. Tuberc. Lung Dis.2016208198261:STN:280:DC%2BC28bntlCnsA%3D%3D2715518710.5588/ijtld.15.0803
– reference: KambliPTargeted next generation sequencing directly from sputum for comprehensive genetic information on drug resistant Mycobacterium tuberculosisTuberculosis20211271020511:CAS:528:DC%2BB3MXktFyhtbs%3D3345044810.1016/j.tube.2021.102051
– reference: SvenssonEMKarlssonMOModelling of mycobacterial load reveals bedaquiline’s exposure–response relationship in patients with drug-resistant TBJ. Antimicrob. Chemother.201772339834051:CAS:528:DC%2BC1cXhvVWrs7jJ28961790589076810.1093/jac/dkx317
– reference: SossenBThe natural history of untreated pulmonary tuberculosis in adults: a systematic review and meta-analysisLancet Respir. Med.2023113673793696679510.1016/S2213-2600(23)00097-8
– reference: FatimaSEpigenetic code during mycobacterial infections: therapeutic implications for tuberculosisFEBS J.2022289417241911:CAS:528:DC%2BB3MXitVGntL%2FL3445386510.1111/febs.16170
– reference: NICE. Tuberculosis: NICE guideline 33. National Institute for Health and Care Excellencehttps://www.nice.org.uk/guidance/ng33 (2016).
– reference: AsaadMMethylation in Mycobacterium–host interaction and implications for novel control measuresInfect. Genet. Evol.2020831043501:CAS:528:DC%2BB3cXptVChtro%3D3238031210.1016/j.meegid.2020.104350
– reference: MiglioriGBSotgiuGRosales-KlintzSvan der WerfMJEuropean Union standard for tuberculosis care on treatment of multidrug-resistant tuberculosis following new World Health Organization recommendationsEur. Respir. J.20185218016173020920010.1183/13993003.01617-2018
– reference: Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis (WHO, 2008).
– reference: ImperialMZNedelmanJRConradieFSavicRMProposed linezolid dosing strategies to minimize adverse events for treatment of extensively drug-resistant tuberculosisClin. Infect. Dis.202274173617471:CAS:528:DC%2BB38Xhs1ehs7vK3460490110.1093/cid/ciab699
– reference: DormanSEFour-month rifapentine regimens with or without moxifloxacin for tuberculosisN. Engl. J. Med.2021384170517181:CAS:528:DC%2BB3MXhtVCitrfE33951360828232910.1056/NEJMoa2033400
– reference: XuGHuXLianYLiXDiabetes mellitus affects the treatment outcomes of drug-resistant tuberculosis: a systematic review and meta-analysisBMC Infect. Dis.202323379861461066265410.1186/s12879-023-08765-0
– reference: GrimsrudAReimagining HIV service delivery: the role of differentiated care from prevention to suppressionJ. Int. AIDS Soc.20161927914186513613710.7448/IAS.19.1.21484
– reference: WHO. WHO TB country, regional and global profiles. World Health Organizationhttps://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&lan=%22EN%22&entity_type=%22country%22&iso2=%22AF%22 (2022).
– reference: DhedaKMiglioriGBThe global rise of extensively drug-resistant tuberculosis: is the time to bring back sanatoria now overdueLancet20123797737752203302010.1016/S0140-6736(11)61062-3
– reference: MusondaHKRosePCSwitalaJSchaafHSPaediatric admissions to a TB hospital: reasons for admission, clinical profile and outcomesInt. J. Tuberc. Lung Dis.2022262172231:STN:280:DC%2BB2M3kvVyhsw%3D%3D3519716110.5588/ijtld.21.0538
– reference: WassermanSLinezolid pharmacokinetics in South African patients with drug-resistant tuberculosis and a high prevalence of HIV coinfectionAntimicrob. Agents Chemother.201963e02164-1830617089639589910.1128/AAC.02164-18
– reference: GoodallRLEvaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trialLancet2022400185818681:CAS:528:DC%2BB38XivVChsrbJ36368336761482410.1016/S0140-6736(22)02078-5
– reference: FregoneseFComparison of different treatments for isoniazid-resistant tuberculosis: an individual patient data meta-analysisLancet Respir. Med.2018626527529595509901709610.1016/S2213-2600(18)30078-X
– reference: PietersenEVariation in missed doses and reasons for discontinuation of anti-tuberculosis drugs during hospital treatment for drug-resistant tuberculosis in South AfricaPLoS ONE2023181:CAS:528:DC%2BB3sXjs1Oqtrg%3D36780443992500710.1371/journal.pone.0281097
– reference: SvenssonEMModel-based estimates of the effects of efavirenz on bedaquiline pharmacokinetics and suggested dose adjustments for patients coinfected with HIV and tuberculosisAntimicrob. Agents Chemother.201357278027871:CAS:528:DC%2BC3sXoslyrtrs%3D23571542371616110.1128/AAC.00191-13
– reference: ManosuthiWWiboonchutikulSSungkanuparphSIntegrated therapy for HIV and tuberculosisAIDS Res. Ther.20161327182275486640510.1186/s12981-016-0106-y
– reference: DonaldPRThe influence of dose and N-acetyltransferase-2 (NAT2) genotype and phenotype on the pharmacokinetics and pharmacodynamics of isoniazidEur. J. Clin. Pharmacol.2007636336391:CAS:528:DC%2BD2sXmtlGkt7w%3D1750582110.1007/s00228-007-0305-5
– reference: BatesonAAncient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanidJ. Antimicrob. Chemother.202277168516931:CAS:528:DC%2BB38Xhsl2gur3N35260883915560210.1093/jac/dkac070
– reference: WHO. Use of bedaquiline in children and adolescents with multidrug- and rifampicin-resistant tuberculosis: information note. World Health Organizationhttps://www.who.int/publications/i/item/9789240074286 (2023).
– reference: MerkerMEvolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineageNat. Genet.2015472422491:CAS:528:DC%2BC2MXhtFKjs7Y%3D2559940010.1038/ng.3195
– reference: DavidHLProbability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosisAppl. Microbiol.1970208108141:CAS:528:DyaE3MXitVKltg%3D%3D499192737705310.1128/am.20.5.810-814.1970
– reference: WHO Global Tuberculosis Programme. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. World Health Organizationhttps://www.who.int/publications/i/item/9789240028173 (2021).
– reference: BataldenMCoproduction of healthcare serviceBMJ Qual. Saf.2016255095172637667410.1136/bmjqs-2015-004315
– reference: WalkerTMWhole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort studyLancet Infect. Dis.201515119312021:CAS:528:DC%2BC2MXhtFSjtrrM26116186457948210.1016/S1473-3099(15)00062-6
– reference: DhedaKDrug-penetration gradients associated with acquired drug resistance in patients with tuberculosisAm. J. Respir. Crit. Care Med.2018198120812191:CAS:528:DC%2BC1MXhtVent77M29877726622157310.1164/rccm.201711-2333OCComprehensive study outlining the differential penetration of drugs into TB cavities and its association with resistance amplification.
– reference: DhedaKOutcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: a prospective cohort studyLancet Respir. Med.201752692812810986910.1016/S2213-2600(16)30433-7
– reference: ECDC. European Union standards for tuberculosis care - 2017 update. European Centre for Disease Prevention and Controlhttps://www.ecdc.europa.eu/en/publications-data/european-union-standards-tuberculosis-care-2017-update (2018).
– reference: RangakaMXPredictive value of interferon-γ release assays for incident active tuberculosis: a systematic review and meta-analysisLancet Infect. Dis.20121245551:CAS:528:DC%2BC38XhtVClsw%3D%3D2184659210.1016/S1473-3099(11)70210-9
– reference: EsmailAAn all-oral 6-month regimen for multidrug-resistant tuberculosis: a multicenter, randomized controlled clinical trial (the NExT Study)Am. J. Respir. Crit. Care Med.2022205121412271:CAS:528:DC%2BB38XhsVyqsbjP3517590510.1164/rccm.202107-1779OCRCT of 6-month all-oral regimen for MDR-TB demonstrating the ability of such a regimen to improve outcomes within the context of a controlled trial.
– reference: RaganEJThe impact of alcohol use on tuberculosis treatment outcomes: a systematic review and meta-analysisInt. J. Tuberc. Lung Dis.20202473821:STN:280:DC%2BB38%2FmvVCltg%3D%3D3200530910.5588/ijtld.19.0080
– reference: PaulsonTEpidemiology: a mortal foeNature2013502S2S32410807810.1038/502S2a
– reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT02333799?term=NCT02333799&rank=1 (2020).
– reference: LanZDrug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysisLancet Respir. Med.202083833941:CAS:528:DC%2BB3cXltFyrsbY%3D32192585738439810.1016/S2213-2600(20)30047-3
– reference: ISRCTN registry. Tuberculosis Child Multidrug-Resistant Preventive Therapy: TB CHAMP trial. https://www.isrctn.com/ISRCTN92634082 (2022).
– reference: KampJSimple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosisInt. J. Antimicrob. Agents2017496886941:CAS:528:DC%2BC2sXls1ygurg%3D2838935210.1016/j.ijantimicag.2017.01.017
– reference: PadmapriyadarsiniCBedaquiline, delamanid, linezolid, and clofazimine for treatment of pre-extensively drug-resistant tuberculosisClin. Infect. Dis.202276e938e94635767251990750010.1093/cid/ciac528
– reference: WilbyKJHussainFNA review of clinical pharmacokinetic and pharmacodynamic relationships and clinical implications for drugs used to treat multi-drug resistant tuberculosisEur. J. Drug Metab. Pharmacokinet.2020453053131:CAS:528:DC%2BB3cXmvFKjsg%3D%3D3192574510.1007/s13318-019-00604-5
– reference: BrownTSEvolution and emergence of multidrug-resistant Mycobacterium tuberculosis in Chisinau, MoldovaMicrob. Genom.202170006201:CAS:528:DC%2BB3MXisFCku7zP344317628549355
– reference: ShimokawaYSasaharaKYodaNMizunoKUmeharaKDelamanid does not inhibit or induce cytochrome P450 enzymes in vitroBiol. Pharm. Bull.201437172717351:CAS:528:DC%2BC2MXktV2htg%3D%3D2536647810.1248/bpb.b14-00311
– reference: The Sentinel Project for Pediatric Drug-Resistant Tuberculosis. Management of Drug-Resistant Tuberculosis In Children: A Field Guide (Boston, 2021).
– reference: LiMPhase 1 study of the effects of the tuberculosis treatment pretomanid, alone and in combination with moxifloxacin, on the QTcClin. Pharmacol. Drug Dev.2021106346463337813910.1002/cpdd.898
– reference: Du, D. H. et al. The effect of M. tuberculosis lineage on clinical phenotype. Preprint at medRxivhttps://doi.org/10.1101/2023.03.14.23287284 (2023).
– reference: NahidPTreatment of drug-resistant tuberculosis. an official ATS/CDC/ERS/IDSA clinical practice guidelineAm. J. Respir. Crit. Care Med.2019200e93e14231729908685748510.1164/rccm.201909-1874ST
– reference: WHO. WHO standard: universal access to rapid tuberculosis diagnostics. World Health Organizationhttps://www.who.int/publications/i/item/9789240071315 (2023).
– reference: DomínguezJClinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statementLancet Infect. Dis.202323e122e1373686825310.1016/S1473-3099(22)00875-1
– reference: RaoPSAlternative methods for therapeutic drug monitoring and dose adjustment of tuberculosis treatment in clinical settings: a systematic reviewClin. Pharmacokinet.2023623753981:CAS:528:DC%2BB3sXltlGgsrk%3D368691701004291510.1007/s40262-023-01220-y
– reference: TegegneBSMengeshaMMTeferraAAAwokeMAHabtewoldTDAssociation between diabetes mellitus and multi-drug-resistant tuberculosis: evidence from a systematic review and meta-analysisSyst. Rev.2018730322409619055710.1186/s13643-018-0828-0
– reference: SvenssonEMDooleyKEKarlssonMOImpact of lopinavir–ritonavir or nevirapine on bedaquiline exposures and potential implications for patients with tuberculosis–HIV coinfectionAntimicrob. Agents Chemother.2014586406641225114140424940510.1128/AAC.03246-14
– reference: MaugansCBest practices for the care of pregnant people living with TBInt. J. Tuberc. Lung Dis.2023273573661:STN:280:DC%2BB2s7ptFyqsg%3D%3D371432221017148910.5588/ijtld.23.0031
– reference: Ashley-NormanPBalancing tuberculosis therapy and substance useLancet Infect. Dis.20232354210.1016/S1473-3099(23)00194-9
– reference: MaslovDAShurKVVatlinAADanilenkoVNMmpS5–MmpL5 transporters provide Mycobacterium smegmatis resistance to imidazo[1,2-b][1,2,4,5]tetrazinesPathogens202091661:CAS:528:DC%2BB3cXisFGgtL3J32121069715756310.3390/pathogens9030166
– reference: LienhardtCGlobal tuberculosis control: lessons learnt and future prospectsNat. Rev. Microbiol.2012104074161:CAS:528:DC%2BC38XmvFCitLs%3D2258036410.1038/nrmicro2797
– reference: LazarchikANyaruhiriraAUChiangCYWaresFHorsburghCRGlobal availability of susceptibility testing for second-line anti-tuberculosis agentsInt. J. Tuberc. Lung Dis.2022265245281:STN:280:DC%2BB2MjgtFensQ%3D%3D3565070810.5588/ijtld.21.0420
– reference: LoiseauCThe relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspotNat. Commun.20231419881:CAS:528:DC%2BB3sXnslWksLY%3D370312251008283110.1038/s41467-023-37719-y
– reference: VaziriFGenetic diversity of multi- and extensively drug-resistant Mycobacterium tuberculosis isolates in the capital of iran, revealed by whole-genome sequencingJ. Clin. Microbiol.201957e01477e015181:CAS:528:DC%2BC1MXhtFagsb%2FO30404943632247210.1128/JCM.01477-18
– reference: Huynh, D. & Nguyen, N. Q. in Diet and Nutrition in Critical Care (eds Rajendram, R., Preedy, V. R. & Patel V. B.) (Springer, 2015).
– reference: Ethics Guidance for the Implementation of the End TB Strategy (WHO, 2017).
– reference: ConradieFBedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosisN. Engl. J. Med.20223878108231:CAS:528:DC%2BB38XitlCqu7%2FM36053506949030210.1056/NEJMoa2119430Demonstrates that the BPaL regimen performed well in patients with pre-XDR-TB, XDR-TB and MDR-TB treatment failures.
– reference: WHO. Definitions. World Health Organizationhttps://tbksp.org/en/node/1882 (2023).
– reference: TheronGBacterial and host determinants of cough aerosol culture positivity in patients with drug-resistant versus drug-susceptible tuberculosisNat. Med.202026143514431:CAS:528:DC%2BB3cXht1yjtbfI32601338835387210.1038/s41591-020-0940-2Work indicating that DR-TB strains were as infectious as DS-TB strains, and that infectiousness was not associated withM. tuberculosisgenetic variants (suggesting that epigenetic factors or host–pathogen interactions are likely important in the pathogenesis of resistance amplification).
– reference: NguyenQHContaminLNguyenTVABañulsALInsights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosisEvol. Appl.2018111498151130344622618345710.1111/eva.12654
– reference: PaiHBedaquiline safety, efficacy, utilization and emergence of resistance following treatment of multidrug-resistant tuberculosis patients in South Africa: a retrospective cohort analysisBMC Infect. Dis.2022221:CAS:528:DC%2BB38XjtVelsrvO36414938968284010.1186/s12879-022-07861-x
– reference: UN. Resolution adopted by the General Assembly on 25 September 2015. 70/1. Transforming our world: the 2030 Agenda for Sustainable Development. United Nationshttps://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (2015).
– reference: SrilohasinPGenomic evidence supporting the clonal expansion of extensively drug-resistant tuberculosis bacteria belonging to a rare proto-Beijing genotypeEmerg. Microbes Infect.20209263226411:CAS:528:DC%2BB3MXkvFGksL4%3D33205698773829810.1080/22221751.2020.1852891
– reference: ZhaoYNational survey of drug-resistant tuberculosis in ChinaN. Engl. J. Med.2012366216121701:CAS:528:DC%2BC38XovVShs7c%3D2267090210.1056/NEJMoa1108789
– reference: TheronGFeasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trialLancet20143834244351:CAS:528:DC%2BC3sXhslSmt7fL2417614410.1016/S0140-6736(13)62073-5
– reference: LangeCVasiliuAMandalakasAMEmerging bedaquiline-resistant tuberculosisLancet Microbe20234e964e9653793163910.1016/S2666-5247(23)00321-X
– reference: HeyckendorfJRelapse-free cure from multidrug-resistant tuberculosis in GermanyEur. Respir. J.20185117021222946720510.1183/13993003.02122-2017
– reference: Kokesch-HimmelreichJDo anti-tuberculosis drugs reach their target? — high-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging provides information on drug penetration into necrotic granulomasAnal. Chem.202294548354921:CAS:528:DC%2BB38XotVOntrc%3D3534433910.1021/acs.analchem.1c03462
– reference: Australian New Zealand Clinical Trials Registry. The V-QUIN MDR TRIAL: A Randomized Controlled Trial of Six Months of Daily Levofloxacin for the Prevention of Tuberculosis Among Household Contacts of Patients with Multi-Drug Resistant Tuberculosis. https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=369817 (2019).
– reference: WHO. Consensus meeting report: development of a target product profile (TPP) and a framework for evaluation for a test for predicting progression from tuberculosis infection to active disease. World Health Organizationhttps://www.who.int/publications/i/item/WHO-HTM-TB-2017.18 (2017).
– reference: WHO. Global Tuberculosis Report 2022.World Health Organizationhttps://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (2022).
– reference: EsmailASaburNFOkpechiIDhedaKManagement of drug-resistant tuberculosis in special sub-populations including those with HIV co-infection, pregnancy, diabetes, organ-specific dysfunction, and in the critically illJ. Thorac. Dis.2018103102311829997980600607210.21037/jtd.2018.05.11
– reference: WHO. Palliative care fact sheet. World Health Organizationhttps://cdn.who.int/media/docs/default-source/integrated-health-services-(ihs)/palliative-care/palliative-care-essential-facts.pdf?sfvrsn=c5fed6dc_1 (2020).
– reference: CampbellJRLow body mass index at treatment initiation and rifampicin-resistant tuberculosis treatment outcomes: an individual participant data meta-analysisClin. Infect. Dis.202275220122101:CAS:528:DC%2BB3sXhtFSltLjJ3547613410.1093/cid/ciac322
– reference: OxladeOMurrayMTuberculosis and poverty: why are the poor at greater risk in India?PLoS ONE201271:CAS:528:DC%2BC38XhvVSrsbbK23185241350150910.1371/journal.pone.0047533
– reference: MansonALGenomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistanceNat. Genet.2017493954021:CAS:528:DC%2BC2sXhtVCls7k%3D28092681540276210.1038/ng.3767
– reference: DhedaKThe epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosisLancet Respir. Med.2017529136010.1016/S2213-2600(17)30079-6
– reference: NdjekaNTreatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort studyLancet Infect. Dis.202222104210511:CAS:528:DC%2BB38Xhtlams77O35512718921775410.1016/S1473-3099(21)00811-2
– reference: KöserCUWhole-genome sequencing for rapid susceptibility testing of M. tuberculosisN. Engl. J. Med.20133692902922386307210.1056/NEJMc1215305
– reference: WalkerTMThe 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysisLancet Microbe20223e265e2731:CAS:528:DC%2BB38Xht1WmsLrI35373160761255410.1016/S2666-5247(21)00301-3
– reference: TaitDRFinal analysis of a trial of M72/AS01(E) vaccine to prevent tuberculosisN. Engl. J. Med.2019381242924391:CAS:528:DC%2BC1MXisV2mt7fN3166119810.1056/NEJMoa1909953Phase II(b) study showing that the M72 vaccine had a 50% efficacy in preventing the development of active TB. This will have implications for reducing both DS-TB and DR-TB burden.
– reference: Global Fund. List of tuberculosis pharmaceutical products classified according to the global fund quality assurance policy. The Global Fundhttps://www.theglobalfund.org/media/4757/psm_productstb_list_en.pdf (2023).
– reference: International Standards for Tubcerculosis Care. 3rd edn (TB CARE I, 2014).
– reference: TanneauLAssessing prolongation of the corrected QT interval with bedaquiline and delamanid coadministration to predict the cardiac safety of simplified dosing regimensClin. Pharmacol. Ther.20221128738811:CAS:528:DC%2BB38XhvFGqs73M35687528947469310.1002/cpt.2685
– reference: Curry International Tuberculosis Center & State of California Department of Public Health Tuberculosis Control Branch. Drug-resistant Tuberculosis: A Survival Guide for Clinicians. 3rd edn (2016).
– reference: BoereeMJUNITE4TB: a new consortium for clinical drug and regimen development for TBInt. J. Tuberc. Lung Dis.2021258868891:STN:280:DC%2BB2cjjvFSkug%3D%3D34686229854492210.5588/ijtld.21.0515
– reference: Davies ForsmanLSuboptimal moxifloxacin and levofloxacin drug exposure during treatment of patients with multidrug-resistant tuberculosis: results from a prospective study in ChinaEur. Respir. J.20215720034633315402810.1183/13993003.03463-2020
– reference: VreeMSurvival and relapse rate of tuberculosis patients who successfully completed treatment in VietnamInt. J. Tuberc. Lung Dis.2007113923971:STN:280:DC%2BD2s7ptlSmsg%3D%3D17394684
– reference: OngKLGlobal, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021Lancet202340220323410.1016/S0140-6736(23)01301-6
– reference: SaidBNPharmacodynamic biomarkers for quantifying the mycobacterial effect of high doses of rifampin in patients with rifampin-susceptible pulmonary tuberculosisInt. J. Mycobacteriol.2021104574621:CAS:528:DC%2BB38XjslKrtLs%3D34916467761256710.4103/ijmy.ijmy_178_21
– reference: MokJ9 months of delamanid, linezolid, levofloxacin, and pyrazinamide versus conventional therapy for treatment of fluoroquinolone-sensitive multidrug-resistant tuberculosis (MDR-END): a multicentre, randomised, open-label phase 2/3 non-inferiority trial in South KoreaLancet2022400152215301:CAS:528:DC%2BB38XislCltrnL3652220810.1016/S0140-6736(22)01883-9
– reference: PetersJSGenetic diversity in Mycobacterium tuberculosis clinical isolates and resulting outcomes of tuberculosis infection and diseaseAnnu. Rev. Genet.2020545115371:CAS:528:DC%2BB3cXhvVCju7nI3292679310.1146/annurev-genet-022820-085940
– reference: Gómez-GonzálezPJGenetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanidSci. Rep.20211134593898848454310.1038/s41598-021-98862-4
– reference: FlynnJLChanJImmune cell interactions in tuberculosisCell2022185468247021:CAS:528:DC%2BB38XjtVOqsb%2FE3649375110.1016/j.cell.2022.10.025Comprehensive summary of the immunopathogenesis of TB.
– reference: ChesovDFailing treatment of multidrug-resistant tuberculosis: a matter of definitionInt. J. Tuberc. Lung Dis.2019235225241:STN:280:DC%2BB3M7jtlOjsg%3D%3D3106463310.5588/ijtld.18.0756
– reference: VatlinAATranscriptomic profile of Mycobacterium smegmatis in response to an Imidazo[1,2-b][1,2,4,5]tetrazine reveals its possible impact on iron metabolismFront. Microbiol.20211272404234421882837148210.3389/fmicb.2021.724042
– reference: PerdigãoJUsing genomics to understand the origin and dispersion of multidrug and extensively drug resistant tuberculosis in PortugalSci. Rep.20201032054988701896310.1038/s41598-020-59558-3
– reference: RagonnetRTrauerJMDenholmJTMaraisBJMcBrydeESHigh rates of multidrug-resistant and rifampicin-resistant tuberculosis among re-treatment cases: where do they come fromBMC Infect. Dis.20171728061832521759610.1186/s12879-016-2171-1
– reference: SchenaEDelamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC™ MGIT™ 960 systemJ. Antimicrob. Chemother.201671153215391:CAS:528:DC%2BC28XhsVKgsrzM2707610110.1093/jac/dkw044
– reference: FaustiniAHallAJPerucciCARisk factors for multidrug resistant tuberculosis in Europe: a systematic reviewThorax2006611581631:STN:280:DC%2BD28%2FmtVWjtQ%3D%3D1625405610.1136/thx.2005.045963
– reference: WHO. The end TB strategy (WHO, 2015).
– reference: HuXThe mycobacterial DNA methyltransferase HsdM decreases intrinsic isoniazid susceptibilityAntibiotics20211013231:CAS:528:DC%2BB38Xisl2nu7g%3D34827261861478010.3390/antibiotics10111323
– reference: YeMAntibiotic heteroresistance in Mycobacterium tuberculosis isolates: a systematic review and meta-analysisAnn. Clin. Microb. Antimicrob.2021207310.1186/s12941-021-00478-z
– reference: WHO. Ten Threats to Global Health in 2019. World Health Organizationhttps://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (2019).
– reference: GagneuxSImpact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosisPLoS Pathog.2006216789833147904610.1371/journal.ppat.0020061
– reference: O’DonnellMIsoniazid monoresistance: a precursor to multidrug-resistant tuberculosisAnn. Am. Thorac. Soc.20181530630729493332588052510.1513/AnnalsATS.201711-885ED
– reference: PasipanodyaJGSerum drug concentrations predictive of pulmonary tuberculosis outcomesJ. Infect. Dis.2013208146414731:CAS:528:DC%2BC3sXhs1SisLnN23901086378957310.1093/infdis/jit352
– reference: Otto-KnappRLong-term multidrug- and rifampicin-resistant tuberculosis treatment outcome by new WHO definitions in GermanyEur. Respir. J.20226022007651:CAS:528:DC%2BB38XjtFGhtL%2FN3642391910.1183/13993003.00765-2022
– reference: ConnorSRPalliative care for tuberculosisJ. Pain. Symptom Manag.201855S178S18010.1016/j.jpainsymman.2017.03.019
– reference: WHO Global Tuberculosis Programme. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. 2nd edn. World Health Organizationhttps://www.who.int/publications/i/item/9789240082410#:~:Text=The%20catalogue%20provides%20a%20reference,countries%20for%20the%2013%20medicines (2023).
– reference: BehrMAEdelsteinPHRamakrishnanLIs Mycobacterium tuberculosis infection life long?BMJ2019367l577031649096681259510.1136/bmj.l5770
– reference: GuntherGTreatment outcomes in multidrug-resistant tuberculosisN. Engl. J. Med.2016375110311052762653910.1056/NEJMc1603274
– reference: AdamDCClustering and superspreading potential of SARS-CoV-2 infections in Hong KongNat. Med.202026171417191:CAS:528:DC%2BB3cXhvVGhtL3F3294378710.1038/s41591-020-1092-0
– reference: GuntherGAvailability and costs of medicines for the treatment of tuberculosis in EuropeClin. Microbiol. Infect.20232977843596148810.1016/j.cmi.2022.07.026
– reference: BoereeMJA dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosisAm. J. Respir. Crit. Care Med.2015191105810651:CAS:528:DC%2BC2MXpsFGitbs%3D2565435410.1164/rccm.201407-1264OC
– reference: RadhakrishnanACrystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosisJ. Biol. Chem.201428916526165401:CAS:528:DC%2BC2cXptl2qtbs%3D24737322404741910.1074/jbc.M113.538959
– reference: BhargavaABhargavaMBenedittiAKurpadAAttributable is preventable: corrected and revised estimates of population attributable fraction of TB related to undernutrition in 30 high TB burden countriesJ. Clin. Tuberc. Other Mycobact. Dis.2022271003091:CAS:528:DC%2BB3sXjtl2isL4%3D35308808892468310.1016/j.jctube.2022.100309
– reference: ChuHHuYZhangBSunZZhuBDNA methyltransferase HsdM induce drug resistance on Mycobacterium tuberculosis via multiple effectsAntibiotics20211015441:CAS:528:DC%2BB38Xksl2isro%3D34943756869843610.3390/antibiotics10121544
– reference: MottaIRecent advances in the treatment of tuberculosisClin. Microbiol. Infect.202310.1016/j.cmi.2023.07.01337482332
– reference: StrydomNTuberculosis drugs’ distribution and emergence of resistance in patient’s lung lesions: a mechanistic model and tool for regimen and dose optimizationPLoS Med.2019161:CAS:528:DC%2BC1MXisVWhsb7I30939136644541310.1371/journal.pmed.1002773
– reference: HaasDWPharmacogenetics of between-individual variability in plasma clearance of bedaquiline and clofazimine in South AfricaJ. Infect. Dis.20222261471561:CAS:528:DC%2BB38XitFCgs73M35091749937314810.1093/infdis/jiac024
– reference: KendallEAShresthaSDowdyDWThe epidemiological importance of subclinical tuberculosis. A critical reappraisalAm. J. Respir. Crit. Care Med.202120316817433197210787440510.1164/rccm.202006-2394PP
– reference: MallickJSNairPAbbewETVan DeunADecrooTAcquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic reviewJAC Antimicrob. Resist.20224dlac02935356403896328610.1093/jacamr/dlac029
– reference: Meeting Report of the WHO Expert Consultation on the Definition of Extensively Drug-Resistant Tuberculosis, 27–29 October 2020. Report No. 9789240018662 (electronic version) 9789240018679 (print version) (WHO, 2021).
– reference: Technical Manual for Drug Susceptibility Testing of Medicines Used in the Treatment of Tuberculosis. Report NO. 9789241514842 (WHO, 2018).
– reference: ShahNSTransmission of extensively drug-resistant tuberculosis in South AfricaN. Engl. J. Med.201737624325328099825533020810.1056/NEJMoa1604544
– reference: WHO. WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment - Drug-Resistant Tuberculosis Treatment, 2022 Update. World Health Organizationhttps://www.who.int/publications/i/item/9789240063129 (2022).
– reference: WHO. Optimizing active case-finding for tuberculosis: implementation lessons from South-East Asia. World Health Organizationhttps://www.who.int/publications/i/item/9789290228486 (2021).
– reference: WHO. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children: policy update. World Health Organizationhttps://www.ncbi.nlm.nih.gov/books/NBK258608/ (2013).
– reference: ChesovEEmergence of bedaquiline resistance in a high tuberculosis burden countryEur. Respir. J.20225921006211:CAS:528:DC%2BB38XhtFWrurzE34503982894326810.1183/13993003.00621-2021
– reference: MarxFMThe temporal dynamics of relapse and reinfection tuberculosis after successful treatment: a retrospective cohort studyClin. Infect. Dis.201458167616831:CAS:528:DC%2BC2cXptVCgt78%3D2464702010.1093/cid/ciu186
– reference: DhedaKThe intersecting pandemics of tuberculosis and COVID-19: population-level and patient-level impact, clinical presentation, and corrective interventionsLancet Respir. Med.2022106036221:CAS:528:DC%2BB38XotlGjs7g%3D35338841894248110.1016/S2213-2600(22)00092-3
– reference: ButovDMultidrug-resistant tuberculosis in the Kharkiv region, UkraineInt. J. Tuberc. Lung Dis.2020244854911:STN:280:DC%2BB38vlvFGmtg%3D%3D3239819710.5588/ijtld.19.0508
– reference: PatankarSMaking the case for all-oral, shorter regimens for children with drug-resistant tuberculosisAm. J. Respir. Crit. Care Med.2023208130131372765311039549710.1164/rccm.202304-0670VP
– reference: PaiMYadavPAnupindiRTuberculosis control needs a complete and patient-centric solutionLancet Glob. Health20142e189e1902510304910.1016/S2214-109X(14)70198-6
– reference: IsmailNOmarSVIsmailNAPetersRPHCollated data of mutation frequencies and associated genetic variants of bedaquiline, clofazimine and linezolid resistance in Mycobacterium tuberculosisData Brief.201820197519831:STN:280:DC%2BB3cznvVequg%3D%3D30306102617243010.1016/j.dib.2018.09.057
– reference: EsmailAComparison of two diagnostic intervention packages for community-based active case finding for tuberculosis: an open-label randomized controlled trialNat. Med.202329100910161:CAS:528:DC%2BB3sXltFGhtb8%3D3689465110.1038/s41591-023-02247-1Validation of an ACF model using a mobile van shows that portable PCR technology can be used to effectively diagnose DR-TB in the community.
– reference: GhodousiAAcquisition of cross-resistance to bedaquiline and clofazimine following treatment for tuberculosis in PakistanAntimicrob. Agents Chemother.201963e00915-1931262765670944910.1128/AAC.00915-19
– reference: WHO. Use of targeted next-generation sequencing to detect drug-resistant tuberculosis: rapid communication, July 2023. World Health Organizationhttps://www.who.int/publications/i/item/9789240076372 (2023).
– reference: GhoshANSSahaSSurvey of drug resistance associated gene mutations in Mycobacterium tuberculosis, ESKAPE and other bacterial speciesSci. Rep.2020101:CAS:528:DC%2BB3cXhtV2ku7jI32488120726545510.1038/s41598-020-65766-8
– reference: RockwoodNLow frequency of acquired isoniazid and rifampicin resistance in rifampicin-susceptible pulmonary tuberculosis in a setting of high HIV-1 infection and tuberculosis coprevalenceJ. Infect. Dis.20172166326401:CAS:528:DC%2BC1cXitFOqu7nK28934422581562310.1093/infdis/jix337
– reference: Green, A. G. et al. Analysis of genome-wide mutational dependence in naturally evolving Mycobacterium tuberculosis populations. Mol. Biol. Evol.https://doi.org/10.1093/molbev/msad131 (2023).
– reference: de VallièreSBarkerRDResidual lung damage after completion of treatment for multidrug-resistant tuberculosisInt. J. Tuberc. Lung Dis.2004876777115182148
– reference: NgKCSHow well do routine molecular diagnostics detect rifampin heteroresistance in Mycobacterium tuberculosis?J. Clin. Microbiol.201957e00717e007191:CAS:528:DC%2BB3cXovVWmt7w%3D31413081681299010.1128/JCM.00717-19
– reference: FengMRisk factors of multidrug-resistant tuberculosis in China: a meta-analysisPublic Health Nurs.2019362572693068079610.1111/phn.12582
– reference: ConradieFTreatment of highly drug-resistant pulmonary tuberculosisN. Engl. J. Med.20203828939021:CAS:528:DC%2BB3cXkvVKrsb0%3D32130813695564010.1056/NEJMoa1901814
– reference: GuptaALifesaving, cost-saving: innovative simplified regimens for drug-resistant tuberculosisPLoS Glob. Public Health20222369626261002168210.1371/journal.pgph.0001287
– reference: McMurray, D. N. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom B. R.) 135–147 (ASM, 1994).
– reference: LeeGImpact of mental disorders on active TB treatment outcomes: a systematic review and meta-analysisInt. J. Tuberc. Lung Dis.202024127912841:STN:280:DC%2BB3sznsVyrtg%3D%3D3331767210.5588/ijtld.20.0458
– reference: WuZmbtD and celA1 association with ethambutol resistance in Mycobacterium tuberculosis: a multiomics analysisFront. Cell. Infect. Microbiol.2022129599111:CAS:528:DC%2BB3sXkt1GjsL4%3D36118032947115210.3389/fcimb.2022.959911
– reference: WuSHXiaoYXHsiaoHCJouRDevelopment and assessment of a novel whole-gene-based targeted next-generation sequencing assay for detecting the susceptibility of Mycobacterium tuberculosis to 14 drugsMicrobiol. Spectr.2022103625532810.1128/spectrum.02605-22
– reference: LangeCKohlerNGuntherGRegimens for drug-resistant tuberculosisN. Engl. J. Med.202338819036630637
– reference: CegielskiJPExtensive drug resistance acquired during treatment of multidrug-resistant tuberculosisClin. Infect. Dis.201459104910631:CAS:528:DC%2BC28XhvFWlsL7K25057101418434110.1093/cid/ciu572
– reference: WHO. WHO operational handbook on tuberculosis. Module 4: treatment - drug-resistant tuberculosis treatment, 2022 update. World Health Organizationhttps://www.who.int/publications/i/item/9789240065116 (2022).
– reference: FeuerriegelSRapid genomic first- and second-line drug resistance prediction from clinical Mycobacterium tuberculosis specimens using Deeplex-MycTBEur. Respir. J.20215720017961:CAS:528:DC%2BB3MXhvVCms70%3D3276411310.1183/13993003.01796-2020
– reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT04303104?term=NCT04303104&rank=1 (2022).
– reference: BecerraMCTransmissibility and potential for disease progression of drug resistant Mycobacterium tuberculosis: prospective cohort studyBMJ2019367l589431649017681258310.1136/bmj.l5894
– reference: WHO. Global Tuberculosis Report 2023. World Health Organizationhttps://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023 (2023).
– reference: O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. AMRhttps://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (2016).
– reference: WHO Consolidated Guidelines on Drug-resistant Tuberculosis Treatment (WHO, 2019).
– reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT02754765 (2023).
– reference: MiottoPTranscriptional regulation and drug resistance in Mycobacterium tuberculosisFront. Cell Infect. Microbiol.2022129903121:CAS:528:DC%2BB3sXkt1Cqtbw%3D36118045948083410.3389/fcimb.2022.990312
– reference: HoffmannHDelamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral beijing genotype causing extensively drug-resistant tuberculosis in a tibetan refugeeAm. J. Respir. Crit. Care Med.20161933373401:CAS:528:DC%2BC28XpsFOru7Y%3D2682942510.1164/rccm.201502-0372LE
– reference: BergvalIPre-existing isoniazid resistance, but not the genotype of Mycobacterium tuberculosis drives rifampicin resistance codon preference in vitroPLoS ONE201271:CAS:528:DC%2BC38XnsFaktQ%3D%3D22235262325039510.1371/journal.pone.0029108
– reference: WingfieldTTovarMADattaSSaundersMJEvansCAAddressing social determinants to end tuberculosisLancet20183911129113229595481761114010.1016/S0140-6736(18)30484-7
– reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT03568383?term=NCT03568383&rank=1 (2023).
– reference: MokrousovIMolecular insight into Mycobacterium tuberculosis resistance to nitrofuranyl amides gained through metagenomics-like analysis of spontaneous mutantsPharmaceuticals20221511361:CAS:528:DC%2BB38XisFagsLzN36145357950400910.3390/ph15091136
– reference: PasipanodyaJGGumboTA meta-analysis of self-administered vs directly observed therapy effect on microbiologic failure, relapse, and acquired drug resistance in tuberculosis patientsClin. Infect. Dis.20135721311:CAS:528:DC%2BC3sXptFeltrk%3D23487389366952510.1093/cid/cit167
– reference: SalvatoRSGenomic-based surveillance reveals high ongoing transmission of multi-drug-resistant Mycobacterium tuberculosis in Southern BrazilInt. J. Antimicrob. Agents2021581064011:CAS:528:DC%2BB3MXhvVSjtLzJ3428940310.1016/j.ijantimicag.2021.106401
– reference: MvelaseNRMlisanaKPXpert MTB/XDR for rapid detection of drug-resistant tuberculosis beyond rifampicinLancet Infect. Dis.2022221561571:CAS:528:DC%2BB38XjvVyiurw%3D3462749510.1016/S1473-3099(21)00481-3
– reference: CobelensFvan KampenSOchodoEAtunRLienhardtCResearch on implementation of interventions in tuberculosis control in low- and middle-income countries: a systematic reviewPLoS Med.2012923271959352552810.1371/journal.pmed.1001358
– reference: WHO. Use of delamanid in children and adolescents with multidrug- and rifampicin-resistant tuberculosis: information note. World Health Organizationhttps://www.who.int/publications/i/item/9789240074309 (2023).
– reference: HoltEPhase 2 trial of a novel tuberculosis drug launchedLancet Microbe202410.1016/S2666-5247(23)00401-93838747210914669
– reference: WHO. WHO consolidated guidelines on tuberculosis: module 5: management of tuberculosis in children and adolescents. World Health Organizationhttps://www.who.int/publications/i/item/9789240046764 (2022).
– reference: DooleyKEPhase I safety, pharmacokinetics, and pharmacogenetics study of the antituberculosis drug PA-824 with concomitant lopinavir-ritonavir, efavirenz, or rifampinAntimicrob. Agents Chemother.2014585245525224957823413584910.1128/AAC.03332-14
– reference: SultanaZZHIV infection and multidrug resistant tuberculosis: a systematic review and meta-analysisBMC Infect. Dis.20212133430786780216810.1186/s12879-020-05749-2
– reference: DhedaKGumboTLangeCHorsburghCRJr.FurinJPan-tuberculosis regimens: an argument againstLancet Respir. Med.201862402422959550210.1016/S2213-2600(18)30097-3
– reference: BouchetBFranciscoMOvretveitJThe Zambia quality assurance program: successes and challengesInt. J. Qual. Health Care200214Suppl. 189951257279210.1093/intqhc/14.suppl_1.89
– reference: WHO. WHO consolidated guidelines on tuberculosis: Module 4: treatment: drug-susceptible tuberculosis treatment. World Health Organizationhttps://www.who.int/publications/i/item/9789240048126 (2022).
– reference: WinterMAGuhrKNBergGMImpact of various body weights and serum creatinine concentrations on the bias and accuracy of the Cockcroft–Gault equationPharmacotherapy2012326046121:CAS:528:DC%2BC38Xht1OnsbrJ2257679110.1002/j.1875-9114.2012.01098.x
– reference: CasaliNEvolution and transmission of drug-resistant tuberculosis in a Russian populationNat. Genet.2014462792861:CAS:528:DC%2BC2cXht12itb8%3D24464101393936110.1038/ng.2878
– reference: Nyang’waBTA 24-week, all-oral regimen for rifampin-resistant tuberculosisN. Engl. J. Med.2022387233123433654662510.1056/NEJMoa2117166Demonstration that an all-oral 6-month regimen (BPaLM) produced equivalent outcomes, and with reduced adverse effects, to a longer injectable-containing control regimen.
– reference: WHO. Global Research Agenda for Antimicrobial Resistance in Human Health. World Health Organizationhttps://www.who.int/publications/m/item/global-research-agenda-for-antimicrobial-resistance-in-human-health#:~:Text=It%20aims%20to%20guide%20policy,and%2Dmiddle%2Dincome%20countries (2023).
– reference: DiaconAHPhase II dose-ranging trial of the early bactericidal activity of PA-824Antimicrob. Agents Chemother.201256302730311:CAS:528:DC%2BC38XnslWrtrk%3D22430968337077710.1128/AAC.06125-11
– reference: PaiMSchumacherSGAbimbolaSSurrogate endpoints in global health research: still searching for killer apps and silver bullets?BMJ Glob. Health2018329607104587354210.1136/bmjgh-2018-000755
– reference: Jones-LópezECCough aerosols of Mycobacterium tuberculosis predict new infection. A household contact studyAm. J. Respir. Crit. Care Med.20131871007101523306539370736610.1164/rccm.201208-1422OC
– reference: DhedaKThe Lancet Respiratory Medicine Commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosisLancet Respir. Med.201978208261:CAS:528:DC%2BC1MXhslWnsrjF3148639310.1016/S2213-2600(19)30263-2
– reference: FrascellaBSubclinical tuberculosis disease-a review and analysis of prevalence surveys to inform definitions, burden, associations, and screening methodologyClin. Infect. Dis.202173e830e8413293687710.1093/cid/ciaa1402
– reference: FoxGJSurgery as an adjunctive treatment for multidrug-resistant tuberculosis: an individual patient data metaanalysisClin. Infect. Dis.2016628878952675780410.1093/cid/ciw002
– reference: TornheimJAIncreased moxifloxacin dosing among patients with multidrug-resistant tuberculosis with low-level resistance to moxifloxacin did not improve treatment outcomes in a tertiary care center in Mumbai, IndiaOpen. Forum Infect. Dis.20229ofab6153509715210.1093/ofid/ofab615
– reference: HeyckendorfJPrediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic modelEur. Respir. J.20215820034921:CAS:528:DC%2BB3MXitV2lurzF3357407810.1183/13993003.03492-2020
– reference: ByrneALChronic airflow obstruction after successful treatment of multidrug-resistant tuberculosisERJ Open Res.2017300026-201728717643550716010.1183/23120541.00026-2017
– reference: NunnAJA trial of a shorter regimen for rifampin-resistant tuberculosisN. Engl. J. Med.2019380120112131:CAS:528:DC%2BC1MXntVKisb8%3D3086579110.1056/NEJMoa1811867Randomized controlled trial showing that a shorter 9- to 11-month injection-based regimen had similar outcomes to the longer 18- to 20-month injection-based regimen. This established the foundational basis for treatment shortening.
– reference: JanssensJPRiederHLAn ecological analysis of incidence of tuberculosis and ‘per capita′ gross domestic productEur. Respir. J.20083214151897814610.1183/09031936.00078708
– reference: DiNardoARGene expression signatures identify biologically and clinically distinct tuberculosis endotypesEur. Respir. J.202260210226335169026947489210.1183/13993003.02263-2021
– reference: WongSYFunctional role of methylation of G518 of the 16S rRNA 530 loop by GidB in Mycobacterium tuberculosisAntimicrob. Agents Chemother.201357631163181:CAS:528:DC%2BC3sXhvVCjurzN24100503383790310.1128/AAC.00905-13
– reference: MenziesDGardinerGFarhatMGreenawayCPaiMThinking in three dimensions: a web-based algorithm to aid the interpretation of tuberculin skin test resultsInt. J. Tuberc. Lung Dis.2008124985051:STN:280:DC%2BD1c3lvFKhtg%3D%3D18419884
– reference: CattamanchiAInterferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysisJ. Acquir. Immune Defic. Syndr.2011562302381:CAS:528:DC%2BC3MXhvFWgs7s%3D21239993338332810.1097/QAI.0b013e31820b07ab
– reference: WassermanSMeintjesGMaartensGLinezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic indexExpert Rev. Anti Infect. Ther.2016149019151:CAS:528:DC%2BC28XhsVehu7vL2753229210.1080/14787210.2016.1225498
– reference: GuglielmettiLQT prolongation and cardiac toxicity of new tuberculosis drugs in Europe: a Tuberculosis Network European Trialsgroup (TBnet) studyEur. Respir. J.20185218005372988065610.1183/13993003.00537-2018
– reference: TanneauLKarlssonMOSvenssonEMUnderstanding the drug exposure-response relationship of bedaquiline to predict efficacy for novel dosing regimens in the treatment of multidrug-resistant tuberculosisBr. J. Clin. Pharmacol.2020869139221:CAS:528:DC%2BB3cXntlamtbs%3D31840278716337310.1111/bcp.14199
– reference: endTB Consortium. endTB clinical trial results. endTBhttps://endtb.org/endtb-clinical-trial-results (2023).
– reference: US National Library of Medicine. ClinicalTrials.govhttps://www.clinicaltrials.gov/study/NCT05941052?term=NCT05941052&rank=1 (2023).
– reference: AginsBDImproving the cascade of global tuberculosis care: moving from the “what” to the “how” of quality improvementLancet Infect. Dis.201919e437e4433144730510.1016/S1473-3099(19)30420-7
– reference: MaierCLong-term treatment outcomes in patients with multidrug-resistant tuberculosisClin. Microbiol. Infect.2023297517571:CAS:528:DC%2BB3sXls1Omur0%3D3684263710.1016/j.cmi.2023.02.013
– volume: 24
  start-page: 485
  year: 2020
  ident: 504_CR177
  publication-title: Int. J. Tuberc. Lung Dis.
  doi: 10.5588/ijtld.19.0508
– volume: 54
  start-page: 511
  year: 2020
  ident: 504_CR80
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-022820-085940
– volume: 13
  year: 2016
  ident: 504_CR86
  publication-title: AIDS Res. Ther.
  doi: 10.1186/s12981-016-0106-y
– volume: 22
  year: 2022
  ident: 504_CR16
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-022-07598-7
– volume: 11
  start-page: 367
  year: 2023
  ident: 504_CR112
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(23)00097-8
– volume: 7
  year: 2012
  ident: 504_CR23
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0047533
– volume: 51
  start-page: 1702122
  year: 2018
  ident: 504_CR179
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.02122-2017
– volume: 29
  start-page: 751
  year: 2023
  ident: 504_CR180
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2023.02.013
– ident: 504_CR208
– volume: 10
  start-page: 1323
  year: 2021
  ident: 504_CR82
  publication-title: Antibiotics
  doi: 10.3390/antibiotics10111323
– volume: 18
  year: 2023
  ident: 504_CR205
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0281097
– volume: 29
  start-page: 77
  year: 2023
  ident: 504_CR10
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2022.07.026
– ident: 504_CR175
– volume: 5
  start-page: 269
  year: 2017
  ident: 504_CR209
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(16)30433-7
– volume: 11
  start-page: 392
  year: 2007
  ident: 504_CR135
  publication-title: Int. J. Tuberc. Lung Dis.
– volume: 11
  start-page: 566608
  year: 2020
  ident: 504_CR172
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.566608
– volume: 72
  start-page: 3398
  year: 2017
  ident: 504_CR90
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkx317
– ident: 504_CR232
– volume: 60
  start-page: 2200765
  year: 2022
  ident: 504_CR181
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.00765-2022
– volume: 32
  start-page: 220221
  year: 2023
  ident: 504_CR201
  publication-title: Eur. Respir. Rev.
  doi: 10.1183/16000617.0221-2022
– volume: 49
  start-page: 688
  year: 2017
  ident: 504_CR168
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2017.01.017
– ident: 504_CR140
– volume: 402
  start-page: 203
  year: 2023
  ident: 504_CR27
  publication-title: Lancet
  doi: 10.1016/S0140-6736(23)01301-6
– ident: 504_CR226
– volume: 26
  start-page: 1714
  year: 2020
  ident: 504_CR40
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1092-0
– volume: 382
  start-page: 893
  year: 2020
  ident: 504_CR155
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1901814
– volume: 12
  start-page: 959911
  year: 2022
  ident: 504_CR84
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2022.959911
– volume: 59
  start-page: 1049
  year: 2014
  ident: 504_CR102
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciu572
– volume: 5
  start-page: 291
  year: 2017
  ident: 504_CR60
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(17)30079-6
– volume: 59
  start-page: 101979
  year: 2023
  ident: 504_CR198
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2023.101979
– volume: 4
  start-page: dlac029
  year: 2022
  ident: 504_CR166
  publication-title: JAC Antimicrob. Resist.
  doi: 10.1093/jacamr/dlac029
– volume: 10
  start-page: 457
  year: 2021
  ident: 504_CR65
  publication-title: Int. J. Mycobacteriol.
  doi: 10.4103/ijmy.ijmy_178_21
– ident: 504_CR30
  doi: 10.1101/2023.03.14.23287284
– ident: 504_CR237
– volume: 381
  start-page: 2429
  year: 2019
  ident: 504_CR143
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1909953
– ident: 504_CR8
– volume: 62
  start-page: e02266
  year: 2018
  ident: 504_CR133
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02266-17
– volume: 25
  start-page: 886
  year: 2021
  ident: 504_CR247
  publication-title: Int. J. Tuberc. Lung Dis.
  doi: 10.5588/ijtld.21.0515
– volume: 289
  start-page: 4172
  year: 2022
  ident: 504_CR79
  publication-title: FEBS J.
  doi: 10.1111/febs.16170
– year: 2024
  ident: 504_CR242
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(23)00401-9
– ident: 504_CR12
– ident: 504_CR141
– ident: 504_CR248
– ident: 504_CR225
– volume: 208
  start-page: 1464
  year: 2013
  ident: 504_CR162
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jit352
– volume: 20
  year: 2022
  ident: 504_CR68
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001721
– volume: 52
  start-page: 1800537
  year: 2018
  ident: 504_CR93
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.00537-2018
– volume: 11
  year: 2021
  ident: 504_CR37
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-98862-4
– volume: 86
  start-page: 913
  year: 2020
  ident: 504_CR91
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/bcp.14199
– volume: 23
  start-page: 542
  year: 2023
  ident: 504_CR206
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(23)00194-9
– volume: 52
  start-page: 1801617
  year: 2018
  ident: 504_CR189
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.01617-2018
– volume: 45
  start-page: 305
  year: 2020
  ident: 504_CR101
  publication-title: Eur. J. Drug Metab. Pharmacokinet.
  doi: 10.1007/s13318-019-00604-5
– ident: 504_CR219
– volume: 12
  start-page: 990312
  year: 2022
  ident: 504_CR69
  publication-title: Front. Cell Infect. Microbiol.
  doi: 10.3389/fcimb.2022.990312
– ident: 504_CR146
– volume: 380
  start-page: 1201
  year: 2019
  ident: 504_CR153
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1811867
– volume: 61
  start-page: 158
  year: 2006
  ident: 504_CR17
  publication-title: Thorax
  doi: 10.1136/thx.2005.045963
– volume: 62
  start-page: 887
  year: 2016
  ident: 504_CR182
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciw002
– volume: 20
  start-page: 810
  year: 1970
  ident: 504_CR59
  publication-title: Appl. Microbiol.
  doi: 10.1128/am.20.5.810-814.1970
– volume: 10
  year: 2022
  ident: 504_CR125
  publication-title: Microbiol. Spectr.
  doi: 10.1128/spectrum.02605-22
– volume: 15
  start-page: 1193
  year: 2015
  ident: 504_CR127
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(15)00062-6
– volume: 10
  start-page: 1544
  year: 2021
  ident: 504_CR81
  publication-title: Antibiotics
  doi: 10.3390/antibiotics10121544
– volume: 58
  start-page: 2003492
  year: 2021
  ident: 504_CR173
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.03492-2020
– volume: 57
  start-page: 2002544
  year: 2021
  ident: 504_CR178
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.02544-2020
– ident: 504_CR231
– ident: 504_CR221
  doi: 10.1007/978-1-4614-5800-5
– volume: 20
  start-page: 819
  year: 2016
  ident: 504_CR164
  publication-title: Int. J. Tuberc. Lung Dis.
  doi: 10.5588/ijtld.15.0803
– volume: 21
  year: 2021
  ident: 504_CR25
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-020-05749-2
– volume: 77
  start-page: 1685
  year: 2022
  ident: 504_CR36
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkac070
– volume: 73
  start-page: 1194
  year: 2021
  ident: 504_CR128
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab359
– ident: 504_CR185
– ident: 504_CR14
– ident: 504_CR46
– volume: 56
  start-page: 230
  year: 2011
  ident: 504_CR48
  publication-title: J. Acquir. Immune Defic. Syndr.
  doi: 10.1097/QAI.0b013e31820b07ab
– volume: 7
  start-page: 820
  year: 2019
  ident: 504_CR39
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(19)30263-2
– volume: 57
  start-page: e01477
  year: 2019
  ident: 504_CR45
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.01477-18
– volume: 375
  start-page: 1103
  year: 2016
  ident: 504_CR9
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc1603274
– volume: 289
  start-page: 16526
  year: 2014
  ident: 504_CR76
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.538959
– ident: 504_CR138
– volume: 366
  start-page: 2161
  year: 2012
  ident: 504_CR109
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1108789
– ident: 504_CR57
  doi: 10.1093/molbev/msad131
– volume: 387
  start-page: 810
  year: 2022
  ident: 504_CR154
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2119430
– ident: 504_CR222
– volume: 7
  year: 2018
  ident: 504_CR28
  publication-title: Syst. Rev.
  doi: 10.1186/s13643-018-0828-0
– volume: 2
  year: 2006
  ident: 504_CR110
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0020061
– volume: 83
  start-page: 104350
  year: 2020
  ident: 504_CR78
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2020.104350
– volume: 24
  start-page: 1279
  year: 2020
  ident: 504_CR203
  publication-title: Int. J. Tuberc. Lung Dis.
  doi: 10.5588/ijtld.20.0458
– volume: 57
  start-page: 2780
  year: 2013
  ident: 504_CR87
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00191-13
– ident: 504_CR151
– volume: 3
  year: 2023
  ident: 504_CR184
  publication-title: PLoS Glob. Public Health
  doi: 10.1371/journal.pgph.0001357
– ident: 504_CR4
– volume: 95
  start-page: 104
  year: 2020
  ident: 504_CR83
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/cbdd.13625
– ident: 504_CR116
– volume: 14
  start-page: 901
  year: 2016
  ident: 504_CR100
  publication-title: Expert Rev. Anti Infect. Ther.
  doi: 10.1080/14787210.2016.1225498
– volume: 60
  start-page: 2102263
  year: 2022
  ident: 504_CR174
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.02263-2021
– volume: 8
  start-page: 383
  year: 2020
  ident: 504_CR152
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(20)30047-3
– volume: 14
  start-page: 89
  issue: Suppl. 1
  year: 2002
  ident: 504_CR196
  publication-title: Int. J. Qual. Health Care
  doi: 10.1093/intqhc/14.suppl_1.89
– volume: 73
  start-page: e830
  year: 2021
  ident: 504_CR51
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa1402
– volume: 2
  start-page: e189
  year: 2014
  ident: 504_CR193
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(14)70198-6
– volume: 10
  start-page: 407
  year: 2012
  ident: 504_CR22
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2797
– volume: 58
  start-page: 1676
  year: 2014
  ident: 504_CR31
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciu186
– volume: 208
  start-page: 130
  year: 2023
  ident: 504_CR233
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.202304-0670VP
– volume: 17
  year: 2017
  ident: 504_CR137
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-016-2171-1
– ident: 504_CR150
– volume: 58
  start-page: 5245
  year: 2014
  ident: 504_CR96
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.03332-14
– volume: 55
  start-page: 101728
  year: 2023
  ident: 504_CR183
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2022.101728
– volume: 59
  start-page: 2100621
  year: 2022
  ident: 504_CR239
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.00621-2021
– volume: 16
  year: 2019
  ident: 504_CR67
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002773
– volume: 384
  start-page: 1705
  year: 2021
  ident: 504_CR147
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2033400
– volume: 3
  start-page: 00026-2017
  year: 2017
  ident: 504_CR199
  publication-title: ERJ Open Res.
  doi: 10.1183/23120541.00026-2017
– volume: 400
  start-page: 1858
  year: 2022
  ident: 504_CR245
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)02078-5
– volume: 57
  start-page: e00717
  year: 2019
  ident: 504_CR105
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00717-19
– volume: 205
  start-page: 1214
  year: 2022
  ident: 504_CR156
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.202107-1779OC
– volume: 216
  start-page: 632
  year: 2017
  ident: 504_CR134
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jix337
– volume: 387
  start-page: 2331
  year: 2022
  ident: 504_CR158
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2117166
– volume: 9
  start-page: ofab615
  year: 2022
  ident: 504_CR72
  publication-title: Open. Forum Infect. Dis.
  doi: 10.1093/ofid/ofab615
– ident: 504_CR249
– volume: 56
  start-page: 424
  year: 2023
  ident: 504_CR18
  publication-title: J. Microbiol. Immunol. Infect.
  doi: 10.1016/j.jmii.2022.08.014
– volume: 57
  start-page: 2003463
  year: 2021
  ident: 504_CR63
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.03463-2020
– volume: 41
  start-page: 592
  year: 2020
  ident: 504_CR111
  publication-title: Semin. Respir. Crit. Care Med.
  doi: 10.1055/s-0040-1710583
– volume: 383
  start-page: 424
  year: 2014
  ident: 504_CR120
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62073-5
– volume: 388
  start-page: 190
  year: 2023
  ident: 504_CR170
  publication-title: N. Engl. J. Med.
– volume: 7
  start-page: 000620
  year: 2021
  ident: 504_CR38
  publication-title: Microb. Genom.
– volume: 36
  start-page: 257
  year: 2019
  ident: 504_CR19
  publication-title: Public Health Nurs.
  doi: 10.1111/phn.12582
– volume: 203
  start-page: 168
  year: 2021
  ident: 504_CR52
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.202006-2394PP
– volume: 56
  start-page: 3027
  year: 2012
  ident: 504_CR214
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.06125-11
– volume: 19
  start-page: e437
  year: 2019
  ident: 504_CR190
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(19)30420-7
– volume: 26
  start-page: 1435
  year: 2020
  ident: 504_CR33
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0940-2
– volume: 108
  start-page: 77
  year: 2018
  ident: 504_CR163
  publication-title: Tuberculosis
  doi: 10.1016/j.tube.2017.11.004
– volume: 13
  year: 2018
  ident: 504_CR26
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0193491
– volume: 3
  year: 2018
  ident: 504_CR195
  publication-title: BMJ Glob. Health
  doi: 10.1136/bmjgh-2018-000755
– volume: 63
  start-page: 633
  year: 2007
  ident: 504_CR131
  publication-title: Eur. J. Clin. Pharmacol.
  doi: 10.1007/s00228-007-0305-5
– volume: 193
  start-page: 337
  year: 2016
  ident: 504_CR103
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201502-0372LE
– volume: 10
  year: 2020
  ident: 504_CR41
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59558-3
– ident: 504_CR5
– volume: 10
  start-page: 634
  year: 2021
  ident: 504_CR216
  publication-title: Clin. Pharmacol. Drug Dev.
  doi: 10.1002/cpdd.898
– volume: 187
  start-page: 1007
  year: 2013
  ident: 504_CR47
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201208-1422OC
– volume: 12
  start-page: 724042
  year: 2021
  ident: 504_CR77
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.724042
– volume: 58
  start-page: 106401
  year: 2021
  ident: 504_CR42
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2021.106401
– volume: 55
  start-page: S178
  year: 2018
  ident: 504_CR186
  publication-title: J. Pain. Symptom Manag.
  doi: 10.1016/j.jpainsymman.2017.03.019
– volume: 23
  start-page: 645
  year: 2019
  ident: 504_CR215
  publication-title: Int. J. Tuberc. Lung Dis.
  doi: 10.5588/ijtld.18.0622
– volume: 20
  start-page: 1975
  year: 2018
  ident: 504_CR61
  publication-title: Data Brief.
  doi: 10.1016/j.dib.2018.09.057
– volume: 47
  start-page: 242
  year: 2015
  ident: 504_CR108
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3195
– volume: 57
  start-page: 2001796
  year: 2021
  ident: 504_CR123
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.01796-2020
– ident: 504_CR148
– volume: 386
  start-page: 911
  year: 2022
  ident: 504_CR149
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2104535
– volume: 376
  start-page: 243
  year: 2017
  ident: 504_CR34
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1604544
– volume: 200
  start-page: e93
  year: 2019
  ident: 504_CR145
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201909-1874ST
– volume: 22
  start-page: 156
  year: 2022
  ident: 504_CR238
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(21)00481-3
– ident: 504_CR97
– volume: 4
  start-page: e964
  year: 2023
  ident: 504_CR241
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(23)00321-X
– volume: 73-74
  start-page: 102132
  year: 2022
  ident: 504_CR217
  publication-title: Pulm. Pharmacol. Ther.
  doi: 10.1016/j.pupt.2022.102132
– volume: 369
  start-page: 290
  year: 2013
  ident: 504_CR121
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc1215305
– volume: 112
  start-page: 873
  year: 2022
  ident: 504_CR95
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1002/cpt.2685
– volume: 94
  start-page: 5483
  year: 2022
  ident: 504_CR66
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c03462
– volume: 57
  start-page: 21
  year: 2013
  ident: 504_CR132
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/cit167
– volume: 49
  start-page: 395
  year: 2017
  ident: 504_CR129
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3767
– volume: 6
  start-page: 240
  year: 2018
  ident: 504_CR171
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(18)30097-3
– volume: 52
  start-page: 1800246
  year: 2018
  ident: 504_CR43
  publication-title: ERJ
  doi: 10.1183/13993003.00246-2018
– volume: 75
  start-page: 2201
  year: 2022
  ident: 504_CR220
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciac322
– volume: 3
  start-page: e265
  year: 2022
  ident: 504_CR122
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00301-3
– volume: 6
  start-page: 265
  year: 2018
  ident: 504_CR136
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(18)30078-X
– ident: 504_CR234
– volume: 57
  start-page: 6311
  year: 2013
  ident: 504_CR85
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00905-13
– volume: 26
  start-page: 524
  year: 2022
  ident: 504_CR144
  publication-title: Int. J. Tuberc. Lung Dis.
  doi: 10.5588/ijtld.21.0420
– volume: 63
  start-page: e00915-19
  year: 2019
  ident: 504_CR240
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00915-19
– volume: 62
  start-page: e01550-17
  year: 2018
  ident: 504_CR71
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01550-17
– volume: 15
  start-page: 306
  year: 2018
  ident: 504_CR130
  publication-title: Ann. Am. Thorac. Soc.
  doi: 10.1513/AnnalsATS.201711-885ED
– volume: 10
  start-page: 3102
  year: 2018
  ident: 504_CR161
  publication-title: J. Thorac. Dis.
  doi: 10.21037/jtd.2018.05.11
– volume: 23
  year: 2023
  ident: 504_CR29
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-023-08765-0
– ident: 504_CR115
– ident: 504_CR188
– volume: 62
  start-page: 375
  year: 2023
  ident: 504_CR169
  publication-title: Clin. Pharmacokinet.
  doi: 10.1007/s40262-023-01220-y
– volume: 154
  start-page: 1473
  year: 1996
  ident: 504_CR139
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm.154.5.8912767
– volume: 58
  start-page: 6406
  year: 2014
  ident: 504_CR88
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.03246-14
– volume: 3
  start-page: 145
  year: 2016
  ident: 504_CR117
  publication-title: Ther. Adv. Infect. Dis.
– ident: 504_CR228
– volume: 22
  year: 2022
  ident: 504_CR167
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-022-07861-x
– volume: 37
  start-page: 1727
  year: 2014
  ident: 504_CR94
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.b14-00311
– volume: 26
  start-page: 217
  year: 2022
  ident: 504_CR227
  publication-title: Int. J. Tuberc. Lung Dis.
  doi: 10.5588/ijtld.21.0538
– volume: 63
  start-page: e02164-18
  year: 2019
  ident: 504_CR98
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02164-18
– volume: 9
  start-page: 2632
  year: 2020
  ident: 504_CR44
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1852891
– ident: 504_CR74
– year: 2023
  ident: 504_CR244
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2023.07.013
– volume: 67
  start-page: 502
  year: 2020
  ident: 504_CR202
  publication-title: Indian J. Tuberculosis
  doi: 10.1016/j.ijtb.2020.07.020
– volume: 10
  year: 2020
  ident: 504_CR56
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65766-8
– volume: 24
  start-page: 73
  year: 2020
  ident: 504_CR204
  publication-title: Int. J. Tuberc. Lung Dis.
  doi: 10.5588/ijtld.19.0080
– ident: 504_CR6
– volume: 86
  start-page: 520
  year: 2023
  ident: 504_CR70
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2023.01.039
– volume: 20
  start-page: 73
  year: 2021
  ident: 504_CR104
  publication-title: Ann. Clin. Microb. Antimicrob.
  doi: 10.1186/s12941-021-00478-z
– volume: 22
  start-page: 1042
  year: 2022
  ident: 504_CR157
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(21)00811-2
– ident: 504_CR118
– volume: 391
  start-page: 1129
  year: 2018
  ident: 504_CR20
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30484-7
– volume: 379
  start-page: 773
  year: 2012
  ident: 504_CR210
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)61062-3
– volume: 226
  start-page: 147
  year: 2022
  ident: 504_CR89
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiac024
– ident: 504_CR236
– volume: 502
  start-page: S2
  year: 2013
  ident: 504_CR3
  publication-title: Nature
  doi: 10.1038/502S2a
– ident: 504_CR1
– volume: 19
  year: 2016
  ident: 504_CR194
  publication-title: J. Int. AIDS Soc.
  doi: 10.7448/IAS.19.1.21484
– volume: 367
  start-page: l5894
  year: 2019
  ident: 504_CR32
  publication-title: BMJ
  doi: 10.1136/bmj.l5894
– volume: 25
  start-page: 509
  year: 2016
  ident: 504_CR192
  publication-title: BMJ Qual. Saf.
  doi: 10.1136/bmjqs-2015-004315
– ident: 504_CR213
– volume: 32
  start-page: 604
  year: 2012
  ident: 504_CR224
  publication-title: Pharmacotherapy
  doi: 10.1002/j.1875-9114.2012.01098.x
– volume: 9
  start-page: 390
  year: 2021
  ident: 504_CR197
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-20-4576
– ident: 504_CR113
– volume: 379
  start-page: 1403
  year: 2018
  ident: 504_CR126
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1800474
– volume: 9
  start-page: 166
  year: 2020
  ident: 504_CR75
  publication-title: Pathogens
  doi: 10.3390/pathogens9030166
– volume: 12
  start-page: 45
  year: 2012
  ident: 504_CR49
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(11)70210-9
– volume: 198
  start-page: 1208
  year: 2018
  ident: 504_CR13
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201711-2333OC
– volume: 27
  start-page: 100309
  year: 2022
  ident: 504_CR24
  publication-title: J. Clin. Tuberc. Other Mycobact. Dis.
  doi: 10.1016/j.jctube.2022.100309
– volume: 74
  start-page: 1736
  year: 2022
  ident: 504_CR99
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab699
– volume: 7
  year: 2012
  ident: 504_CR58
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0029108
– volume: 191
  start-page: 1058
  year: 2015
  ident: 504_CR165
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201407-1264OC
– volume: 10
  start-page: 603
  year: 2022
  ident: 504_CR15
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(22)00092-3
– ident: 504_CR159
– volume: 8
  start-page: 767
  year: 2004
  ident: 504_CR200
  publication-title: Int. J. Tuberc. Lung Dis.
– volume: 400
  start-page: 1522
  year: 2022
  ident: 504_CR243
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)01883-9
– ident: 504_CR229
– volume: 15
  start-page: 66
  issue: Suppl. 1
  year: 2009
  ident: 504_CR106
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1111/j.1469-0691.2008.02685.x
– ident: 504_CR187
– volume: 46
  start-page: 279
  year: 2014
  ident: 504_CR107
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2878
– volume: 185
  start-page: 4682
  year: 2022
  ident: 504_CR53
  publication-title: Cell
  doi: 10.1016/j.cell.2022.10.025
– volume: 23
  start-page: e122
  year: 2023
  ident: 504_CR54
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(22)00875-1
– ident: 504_CR73
– volume: 9
  year: 2012
  ident: 504_CR191
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001358
– ident: 504_CR50
– volume: 12
  start-page: 498
  year: 2008
  ident: 504_CR212
  publication-title: Int. J. Tuberc. Lung Dis.
– volume: 23
  start-page: 522
  year: 2019
  ident: 504_CR176
  publication-title: Int. J. Tuberc. Lung Dis.
  doi: 10.5588/ijtld.18.0756
– volume: 27
  start-page: 357
  year: 2023
  ident: 504_CR223
  publication-title: Int. J. Tuberc. Lung Dis.
  doi: 10.5588/ijtld.23.0031
– ident: 504_CR230
– volume: 2
  year: 2022
  ident: 504_CR160
  publication-title: PLoS Glob. Public Health
  doi: 10.1371/journal.pgph.0001287
– ident: 504_CR7
– volume: 15
  start-page: 1136
  year: 2022
  ident: 504_CR55
  publication-title: Pharmaceuticals
  doi: 10.3390/ph15091136
– volume: 71
  start-page: 1532
  year: 2016
  ident: 504_CR62
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkw044
– volume: 32
  start-page: 1415
  year: 2008
  ident: 504_CR21
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.00078708
– ident: 504_CR142
– ident: 504_CR119
– ident: 504_CR207
– volume: 14
  start-page: 1988
  year: 2023
  ident: 504_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37719-y
– ident: 504_CR11
– volume: 76
  start-page: e938
  year: 2022
  ident: 504_CR246
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciac528
– ident: 504_CR2
– ident: 504_CR235
– volume: 61
  start-page: 1177
  year: 2022
  ident: 504_CR92
  publication-title: Clin. Pharmacokinet.
  doi: 10.1007/s40262-022-01133-2
– volume: 127
  start-page: 102051
  year: 2021
  ident: 504_CR124
  publication-title: Tuberculosis
  doi: 10.1016/j.tube.2021.102051
– volume: 29
  start-page: 1009
  year: 2023
  ident: 504_CR114
  publication-title: Nat. Med.
  doi: 10.1038/s41591-023-02247-1
– volume: 367
  start-page: l5770
  year: 2019
  ident: 504_CR211
  publication-title: BMJ
  doi: 10.1136/bmj.l5770
– ident: 504_CR218
– volume: 11
  start-page: 1498
  year: 2018
  ident: 504_CR64
  publication-title: Evol. Appl.
  doi: 10.1111/eva.12654
SSID ssj0001586986
Score 2.5869377
SecondaryResourceType review_article
Snippet Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms 692/699/255/1856
692/700
Antibiotics
Antitubercular Agents - pharmacology
Antitubercular Agents - therapeutic use
Cancer Research
Drug resistance
Epidemiology
Extensively Drug-Resistant Tuberculosis - diagnosis
Extensively Drug-Resistant Tuberculosis - drug therapy
Extensively Drug-Resistant Tuberculosis - epidemiology
Humans
Internal Medicine
Isoniazid - therapeutic use
Medical Microbiology
Medicine
Medicine & Public Health
Multidrug resistant organisms
Primer
Public health
Quality of Life Research
Rifampin - therapeutic use
Tuberculosis
Tuberculosis, Multidrug-Resistant - diagnosis
Tuberculosis, Multidrug-Resistant - drug therapy
Tuberculosis, Multidrug-Resistant - epidemiology
Title Multidrug-resistant tuberculosis
URI https://link.springer.com/article/10.1038/s41572-024-00504-2
https://www.ncbi.nlm.nih.gov/pubmed/38523140
https://www.proquest.com/docview/2973799878
https://www.proquest.com/docview/2985797754
Volume 10
WOSCitedRecordID wos001190193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2056-676X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0001586986
  issn: 2056-676X
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2056-676X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0001586986
  issn: 2056-676X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2056-676X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0001586986
  issn: 2056-676X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2056-676X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0001586986
  issn: 2056-676X
  databaseCode: M2P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WdozC6LasXd11wYM9rKyisj4s-Wlso2EPSzBjK3kzkmyXQnE6x-7fP0lWEkZoX_ZisC1bh07S_e5OdwfwgWNljKEcpVIzxGRJkCJKIV7XVAvMNfPh0Vc_xGwm5_MsDwa3ZThWudoT_UZdLoyzkV-4GkvC6gZCfr77g1zVKOddDSU0dmDPZUmg_uhevrGxcJlmMg2xMpjKi6WVV4IgK5iQy3zCEPlXHm2BzC0HqZc7kxf_S_FLOAiIM_4yTJFX8KRqRvBsGnzqI3g-WO7iISDpNZz5mNyy7a-RVcUdvGy6uOt11Zr-dmEfxB9zVxOgPTuE35PLX9--o1BQARmWZB0SquYKS4W1YRnGVVlbbUNICwk10TVjpU5wZlJluJHGia2EEUWptrCBq5ok9Ah2m0VTHUMs6wpXmGqLdzRT1AI5oRVjnJelMinRESSrYS1MyDbuil7cFt7rTWUxsKKwrCg8KwoSwaf1N3dDro1HW5-uhr0I625ZbMY8gvfr13bFODeIaqpF79pILjKX-S-CNwOX191RaRVzq3NGcL5i--bnD9Ny8jgtb2Gf-ClHEWGnsNu1ffUOnpr77mbZjmFHzIW_yjHsfb2c5T_t3ZTkYz-b_wLR9_PW
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxUxEB5qFS0UL1XratUVFCwams1lk30QEbW09PRwHmrpW0yyWRHKnroXpX_K32iyl3OQYt_64OtuNhvyTWa-ZDIzAC851tZaylEqDUNM5gRpojXiRUGNwNywLjz6eCKmU3lyks1W4PcYCxOuVY46sVPU-dyGM_KdUGNJ-L2BkO_PfqBQNSp4V8cSGr1YHLjzX37LVr_b_-TxfUXI7uejj3toqCqALEuyBgldcI2lxsayDGOXF55yC-l5kSGmYCw3Cc5sqi230gbdnTCiKTXednJdkIT6fq_BdU8jiOyuCs6WZzpcpplMh9gcTOVO7e2jIMgbQhQyrTBE_rZ_F0jtBYdsZ-d27_xvM3QXbg-MOv7QL4F7sOLKDbh5ONwZ2ID1_mQy7gOu7sN2F3OcV-03VLk60OeyiZvWuMq2p3P_IH49CzUPqu0H8OVKBv4QVst56R5BLAuHHabG8znDNPVEVRjNGOd5rm1KTATJCKOyQzb1UNTjVHVefSpVD73y0KsOekUieLP45qzPJXJp660RZjXolVotMY7gxeK11wjBzaNLN29DG8lFFjIbRrDZS9Xid1RyT-gZjuDtKGbLzv89lseXj-U53No7Opyoyf704AmskU7cKSJsC1abqnVP4Yb92Xyvq2fdeonh61WL3x8gyktU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidrug-resistant+tuberculosis+%28Primer%29&rft.jtitle=Nature+reviews.+Disease+primers&rft.au=Dheda%2C+Keertan&rft.au=Mirzayev%2C+Fuad&rft.au=Cirillo%2C+Daniela+Maria&rft.au=Udwadia%2C+Zarir&rft.date=2024-03-24&rft.pub=Nature+Publishing+Group&rft.eissn=2056-676X&rft.volume=10&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1038%2Fs41572-024-00504-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-676X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-676X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-676X&client=summon