Multidrug-resistant tuberculosis
Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Easte...
Saved in:
| Published in: | Nature reviews. Disease primers Vol. 10; no. 1; p. 22 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
24.03.2024
Nature Publishing Group |
| Subjects: | |
| ISSN: | 2056-676X, 2056-676X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5–10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level.
Multidrug-resistant tuberculosis (MDR-TB) is caused by
Mycobacterium tuberculosis
that is resistant to several first-line drugs. MDR-TB is an increasing public health challenge. In this Primer, Dheda et al. summarize the epidemiology and mechanisms, and discuss diagnosis, management and quality of life of patients with MDR-TB. |
|---|---|
| AbstractList | Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5–10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level.Multidrug-resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis that is resistant to several first-line drugs. MDR-TB is an increasing public health challenge. In this Primer, Dheda et al. summarize the epidemiology and mechanisms, and discuss diagnosis, management and quality of life of patients with MDR-TB. Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5-10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level. Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5–10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level. Multidrug-resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis that is resistant to several first-line drugs. MDR-TB is an increasing public health challenge. In this Primer, Dheda et al. summarize the epidemiology and mechanisms, and discuss diagnosis, management and quality of life of patients with MDR-TB. Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5-10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level.Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5-10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level. |
| ArticleNumber | 22 |
| Author | Horsburgh, C. Robert Omar, Shaheed Vally Murray, Megan Cirillo, Daniela Maria Chang, Kwok-Chiu Perumal, Tahlia Dheda, Keertan Lange, Christoph Mirzayev, Fuad Dooley, Kelly E. Udwadia, Zarir Reuter, Anja |
| Author_xml | – sequence: 1 givenname: Keertan orcidid: 0000-0001-7709-5341 surname: Dheda fullname: Dheda, Keertan email: keertan.dheda@uct.ac.za organization: Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine – sequence: 2 givenname: Fuad orcidid: 0000-0001-6658-0325 surname: Mirzayev fullname: Mirzayev, Fuad organization: Global Tuberculosis Programme, WHO – sequence: 3 givenname: Daniela Maria surname: Cirillo fullname: Cirillo, Daniela Maria organization: Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute Milan – sequence: 4 givenname: Zarir surname: Udwadia fullname: Udwadia, Zarir organization: Department of Pulmonology, Hinduja Hospital & Research Center – sequence: 5 givenname: Kelly E. surname: Dooley fullname: Dooley, Kelly E. organization: Department of Medicine, Vanderbilt University Medical Center – sequence: 6 givenname: Kwok-Chiu orcidid: 0000-0002-3682-5069 surname: Chang fullname: Chang, Kwok-Chiu organization: Tuberculosis and Chest Service, Centre for Health Protection, Department of Health – sequence: 7 givenname: Shaheed Vally surname: Omar fullname: Omar, Shaheed Vally organization: Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Department of Molecular Medicine & Haematology, School of Pathology, Faculty of Health Sciences, University of Witwatersrand – sequence: 8 givenname: Anja surname: Reuter fullname: Reuter, Anja organization: Sentinel Project on Paediatric Drug-Resistant Tuberculosis – sequence: 9 givenname: Tahlia surname: Perumal fullname: Perumal, Tahlia organization: Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine – sequence: 10 givenname: C. Robert orcidid: 0000-0001-6838-7895 surname: Horsburgh fullname: Horsburgh, C. Robert organization: Department of Epidemiology, Boston University Schools of Public Health and Medicine – sequence: 11 givenname: Megan surname: Murray fullname: Murray, Megan organization: Department of Epidemiology, Harvard Medical School – sequence: 12 givenname: Christoph surname: Lange fullname: Lange, Christoph organization: Division of Clinical Infectious Diseases, Research Center Borstel, German Center for Infection Research (DZIF), TTU-TB, Respiratory Medicine & International Health, University of Lübeck, Department of Paediatrics, Baylor College of Medicine and Texas Children’s Hospital |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38523140$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kLtOwzAUhi1URKH0BRhQJRaWwPEttkdUcZOKWEBisxzHqVKlSbGdgbfHkHJRh07HOvo--_d_gkZt1zqEzjBcYaDyOjDMBcmAsAyAA8vIATomwPMsF_nb6N95jKYhrAAAc5krmR-hMZWcUMzgGM2e-ibWpe-XmXehDtG0cRb7wnnbN11anKLDyjTBTbdzgl7vbl_mD9ni-f5xfrPILMMqZsJU3IA0UFimAFxZcZELyUEUpKgYKwsMyubGciutZAJjRgylBUjMTUUwnaDL4d6N7957F6Je18G6pjGt6_qgiZJcKCE4S-jFDrrqet-mdIkSVCglhUzU-Zbqi7Ur9cbXa-M_9M_fE0AGwPouBO-qXwSD_upYDx3r1LH-7liTJMkdydbRxLprozd1s1-lgxrSO-3S-b_Ye6xP_z2NdQ |
| CitedBy_id | crossref_primary_10_1021_jacs_5c00506 crossref_primary_10_1038_s42003_025_08646_z crossref_primary_10_3390_tropicalmed9110274 crossref_primary_10_1016_j_meegid_2025_105763 crossref_primary_10_1080_14760584_2024_2425283 crossref_primary_10_7717_peerj_19112 crossref_primary_10_1038_s41589_024_01624_2 crossref_primary_10_1016_j_sciaf_2025_e02627 crossref_primary_10_1186_s12879_025_11227_4 crossref_primary_10_1111_apm_70004 crossref_primary_10_1136_bmjopen_2024_089290 crossref_primary_10_1007_s00203_025_04415_y crossref_primary_10_1109_JSEN_2025_3536976 crossref_primary_10_1016_j_sajce_2025_08_014 crossref_primary_10_1007_s11030_025_11117_6 crossref_primary_10_1038_s41591_025_03742_3 crossref_primary_10_1186_s12879_025_10970_y crossref_primary_10_1111_febs_70265 crossref_primary_10_2147_IDR_S473195 crossref_primary_10_1128_spectrum_03258_24 crossref_primary_10_3389_bjbs_2024_13566 crossref_primary_10_3389_fcimb_2025_1638577 crossref_primary_10_3390_M1851 crossref_primary_10_1016_j_cmi_2024_10_013 crossref_primary_10_1007_s11030_024_10946_1 crossref_primary_10_1093_cid_ciaf313 crossref_primary_10_1016_j_ijid_2025_107955 crossref_primary_10_1097_JS9_0000000000002720 crossref_primary_10_1186_s12934_025_02740_x crossref_primary_10_1515_revic_2024_0007 crossref_primary_10_2147_IDR_S484268 crossref_primary_10_1080_17568919_2025_2552642 crossref_primary_10_1128_spectrum_00030_25 crossref_primary_10_3390_ijms25147771 crossref_primary_10_3390_pathogens14040370 crossref_primary_10_1038_s41598_024_73209_x crossref_primary_10_1128_spectrum_02289_24 crossref_primary_10_3390_cells13231953 crossref_primary_10_1007_s10534_024_00644_8 crossref_primary_10_1016_j_mehy_2025_111761 crossref_primary_10_1038_s41598_024_78978_z crossref_primary_10_1038_s41598_025_10639_1 crossref_primary_10_1007_s10870_024_01035_0 crossref_primary_10_1007_s12223_025_01274_4 crossref_primary_10_2147_IDR_S504519 crossref_primary_10_7759_cureus_64353 crossref_primary_10_1016_j_ijtb_2025_06_010 crossref_primary_10_1080_17568919_2025_2485673 crossref_primary_10_3390_vaccines12121397 crossref_primary_10_3389_fpubh_2025_1634772 crossref_primary_10_7759_cureus_60412 crossref_primary_10_1186_s12916_025_04269_7 crossref_primary_10_2147_IDR_S542287 crossref_primary_10_1007_s13659_025_00533_8 crossref_primary_10_1016_S2213_2600_24_00300_X crossref_primary_10_3390_pathogens14030218 crossref_primary_10_1016_j_ijbiomac_2024_137003 crossref_primary_10_1016_S0140_6736_25_00555_0 crossref_primary_10_3390_ijms26083779 crossref_primary_10_1007_s11030_025_11205_7 crossref_primary_10_1021_acs_jmedchem_4c02876 crossref_primary_10_1021_jacs_5c05490 crossref_primary_10_1038_s41598_025_18112_9 crossref_primary_10_1016_j_ebiom_2025_105685 crossref_primary_10_1016_j_drup_2025_101265 crossref_primary_10_1038_s41598_025_11949_0 crossref_primary_10_1186_s13054_024_05110_y crossref_primary_10_36490_journal_jps_com_v8i3_1027 crossref_primary_10_3390_biomedicines12102238 crossref_primary_10_1016_j_jctube_2025_100520 crossref_primary_10_1007_s40121_025_01221_3 crossref_primary_10_4167_jbv_2024_54_3_167 crossref_primary_10_1080_17425255_2025_2525451 crossref_primary_10_1093_ofid_ofaf344 crossref_primary_10_1016_j_bmcl_2024_129846 crossref_primary_10_3390_pharmaceutics16060818 crossref_primary_10_1016_j_jctube_2025_100528 crossref_primary_10_1002_cpdd_1515 crossref_primary_10_1096_fba_2024_00166 crossref_primary_10_1128_spectrum_00380_25 crossref_primary_10_3389_fmed_2025_1611322 crossref_primary_10_1038_s44303_025_00082_2 crossref_primary_10_1007_s11696_025_04102_8 crossref_primary_10_1089_cbr_2025_0078 crossref_primary_10_1007_s00408_024_00732_z crossref_primary_10_1016_j_synbio_2025_01_002 crossref_primary_10_1128_spectrum_02457_24 crossref_primary_10_3390_antibiotics13080746 |
| Cites_doi | 10.5588/ijtld.19.0508 10.1146/annurev-genet-022820-085940 10.1186/s12981-016-0106-y 10.1186/s12879-022-07598-7 10.1016/S2213-2600(23)00097-8 10.1371/journal.pone.0047533 10.1183/13993003.02122-2017 10.1016/j.cmi.2023.02.013 10.3390/antibiotics10111323 10.1371/journal.pone.0281097 10.1016/j.cmi.2022.07.026 10.1016/S2213-2600(16)30433-7 10.3389/fimmu.2020.566608 10.1093/jac/dkx317 10.1183/13993003.00765-2022 10.1183/16000617.0221-2022 10.1016/j.ijantimicag.2017.01.017 10.1016/S0140-6736(23)01301-6 10.1038/s41591-020-1092-0 10.1056/NEJMoa1901814 10.3389/fcimb.2022.959911 10.1093/cid/ciu572 10.1016/S2213-2600(17)30079-6 10.1016/j.eclinm.2023.101979 10.1093/jacamr/dlac029 10.4103/ijmy.ijmy_178_21 10.1101/2023.03.14.23287284 10.1056/NEJMoa1909953 10.1128/AAC.02266-17 10.5588/ijtld.21.0515 10.1111/febs.16170 10.1016/S2666-5247(23)00401-9 10.1093/infdis/jit352 10.1371/journal.pbio.3001721 10.1183/13993003.00537-2018 10.1038/s41598-021-98862-4 10.1111/bcp.14199 10.1016/S1473-3099(23)00194-9 10.1183/13993003.01617-2018 10.1007/s13318-019-00604-5 10.3389/fcimb.2022.990312 10.1056/NEJMoa1811867 10.1136/thx.2005.045963 10.1093/cid/ciw002 10.1128/am.20.5.810-814.1970 10.1128/spectrum.02605-22 10.1016/S1473-3099(15)00062-6 10.3390/antibiotics10121544 10.1183/13993003.03492-2020 10.1183/13993003.02544-2020 10.1007/978-1-4614-5800-5 10.5588/ijtld.15.0803 10.1186/s12879-020-05749-2 10.1093/jac/dkac070 10.1093/cid/ciab359 10.1097/QAI.0b013e31820b07ab 10.1016/S2213-2600(19)30263-2 10.1128/JCM.01477-18 10.1056/NEJMc1603274 10.1074/jbc.M113.538959 10.1056/NEJMoa1108789 10.1093/molbev/msad131 10.1056/NEJMoa2119430 10.1186/s13643-018-0828-0 10.1371/journal.ppat.0020061 10.1016/j.meegid.2020.104350 10.5588/ijtld.20.0458 10.1128/AAC.00191-13 10.1371/journal.pgph.0001357 10.1111/cbdd.13625 10.1080/14787210.2016.1225498 10.1183/13993003.02263-2021 10.1016/S2213-2600(20)30047-3 10.1093/intqhc/14.suppl_1.89 10.1093/cid/ciaa1402 10.1016/S2214-109X(14)70198-6 10.1038/nrmicro2797 10.1093/cid/ciu186 10.1164/rccm.202304-0670VP 10.1186/s12879-016-2171-1 10.1128/AAC.03332-14 10.1016/j.eclinm.2022.101728 10.1183/13993003.00621-2021 10.1371/journal.pmed.1002773 10.1056/NEJMoa2033400 10.1183/23120541.00026-2017 10.1016/S0140-6736(22)02078-5 10.1128/JCM.00717-19 10.1164/rccm.202107-1779OC 10.1093/infdis/jix337 10.1056/NEJMoa2117166 10.1093/ofid/ofab615 10.1016/j.jmii.2022.08.014 10.1183/13993003.03463-2020 10.1055/s-0040-1710583 10.1016/S0140-6736(13)62073-5 10.1111/phn.12582 10.1164/rccm.202006-2394PP 10.1128/AAC.06125-11 10.1016/S1473-3099(19)30420-7 10.1038/s41591-020-0940-2 10.1016/j.tube.2017.11.004 10.1371/journal.pone.0193491 10.1136/bmjgh-2018-000755 10.1007/s00228-007-0305-5 10.1164/rccm.201502-0372LE 10.1038/s41598-020-59558-3 10.1002/cpdd.898 10.1164/rccm.201208-1422OC 10.3389/fmicb.2021.724042 10.1016/j.ijantimicag.2021.106401 10.1016/j.jpainsymman.2017.03.019 10.5588/ijtld.18.0622 10.1016/j.dib.2018.09.057 10.1038/ng.3195 10.1183/13993003.01796-2020 10.1056/NEJMoa2104535 10.1056/NEJMoa1604544 10.1164/rccm.201909-1874ST 10.1016/S1473-3099(21)00481-3 10.1016/S2666-5247(23)00321-X 10.1016/j.pupt.2022.102132 10.1056/NEJMc1215305 10.1002/cpt.2685 10.1021/acs.analchem.1c03462 10.1093/cid/cit167 10.1038/ng.3767 10.1016/S2213-2600(18)30097-3 10.1183/13993003.00246-2018 10.1093/cid/ciac322 10.1016/S2666-5247(21)00301-3 10.1016/S2213-2600(18)30078-X 10.1128/AAC.00905-13 10.5588/ijtld.21.0420 10.1128/AAC.00915-19 10.1128/AAC.01550-17 10.1513/AnnalsATS.201711-885ED 10.21037/jtd.2018.05.11 10.1186/s12879-023-08765-0 10.1007/s40262-023-01220-y 10.1164/ajrccm.154.5.8912767 10.1128/AAC.03246-14 10.1186/s12879-022-07861-x 10.1248/bpb.b14-00311 10.5588/ijtld.21.0538 10.1128/AAC.02164-18 10.1080/22221751.2020.1852891 10.1016/j.cmi.2023.07.013 10.1016/j.ijtb.2020.07.020 10.1038/s41598-020-65766-8 10.5588/ijtld.19.0080 10.1016/j.jinf.2023.01.039 10.1186/s12941-021-00478-z 10.1016/S1473-3099(21)00811-2 10.1016/S0140-6736(18)30484-7 10.1016/S0140-6736(11)61062-3 10.1093/infdis/jiac024 10.1038/502S2a 10.7448/IAS.19.1.21484 10.1136/bmj.l5894 10.1136/bmjqs-2015-004315 10.1002/j.1875-9114.2012.01098.x 10.21037/atm-20-4576 10.1056/NEJMoa1800474 10.3390/pathogens9030166 10.1016/S1473-3099(11)70210-9 10.1164/rccm.201711-2333OC 10.1016/j.jctube.2022.100309 10.1093/cid/ciab699 10.1371/journal.pone.0029108 10.1164/rccm.201407-1264OC 10.1016/S2213-2600(22)00092-3 10.1016/S0140-6736(22)01883-9 10.1111/j.1469-0691.2008.02685.x 10.1038/ng.2878 10.1016/j.cell.2022.10.025 10.1016/S1473-3099(22)00875-1 10.1371/journal.pmed.1001358 10.5588/ijtld.18.0756 10.5588/ijtld.23.0031 10.1371/journal.pgph.0001287 10.3390/ph15091136 10.1093/jac/dkw044 10.1183/09031936.00078708 10.1038/s41467-023-37719-y 10.1093/cid/ciac528 10.1007/s40262-022-01133-2 10.1016/j.tube.2021.102051 10.1038/s41591-023-02247-1 10.1136/bmj.l5770 10.1111/eva.12654 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. Springer Nature Limited. |
| Copyright_xml | – notice: Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. Springer Nature Limited. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1038/s41572-024-00504-2 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 2056-676X |
| ExternalDocumentID | 38523140 10_1038_s41572_024_00504_2 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: World Health Organization grantid: 001 |
| GroupedDBID | 0R~ 53G AAEEF AARCD AAWYQ AAYZH AAZLF ABJNI ABLJU ACGFS ACMJI ADBBV AFSHS AGAYW AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD AZQEC BENPR BKKNO EBS FQGFK FSGXE FZEXT LGEZI LOTEE NADUK NNMJJ NXXTH ODYON R9- RNR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG 7X7 88I 8FI 8FJ AAYXX ABFSG ABUWG ACSTC AEZWR AFANA AFFHD AFHIU AFKRA AGSTI AHWEU AIXLP ATHPR BBNVY BHPHI BPHCQ BVXVI CCPQU CITATION DWQXO FYUFA GNUQQ HCIFZ HMCUK M2P M7P NFIDA PHGZM PHGZT PQGLB PQQKQ PROAC UKHRP ACMFV CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FE 8FH 8FK K9. LK8 PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c419t-7af5a08a0bc4900edf57678507b2bf44db109c6ac5c8c8471142a33b0815af213 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 117 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001190193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2056-676X |
| IngestDate | Thu Oct 02 16:31:13 EDT 2025 Tue Oct 07 06:46:27 EDT 2025 Sat May 31 02:13:12 EDT 2025 Sat Nov 29 04:09:49 EST 2025 Tue Nov 18 22:22:03 EST 2025 Fri Feb 21 02:37:57 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-7af5a08a0bc4900edf57678507b2bf44db109c6ac5c8c8471142a33b0815af213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-6838-7895 0000-0002-3682-5069 0000-0001-7709-5341 0000-0001-6658-0325 |
| OpenAccessLink | https://www.nature.com/articles/s41572-024-00504-2.pdf |
| PMID | 38523140 |
| PQID | 2973799878 |
| PQPubID | 2069613 |
| ParticipantIDs | proquest_miscellaneous_2985797754 proquest_journals_2973799878 pubmed_primary_38523140 crossref_primary_10_1038_s41572_024_00504_2 crossref_citationtrail_10_1038_s41572_024_00504_2 springer_journals_10_1038_s41572_024_00504_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-24 |
| PublicationDateYYYYMMDD | 2024-03-24 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature reviews. Disease primers |
| PublicationTitleAbbrev | Nat Rev Dis Primers |
| PublicationTitleAlternate | Nat Rev Dis Primers |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Otto-KnappRLong-term multidrug- and rifampicin-resistant tuberculosis treatment outcome by new WHO definitions in GermanyEur. Respir. J.20226022007651:CAS:528:DC%2BB38XjtFGhtL%2FN3642391910.1183/13993003.00765-2022 FatimaSEpigenetic code during mycobacterial infections: therapeutic implications for tuberculosisFEBS J.2022289417241911:CAS:528:DC%2BB3MXitVGntL%2FL3445386510.1111/febs.16170 BatesonAAncient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanidJ. Antimicrob. Chemother.202277168516931:CAS:528:DC%2BB38Xhsl2gur3N35260883915560210.1093/jac/dkac070 GagneuxSImpact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosisPLoS Pathog.2006216789833147904610.1371/journal.ppat.0020061 PadmapriyadarsiniCBedaquiline, delamanid, linezolid, and clofazimine for treatment of pre-extensively drug-resistant tuberculosisClin. Infect. Dis.202276e938e94635767251990750010.1093/cid/ciac528 US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT04062201?term=NCT04062201&rank=1 (2022). SaraCAExtensively drug-resistant tuberculosis in South Africa: genomic evidence supporting transmission in communitiesERJ201852180024610.1183/13993003.00246-2018 BehrMAEdelsteinPHRamakrishnanLIs Mycobacterium tuberculosis infection life long?BMJ2019367l577031649096681259510.1136/bmj.l5770 Golightly, L. K. et al. Renal Pharmacotherapy. Dosage Adjustment of Medications Eliminated by the Kidneys (Springer, 2013). SossenBThe natural history of untreated pulmonary tuberculosis in adults: a systematic review and meta-analysisLancet Respir. Med.2023113673793696679510.1016/S2213-2600(23)00097-8 LeeGImpact of mental disorders on active TB treatment outcomes: a systematic review and meta-analysisInt. J. Tuberc. Lung Dis.202024127912841:STN:280:DC%2BB3sznsVyrtg%3D%3D3331767210.5588/ijtld.20.0458 AdamDCClustering and superspreading potential of SARS-CoV-2 infections in Hong KongNat. Med.202026171417191:CAS:528:DC%2BB3cXhvVGhtL3F3294378710.1038/s41591-020-1092-0 ManosuthiWWiboonchutikulSSungkanuparphSIntegrated therapy for HIV and tuberculosisAIDS Res. Ther.20161327182275486640510.1186/s12981-016-0106-y BoereeMJUNITE4TB: a new consortium for clinical drug and regimen development for TBInt. J. Tuberc. Lung Dis.2021258868891:STN:280:DC%2BB2cjjvFSkug%3D%3D34686229854492210.5588/ijtld.21.0515 IvanovaOHoffmannVSLangeCHoelscherMRachowAPost-tuberculosis lung impairment: systematic review and meta-analysis of spirometry data from 14 621 peopleEur. Respir. Rev.202332220221370761751011395410.1183/16000617.0221-2022 PaulsonTEpidemiology: a mortal foeNature2013502S2S32410807810.1038/502S2a ISRCTN registry. Tuberculosis Child Multidrug-Resistant Preventive Therapy: TB CHAMP trial. https://www.isrctn.com/ISRCTN92634082 (2022). The Economist Intelligence Unit. It’s time to end drug-resistant tuberculosis. The Economisthttps://www.eiu.com/graphics/marketing/pdf/its-time-to-end-drug-resistant-tuberculosis-full-report.pdf (2019). TheronGBacterial and host determinants of cough aerosol culture positivity in patients with drug-resistant versus drug-susceptible tuberculosisNat. Med.202026143514431:CAS:528:DC%2BB3cXht1yjtbfI32601338835387210.1038/s41591-020-0940-2Work indicating that DR-TB strains were as infectious as DS-TB strains, and that infectiousness was not associated withM. tuberculosisgenetic variants (suggesting that epigenetic factors or host–pathogen interactions are likely important in the pathogenesis of resistance amplification). DhedaKMiglioriGBThe global rise of extensively drug-resistant tuberculosis: is the time to bring back sanatoria now overdueLancet20123797737752203302010.1016/S0140-6736(11)61062-3 KöserCUWhole-genome sequencing for rapid susceptibility testing of M. tuberculosisN. Engl. J. Med.20133692902922386307210.1056/NEJMc1215305 GuntherGTreatment outcomes in multidrug-resistant tuberculosisN. Engl. J. Med.2016375110311052762653910.1056/NEJMc1603274 NguyenQHContaminLNguyenTVABañulsALInsights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosisEvol. Appl.2018111498151130344622618345710.1111/eva.12654 LanZDrug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysisLancet Respir. Med.202083833941:CAS:528:DC%2BB3cXltFyrsbY%3D32192585738439810.1016/S2213-2600(20)30047-3 ConradieFBedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosisN. Engl. J. Med.20223878108231:CAS:528:DC%2BB38XitlCqu7%2FM36053506949030210.1056/NEJMoa2119430Demonstrates that the BPaL regimen performed well in patients with pre-XDR-TB, XDR-TB and MDR-TB treatment failures. WHO Global Tuberculosis Programme. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. 2nd edn. World Health Organizationhttps://www.who.int/publications/i/item/9789240082410#:~:Text=The%20catalogue%20provides%20a%20reference,countries%20for%20the%2013%20medicines (2023). WinterMAGuhrKNBergGMImpact of various body weights and serum creatinine concentrations on the bias and accuracy of the Cockcroft–Gault equationPharmacotherapy2012326046121:CAS:528:DC%2BC38Xht1OnsbrJ2257679110.1002/j.1875-9114.2012.01098.x WuZmbtD and celA1 association with ethambutol resistance in Mycobacterium tuberculosis: a multiomics analysisFront. Cell. Infect. Microbiol.2022129599111:CAS:528:DC%2BB3sXkt1GjsL4%3D36118032947115210.3389/fcimb.2022.959911 Davies ForsmanLSuboptimal moxifloxacin and levofloxacin drug exposure during treatment of patients with multidrug-resistant tuberculosis: results from a prospective study in ChinaEur. Respir. J.20215720034633315402810.1183/13993003.03463-2020 XuGHuXLianYLiXDiabetes mellitus affects the treatment outcomes of drug-resistant tuberculosis: a systematic review and meta-analysisBMC Infect. Dis.202323379861461066265410.1186/s12879-023-08765-0 O’DonnellMIsoniazid monoresistance: a precursor to multidrug-resistant tuberculosisAnn. Am. Thorac. Soc.20181530630729493332588052510.1513/AnnalsATS.201711-885ED Ethics Guidance for the Implementation of the End TB Strategy (WHO, 2017). ButovDMultidrug-resistant tuberculosis in the Kharkiv region, UkraineInt. J. Tuberc. Lung Dis.2020244854911:STN:280:DC%2BB38vlvFGmtg%3D%3D3239819710.5588/ijtld.19.0508 HeyckendorfJPrediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic modelEur. Respir. J.20215820034921:CAS:528:DC%2BB3MXitV2lurzF3357407810.1183/13993003.03492-2020 VaziriFGenetic diversity of multi- and extensively drug-resistant Mycobacterium tuberculosis isolates in the capital of iran, revealed by whole-genome sequencingJ. Clin. Microbiol.201957e01477e015181:CAS:528:DC%2BC1MXhtFagsb%2FO30404943632247210.1128/JCM.01477-18 JanssensJPRiederHLAn ecological analysis of incidence of tuberculosis and ‘per capita′ gross domestic productEur. Respir. J.20083214151897814610.1183/09031936.00078708 DhedaKThe Lancet Respiratory Medicine Commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosisLancet Respir. Med.201978208261:CAS:528:DC%2BC1MXhslWnsrjF3148639310.1016/S2213-2600(19)30263-2 Kokesch-HimmelreichJDo anti-tuberculosis drugs reach their target? — high-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging provides information on drug penetration into necrotic granulomasAnal. Chem.202294548354921:CAS:528:DC%2BB38XotVOntrc%3D3534433910.1021/acs.analchem.1c03462 US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT02333799?term=NCT02333799&rank=1 (2020). WalkerTMThe 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysisLancet Microbe20223e265e2731:CAS:528:DC%2BB38Xht1WmsLrI35373160761255410.1016/S2666-5247(21)00301-3 Global Fund. List of tuberculosis pharmaceutical products classified according to the global fund quality assurance policy. The Global Fundhttps://www.theglobalfund.org/media/4757/psm_productstb_list_en.pdf (2023). PAN-TB collaboration. Project to accelerate new treatments for tuberculosis (PAN-TB). PAN-TBhttps://www.pan-tb.org/newsroom/ (2021). WHO. WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment - Drug-Resistant Tuberculosis Treatment, 2022 Update. World Health Organizationhttps://www.who.int/publications/i/item/9789240063129 (2022). WalkerTMWhole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort studyLancet Infect. Dis.201515119312021:CAS:528:DC%2BC2MXhtFSjtrrM26116186457948210.1016/S1473-3099(15)00062-6 NgKCSHow well do routine molecular diagnostics detect rifampin heteroresistance in Mycobacterium tuberculosis?J. Clin. Microbiol.201957e00717e007191:CAS:528:DC%2BB3cXovVWmt7w%3D31413081681299010.1128/JCM.00717-19 Allix-BéguecCPrediction of susceptibility to first-line tuberculosis drugs by DNA sequencingN. Engl. J. Med.2018379140314153028064610.1056/NEJMoa1800474 HoffmannHDelamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral beijing genotype causing extensively drug-resistant tuberculosis in a tibetan refugeeAm. J. Respir. Crit. Care Med.20161933373401:CAS:528:DC%2BC28XpsFOru7Y%3D2682942510.1164/rccm.201502-0372LE AginsBDImproving the cascade of global tuberculosis care: moving from the “what” to the “how” of quality improvementLancet Infect. Dis.201919e437e4433144730510.1016/S1473-3099(19)30420-7 TornheimJAIncreased moxifloxacin dosing among patients with multidrug-resistant tuberculosis with low-level resistance to moxifloxacin did not improve treatment outcomes in a tertiary care center in Mumbai, IndiaOpen. Forum Infect. Dis.20229ofab6153509715210.1093/ofid/ofab615 ChuHHuYZhangBSunZZhuBDNA methyltransferase HsdM induce drug resistance on Mycobacterium tuberculosis via multiple effectsAntibiotics20211015441:CAS:528:DC%2BB38Xksl2isro%3D34943756869843610.3390/antibiot NS Shah (504_CR34) 2017; 376 504_CR57 C Loiseau (504_CR35) 2023; 14 EC Jones-López (504_CR47) 2013; 187 504_CR50 K Dheda (504_CR209) 2017; 5 SY Wong (504_CR85) 2013; 57 The CRyPTIC Consortium. (504_CR68) 2022; 20 H Chu (504_CR81) 2021; 10 A Gupta (504_CR160) 2022; 2 JP Cegielski (504_CR102) 2014; 59 AR DiNardo (504_CR174) 2022; 60 504_CR159 P Nahid (504_CR145) 2019; 200 504_CR175 JP Janssens (504_CR21) 2008; 32 E Schena (504_CR62) 2016; 71 L Tanneau (504_CR92) 2022; 61 F Fregonese (504_CR136) 2018; 6 NR Mvelase (504_CR238) 2022; 22 AL Byrne (504_CR199) 2017; 3 JA Tornheim (504_CR72) 2022; 9 DW Haas (504_CR89) 2022; 226 G Xu (504_CR29) 2023; 23 AJ Nunn (504_CR153) 2019; 380 G Gunther (504_CR9) 2016; 375 A Esmail (504_CR156) 2022; 205 M Asaad (504_CR78) 2020; 83 504_CR185 504_CR187 504_CR188 N Koehler (504_CR70) 2023; 86 J Heyckendorf (504_CR173) 2021; 58 EM Svensson (504_CR90) 2017; 72 M Feng (504_CR19) 2019; 36 L Davies Forsman (504_CR63) 2021; 57 504_CR30 C Lange (504_CR172) 2020; 11 KJ Wilby (504_CR101) 2020; 45 H Pai (504_CR167) 2022; 22 MA Winter (504_CR224) 2012; 32 MX Rangaka (504_CR49) 2012; 12 N Strydom (504_CR67) 2019; 16 P Miotto (504_CR69) 2022; 12 MJ Boeree (504_CR247) 2021; 25 TM Walker (504_CR122) 2022; 3 K Dheda (504_CR15) 2022; 10 E Holt (504_CR242) 2024 A Ghosh (504_CR56) 2020; 10 504_CR46 FM Marx (504_CR31) 2014; 58 K Dheda (504_CR13) 2018; 198 JS Mallick (504_CR166) 2022; 4 D Menzies (504_CR212) 2008; 12 HE Jeong (504_CR18) 2023; 56 J Kokesch-Himmelreich (504_CR66) 2022; 94 RL Goodall (504_CR245) 2022; 400 G Gunther (504_CR10) 2023; 29 G Lee (504_CR203) 2020; 24 504_CR14 I Motta (504_CR244) 2023 504_CR12 PR Donald (504_CR131) 2007; 63 504_CR11 J Heyckendorf (504_CR71) 2018; 62 GJ Fox (504_CR182) 2016; 62 EM Svensson (504_CR87) 2013; 57 TS Brown (504_CR38) 2021; 7 CU Köser (504_CR121) 2013; 369 J Heyckendorf (504_CR179) 2018; 51 T Wingfield (504_CR20) 2018; 391 DA Maslov (504_CR75) 2020; 9 N Ismail (504_CR61) 2018; 20 A Esmail (504_CR161) 2018; 10 A Lazarchik (504_CR144) 2022; 26 PJ Gómez-González (504_CR37) 2021; 11 K Dheda (504_CR111) 2020; 41 N Rockwood (504_CR134) 2017; 216 A Polesky (504_CR139) 1996; 154 A Cattamanchi (504_CR48) 2011; 56 J Perdigão (504_CR41) 2020; 10 L Tanneau (504_CR95) 2022; 112 KL Ong (504_CR27) 2023; 402 D Chesov (504_CR176) 2019; 23 P Srilohasin (504_CR44) 2020; 9 JL Flynn (504_CR53) 2022; 185 TM Walker (504_CR127) 2015; 15 SE Dorman (504_CR147) 2021; 384 R Otto-Knapp (504_CR181) 2022; 60 A Ghodousi (504_CR240) 2019; 63 S Fatima (504_CR79) 2022; 289 B Bouchet (504_CR196) 2002; 14 GB Migliori (504_CR189) 2018; 52 BS Tegegne (504_CR28) 2018; 7 SR Connor (504_CR186) 2018; 55 I Mokrousov (504_CR55) 2022; 15 M O’Donnell (504_CR130) 2018; 15 EA Kendall (504_CR52) 2021; 203 E Pietersen (504_CR205) 2023; 18 C Gilpin (504_CR117) 2016; 3 A Faustini (504_CR17) 2006; 61 O Ivanova (504_CR201) 2023; 32 ZZ Sultana (504_CR25) 2021; 21 AH Diacon (504_CR214) 2012; 56 C Lange (504_CR215) 2019; 23 DC Adam (504_CR40) 2020; 26 A Esmail (504_CR114) 2023; 29 P Kambli (504_CR124) 2021; 127 DR Tait (504_CR143) 2019; 381 M Li (504_CR216) 2021; 10 I Bergval (504_CR58) 2012; 7 BN Said (504_CR65) 2021; 10 S Wasserman (504_CR98) 2019; 63 K Dheda (504_CR171) 2018; 6 JP Sarathy (504_CR133) 2018; 62 J Mok (504_CR243) 2022; 400 A Radhakrishnan (504_CR76) 2014; 289 SH Wu (504_CR125) 2022; 10 S Patankar (504_CR233) 2023; 208 F Conradie (504_CR155) 2020; 382 F Conradie (504_CR154) 2022; 387 T Paulson (504_CR3) 2013; 502 EM Svensson (504_CR88) 2014; 58 C Maier (504_CR180) 2023; 29 504_CR213 J Kamp (504_CR168) 2017; 49 C Lange (504_CR241) 2023; 4 Y Shimokawa (504_CR94) 2014; 37 AL Manson (504_CR129) 2017; 49 N Sharma (504_CR202) 2020; 67 JR Campbell (504_CR220) 2022; 75 504_CR207 504_CR208 PS Rao (504_CR169) 2023; 62 C Allix-Béguec (504_CR126) 2018; 379 M Pai (504_CR195) 2018; 3 504_CR221 504_CR222 GL Calligaro (504_CR183) 2023; 55 Z Lan (504_CR152) 2020; 8 D Butov (504_CR177) 2020; 24 C Sekaggya-Wiltshire (504_CR163) 2018; 108 N Casali (504_CR107) 2014; 46 C Lange (504_CR170) 2023; 388 BD Agins (504_CR190) 2019; 19 M Batalden (504_CR192) 2016; 25 MJ Boeree (504_CR165) 2015; 191 A Turkova (504_CR149) 2022; 386 504_CR218 504_CR219 504_CR230 EJ Ragan (504_CR204) 2020; 24 504_CR231 504_CR234 504_CR235 504_CR232 504_CR113 N Ndjeka (504_CR157) 2022; 22 HL David (504_CR59) 1970; 20 M Bastard (504_CR26) 2018; 13 S Feuerriegel (504_CR123) 2021; 57 A Bhargava (504_CR24) 2022; 27 Y Zhao (504_CR109) 2012; 366 G Theron (504_CR120) 2014; 383 504_CR228 504_CR225 504_CR226 504_CR229 B Frascella (504_CR51) 2021; 73 H Hoffmann (504_CR103) 2016; 193 QH Nguyen (504_CR64) 2018; 11 E Chesov (504_CR239) 2022; 59 K Dheda (504_CR60) 2017; 5 504_CR97 J Taylor (504_CR198) 2023; 59 HP Grobbel (504_CR128) 2021; 73 S Gagneux (504_CR106) 2009; 15 504_CR116 504_CR115 504_CR118 504_CR236 504_CR237 C Padmapriyadarsini (504_CR246) 2022; 76 504_CR119 AA Vatlin (504_CR77) 2021; 12 JG Pasipanodya (504_CR162) 2013; 208 JS Peters (504_CR80) 2020; 54 O Oxlade (504_CR23) 2012; 7 S Gagneux (504_CR110) 2006; 2 C Lienhardt (504_CR22) 2012; 10 Z Wu (504_CR84) 2022; 12 L Tanneau (504_CR91) 2020; 86 MC Becerra (504_CR32) 2019; 367 F Cobelens (504_CR191) 2012; 9 504_CR249 R Ragonnet (504_CR137) 2017; 17 W Manosuthi (504_CR86) 2016; 13 MA Behr (504_CR211) 2019; 367 D Chesov (504_CR178) 2021; 57 504_CR248 C Maugans (504_CR223) 2023; 27 HK Musonda (504_CR227) 2022; 26 S de Vallière (504_CR200) 2004; 8 HC Li (504_CR83) 2020; 95 504_CR141 504_CR140 504_CR142 P Ashley-Norman (504_CR206) 2023; 23 504_CR4 J Domínguez (504_CR54) 2023; 23 504_CR2 504_CR1 KCS Ng (504_CR105) 2019; 57 JG Pasipanodya (504_CR132) 2013; 57 504_CR146 MZ Imperial (504_CR99) 2022; 74 H Myburgh (504_CR184) 2023; 3 504_CR74 L Mota (504_CR164) 2016; 20 504_CR73 K Dheda (504_CR39) 2019; 7 H Fan (504_CR197) 2021; 9 A Bateson (504_CR36) 2022; 77 504_CR138 CA Sara (504_CR43) 2018; 52 A Grimsrud (504_CR194) 2016; 19 M Merker (504_CR108) 2015; 47 F Vaziri (504_CR45) 2019; 57 504_CR151 K Dheda (504_CR210) 2012; 379 M Pai (504_CR193) 2014; 2 BT Nyang’wa (504_CR158) 2022; 387 M Vree (504_CR135) 2007; 11 RS Salvato (504_CR42) 2021; 58 L Guglielmetti (504_CR93) 2018; 52 I Bykov (504_CR16) 2022; 22 B Sossen (504_CR112) 2023; 11 504_CR150 X Hu (504_CR82) 2021; 10 504_CR8 504_CR7 KE Dooley (504_CR96) 2014; 58 504_CR148 504_CR6 G Theron (504_CR33) 2020; 26 504_CR5 M Ye (504_CR104) 2021; 20 S Wasserman (504_CR100) 2016; 14 Y Liu (504_CR217) 2022; 73-74 |
| References_xml | – reference: TanneauLPopulation pharmacokinetics of delamanid and its main metabolite DM-6705 in drug-resistant tuberculosis patients receiving delamanid alone or coadministered with bedaquilineClin. Pharmacokinet.202261117711851:CAS:528:DC%2BB38XitV2mtrnP35668346934916010.1007/s40262-022-01133-2 – reference: GilpinCKorobitsynAWeyerKCurrent tools available for the diagnosis of drug-resistant tuberculosisTher. Adv. Infect. Dis.201631451511:CAS:528:DC%2BC2sXhslWitLvN283864075375090 – reference: IvanovaOHoffmannVSLangeCHoelscherMRachowAPost-tuberculosis lung impairment: systematic review and meta-analysis of spirometry data from 14 621 peopleEur. Respir. Rev.202332220221370761751011395410.1183/16000617.0221-2022 – reference: LangeCPerspective for precision medicine for tuberculosisFront. Immunol.2020115666081:CAS:528:DC%2BB3cXis1KjurvM33117351757824810.3389/fimmu.2020.566608 – reference: TB Alliance. SimpliciTB results and heapatic safety of pretomanid regimens +/− pyrazinamide. TB Alliancehttps://www.croiconference.org/abstract/simplicitb-results-and-hepatic-safety-of-pretomanid-regimens-pyrazinamide/#:~:Text=Conclusions%3A,6%2D7%25%20of%20patients (2023). – reference: TaylorJResidual respiratory disability after successful treatment of pulmonary tuberculosis: a systematic review and meta-analysisEClinicalMedicine202359101979372059231018936410.1016/j.eclinm.2023.101979Demonstrates that there was significant pulmonary disability after successful treatment of pulmonary tuberculosis highlighting this condition as a non-communicable disease of global epidemic proportions. – reference: LiuYSafety and pharmacokinetic profile of pretomanid in healthy Chinese adults: results of a phase I single dose escalation studyPulm. Pharmacol. Ther.202273-741021321:CAS:528:DC%2BB38XhtlGiurvO3559500310.1016/j.pupt.2022.102132 – reference: GagneuxSFitness cost of drug resistance in Mycobacterium tuberculosisClin. Microbiol. Infect.200915Suppl. 166681922036010.1111/j.1469-0691.2008.02685.x – reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT01990274?term=NCT01990274&rank=1 (2015). – reference: KoehlerNPretomanid-resistant tuberculosisJ. Infect.2023865205243673886210.1016/j.jinf.2023.01.039 – reference: MyburghHA scoping review of patient-centred tuberculosis care interventions: gaps and opportunitiesPLoS Glob. Public Health20233369630711002174410.1371/journal.pgph.0001357 – reference: TurkovaAShorter treatment for nonsevere tuberculosis in African and Indian childrenN. Engl. J. Med.20223869119221:CAS:528:DC%2BB38XnsVOnurc%3D35263517761249610.1056/NEJMoa2104535 – reference: HeyckendorfJWhat is resistance? Impact of phenotypic versus molecular drug resistance testing on therapy for multi- and extensively drug-resistant tuberculosisAntimicrob. Agents Chemother.201862e01550-1729133554578681410.1128/AAC.01550-17 – reference: WHO. Meeting Report of the WHO Expert Consultation on Drug-Resistant Tuberculosis Treatment Outcome Definitions. World Health Organizationhttps://www.who.int/publications/i/item/9789240022195 (2021). – reference: Allix-BéguecCPrediction of susceptibility to first-line tuberculosis drugs by DNA sequencingN. Engl. J. Med.2018379140314153028064610.1056/NEJMoa1800474 – reference: GrobbelHPDesign of multidrug-resistant tuberculosis treatment regimens based on DNA sequencingClin. Infect. Dis.202173119412021:CAS:528:DC%2BB3MXit12rs7fP33900387849221410.1093/cid/ciab359 – reference: DhedaKMakambwaEEsmailAThe great masquerader: tuberculosis presenting as community-acquired pneumoniaSemin. Respir. Crit. Care Med.2020415926043256434710.1055/s-0040-1710583 – reference: BastardMOutcomes of HIV-infected versus HIV-non-infected patients treated for drug-resistance tuberculosis: multicenter cohort studyPLoS ONE20181329518098584327010.1371/journal.pone.0193491 – reference: LiHCGenome-wide DNA methylation and transcriptome and proteome changes in Mycobacterium tuberculosis with para-aminosalicylic acid resistanceChem. Biol. Drug Des.2020951041121:CAS:528:DC%2BC1MXitFWntbvF3156269010.1111/cbdd.13625 – reference: CalligaroGLOutcomes of patients undergoing lung resection for drug-resistant TB and the prognostic significance of pre-operative positron emission tomography/computed tomography (PET/CT) in predicting treatment failureEClinicalMedicine2023551017283638604010.1016/j.eclinm.2022.101728 – reference: BykovIFactors contributing to the high prevalence of multidrug-resistance/rifampicin-resistance in patients with tuberculosis: an epidemiological cross sectional and qualitative study from Khabarovsk Krai region of RussiaBMC Infect. Dis.20222235831812928117810.1186/s12879-022-07598-7 – reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT04062201?term=NCT04062201&rank=1 (2022). – reference: The Economist Intelligence Unit. It’s time to end drug-resistant tuberculosis. The Economisthttps://www.eiu.com/graphics/marketing/pdf/its-time-to-end-drug-resistant-tuberculosis-full-report.pdf (2019). – reference: SharmaNA comparison of patient treatment pathways among multidrug-resistant and drug-sensitive TB cases in Delhi, India: a cross-sectional studyIndian J. Tuberculosis20206750250810.1016/j.ijtb.2020.07.020 – reference: SaraCAExtensively drug-resistant tuberculosis in South Africa: genomic evidence supporting transmission in communitiesERJ201852180024610.1183/13993003.00246-2018 – reference: LangeCManagement of patients with multidrug-resistant tuberculosisInt. J. Tuberc. Lung Dis.2019236456621:STN:280:DC%2BB3Mzotleruw%3D%3D3131569610.5588/ijtld.18.0622 – reference: PoleskyARifampin preventive therapy for tuberculosis in Boston’s homelessAm. J. Respir. Crit. Care Med.1996154147314771:STN:280:DyaK2s%2FmvFOrtQ%3D%3D891276710.1164/ajrccm.154.5.8912767 – reference: Sekaggya-WiltshireCThe utility of pharmacokinetic studies for the evaluation of exposure-response relationships for standard dose anti-tuberculosis drugsTuberculosis201810877821:CAS:528:DC%2BC2sXhsl2qtbzN2952333110.1016/j.tube.2017.11.004 – reference: The CRyPTIC Consortium.A data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibioticsPLoS Biol.202220936301010.1371/journal.pbio.3001721 – reference: WHO. Tuberculosis preventive treatment: rapid communication. World Health Organizationhttps://www.who.int/publications/i/item/9789240089723 (2024). – reference: ChesovDImpact of bedaquiline on treatment outcomes of multidrug-resistant tuberculosis in a high-burden countryEur. Respir. J.20215720025441:CAS:528:DC%2BB3MXhsFGrsL%2FF3333494210.1183/13993003.02544-2020 – reference: SarathyJPExtreme drug tolerance of Mycobacterium tuberculosis in caseumAntimicrob. Agents Chemother.201862e02266e0231729203492578676410.1128/AAC.02266-17 – reference: JeongHESocioeconomic disparities and multidrug-resistant tuberculosis in South Korea: focus on immigrants and income levelsJ. Microbiol. Immunol. Infect.2023564244283611579110.1016/j.jmii.2022.08.014 – reference: FanHPulmonary tuberculosis as a risk factor for chronic obstructive pulmonary disease: a systematic review and meta-analysisAnn. Transl. Med.2021939033842611803337610.21037/atm-20-4576 – reference: PAN-TB collaboration. Project to accelerate new treatments for tuberculosis (PAN-TB). PAN-TBhttps://www.pan-tb.org/newsroom/ (2021). – reference: Golightly, L. K. et al. Renal Pharmacotherapy. Dosage Adjustment of Medications Eliminated by the Kidneys (Springer, 2013). – reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT02589782?term=NCT02589782&rank=1 (2021). – reference: MotaLTherapeutic drug monitoring in anti-tuberculosis treatment: a systematic review and meta-analysisInt. J. Tuberc. Lung Dis.2016208198261:STN:280:DC%2BC28bntlCnsA%3D%3D2715518710.5588/ijtld.15.0803 – reference: KambliPTargeted next generation sequencing directly from sputum for comprehensive genetic information on drug resistant Mycobacterium tuberculosisTuberculosis20211271020511:CAS:528:DC%2BB3MXktFyhtbs%3D3345044810.1016/j.tube.2021.102051 – reference: SvenssonEMKarlssonMOModelling of mycobacterial load reveals bedaquiline’s exposure–response relationship in patients with drug-resistant TBJ. Antimicrob. Chemother.201772339834051:CAS:528:DC%2BC1cXhvVWrs7jJ28961790589076810.1093/jac/dkx317 – reference: SossenBThe natural history of untreated pulmonary tuberculosis in adults: a systematic review and meta-analysisLancet Respir. Med.2023113673793696679510.1016/S2213-2600(23)00097-8 – reference: FatimaSEpigenetic code during mycobacterial infections: therapeutic implications for tuberculosisFEBS J.2022289417241911:CAS:528:DC%2BB3MXitVGntL%2FL3445386510.1111/febs.16170 – reference: NICE. Tuberculosis: NICE guideline 33. National Institute for Health and Care Excellencehttps://www.nice.org.uk/guidance/ng33 (2016). – reference: AsaadMMethylation in Mycobacterium–host interaction and implications for novel control measuresInfect. Genet. Evol.2020831043501:CAS:528:DC%2BB3cXptVChtro%3D3238031210.1016/j.meegid.2020.104350 – reference: MiglioriGBSotgiuGRosales-KlintzSvan der WerfMJEuropean Union standard for tuberculosis care on treatment of multidrug-resistant tuberculosis following new World Health Organization recommendationsEur. Respir. J.20185218016173020920010.1183/13993003.01617-2018 – reference: Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis (WHO, 2008). – reference: ImperialMZNedelmanJRConradieFSavicRMProposed linezolid dosing strategies to minimize adverse events for treatment of extensively drug-resistant tuberculosisClin. Infect. Dis.202274173617471:CAS:528:DC%2BB38Xhs1ehs7vK3460490110.1093/cid/ciab699 – reference: DormanSEFour-month rifapentine regimens with or without moxifloxacin for tuberculosisN. Engl. J. Med.2021384170517181:CAS:528:DC%2BB3MXhtVCitrfE33951360828232910.1056/NEJMoa2033400 – reference: XuGHuXLianYLiXDiabetes mellitus affects the treatment outcomes of drug-resistant tuberculosis: a systematic review and meta-analysisBMC Infect. Dis.202323379861461066265410.1186/s12879-023-08765-0 – reference: GrimsrudAReimagining HIV service delivery: the role of differentiated care from prevention to suppressionJ. Int. AIDS Soc.20161927914186513613710.7448/IAS.19.1.21484 – reference: WHO. WHO TB country, regional and global profiles. World Health Organizationhttps://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&lan=%22EN%22&entity_type=%22country%22&iso2=%22AF%22 (2022). – reference: DhedaKMiglioriGBThe global rise of extensively drug-resistant tuberculosis: is the time to bring back sanatoria now overdueLancet20123797737752203302010.1016/S0140-6736(11)61062-3 – reference: MusondaHKRosePCSwitalaJSchaafHSPaediatric admissions to a TB hospital: reasons for admission, clinical profile and outcomesInt. J. Tuberc. Lung Dis.2022262172231:STN:280:DC%2BB2M3kvVyhsw%3D%3D3519716110.5588/ijtld.21.0538 – reference: WassermanSLinezolid pharmacokinetics in South African patients with drug-resistant tuberculosis and a high prevalence of HIV coinfectionAntimicrob. Agents Chemother.201963e02164-1830617089639589910.1128/AAC.02164-18 – reference: GoodallRLEvaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trialLancet2022400185818681:CAS:528:DC%2BB38XivVChsrbJ36368336761482410.1016/S0140-6736(22)02078-5 – reference: FregoneseFComparison of different treatments for isoniazid-resistant tuberculosis: an individual patient data meta-analysisLancet Respir. Med.2018626527529595509901709610.1016/S2213-2600(18)30078-X – reference: PietersenEVariation in missed doses and reasons for discontinuation of anti-tuberculosis drugs during hospital treatment for drug-resistant tuberculosis in South AfricaPLoS ONE2023181:CAS:528:DC%2BB3sXjs1Oqtrg%3D36780443992500710.1371/journal.pone.0281097 – reference: SvenssonEMModel-based estimates of the effects of efavirenz on bedaquiline pharmacokinetics and suggested dose adjustments for patients coinfected with HIV and tuberculosisAntimicrob. Agents Chemother.201357278027871:CAS:528:DC%2BC3sXoslyrtrs%3D23571542371616110.1128/AAC.00191-13 – reference: ManosuthiWWiboonchutikulSSungkanuparphSIntegrated therapy for HIV and tuberculosisAIDS Res. Ther.20161327182275486640510.1186/s12981-016-0106-y – reference: DonaldPRThe influence of dose and N-acetyltransferase-2 (NAT2) genotype and phenotype on the pharmacokinetics and pharmacodynamics of isoniazidEur. J. Clin. Pharmacol.2007636336391:CAS:528:DC%2BD2sXmtlGkt7w%3D1750582110.1007/s00228-007-0305-5 – reference: BatesonAAncient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanidJ. Antimicrob. Chemother.202277168516931:CAS:528:DC%2BB38Xhsl2gur3N35260883915560210.1093/jac/dkac070 – reference: WHO. Use of bedaquiline in children and adolescents with multidrug- and rifampicin-resistant tuberculosis: information note. World Health Organizationhttps://www.who.int/publications/i/item/9789240074286 (2023). – reference: MerkerMEvolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineageNat. Genet.2015472422491:CAS:528:DC%2BC2MXhtFKjs7Y%3D2559940010.1038/ng.3195 – reference: DavidHLProbability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosisAppl. Microbiol.1970208108141:CAS:528:DyaE3MXitVKltg%3D%3D499192737705310.1128/am.20.5.810-814.1970 – reference: WHO Global Tuberculosis Programme. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. World Health Organizationhttps://www.who.int/publications/i/item/9789240028173 (2021). – reference: BataldenMCoproduction of healthcare serviceBMJ Qual. Saf.2016255095172637667410.1136/bmjqs-2015-004315 – reference: WalkerTMWhole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort studyLancet Infect. Dis.201515119312021:CAS:528:DC%2BC2MXhtFSjtrrM26116186457948210.1016/S1473-3099(15)00062-6 – reference: DhedaKDrug-penetration gradients associated with acquired drug resistance in patients with tuberculosisAm. J. Respir. Crit. Care Med.2018198120812191:CAS:528:DC%2BC1MXhtVent77M29877726622157310.1164/rccm.201711-2333OCComprehensive study outlining the differential penetration of drugs into TB cavities and its association with resistance amplification. – reference: DhedaKOutcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: a prospective cohort studyLancet Respir. Med.201752692812810986910.1016/S2213-2600(16)30433-7 – reference: ECDC. European Union standards for tuberculosis care - 2017 update. European Centre for Disease Prevention and Controlhttps://www.ecdc.europa.eu/en/publications-data/european-union-standards-tuberculosis-care-2017-update (2018). – reference: RangakaMXPredictive value of interferon-γ release assays for incident active tuberculosis: a systematic review and meta-analysisLancet Infect. Dis.20121245551:CAS:528:DC%2BC38XhtVClsw%3D%3D2184659210.1016/S1473-3099(11)70210-9 – reference: EsmailAAn all-oral 6-month regimen for multidrug-resistant tuberculosis: a multicenter, randomized controlled clinical trial (the NExT Study)Am. J. Respir. Crit. Care Med.2022205121412271:CAS:528:DC%2BB38XhsVyqsbjP3517590510.1164/rccm.202107-1779OCRCT of 6-month all-oral regimen for MDR-TB demonstrating the ability of such a regimen to improve outcomes within the context of a controlled trial. – reference: RaganEJThe impact of alcohol use on tuberculosis treatment outcomes: a systematic review and meta-analysisInt. J. Tuberc. Lung Dis.20202473821:STN:280:DC%2BB38%2FmvVCltg%3D%3D3200530910.5588/ijtld.19.0080 – reference: PaulsonTEpidemiology: a mortal foeNature2013502S2S32410807810.1038/502S2a – reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT02333799?term=NCT02333799&rank=1 (2020). – reference: LanZDrug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysisLancet Respir. Med.202083833941:CAS:528:DC%2BB3cXltFyrsbY%3D32192585738439810.1016/S2213-2600(20)30047-3 – reference: ISRCTN registry. Tuberculosis Child Multidrug-Resistant Preventive Therapy: TB CHAMP trial. https://www.isrctn.com/ISRCTN92634082 (2022). – reference: KampJSimple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosisInt. J. Antimicrob. Agents2017496886941:CAS:528:DC%2BC2sXls1ygurg%3D2838935210.1016/j.ijantimicag.2017.01.017 – reference: PadmapriyadarsiniCBedaquiline, delamanid, linezolid, and clofazimine for treatment of pre-extensively drug-resistant tuberculosisClin. Infect. Dis.202276e938e94635767251990750010.1093/cid/ciac528 – reference: WilbyKJHussainFNA review of clinical pharmacokinetic and pharmacodynamic relationships and clinical implications for drugs used to treat multi-drug resistant tuberculosisEur. J. Drug Metab. Pharmacokinet.2020453053131:CAS:528:DC%2BB3cXmvFKjsg%3D%3D3192574510.1007/s13318-019-00604-5 – reference: BrownTSEvolution and emergence of multidrug-resistant Mycobacterium tuberculosis in Chisinau, MoldovaMicrob. Genom.202170006201:CAS:528:DC%2BB3MXisFCku7zP344317628549355 – reference: ShimokawaYSasaharaKYodaNMizunoKUmeharaKDelamanid does not inhibit or induce cytochrome P450 enzymes in vitroBiol. Pharm. Bull.201437172717351:CAS:528:DC%2BC2MXktV2htg%3D%3D2536647810.1248/bpb.b14-00311 – reference: The Sentinel Project for Pediatric Drug-Resistant Tuberculosis. Management of Drug-Resistant Tuberculosis In Children: A Field Guide (Boston, 2021). – reference: LiMPhase 1 study of the effects of the tuberculosis treatment pretomanid, alone and in combination with moxifloxacin, on the QTcClin. Pharmacol. Drug Dev.2021106346463337813910.1002/cpdd.898 – reference: Du, D. H. et al. The effect of M. tuberculosis lineage on clinical phenotype. Preprint at medRxivhttps://doi.org/10.1101/2023.03.14.23287284 (2023). – reference: NahidPTreatment of drug-resistant tuberculosis. an official ATS/CDC/ERS/IDSA clinical practice guidelineAm. J. Respir. Crit. Care Med.2019200e93e14231729908685748510.1164/rccm.201909-1874ST – reference: WHO. WHO standard: universal access to rapid tuberculosis diagnostics. World Health Organizationhttps://www.who.int/publications/i/item/9789240071315 (2023). – reference: DomínguezJClinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statementLancet Infect. Dis.202323e122e1373686825310.1016/S1473-3099(22)00875-1 – reference: RaoPSAlternative methods for therapeutic drug monitoring and dose adjustment of tuberculosis treatment in clinical settings: a systematic reviewClin. Pharmacokinet.2023623753981:CAS:528:DC%2BB3sXltlGgsrk%3D368691701004291510.1007/s40262-023-01220-y – reference: TegegneBSMengeshaMMTeferraAAAwokeMAHabtewoldTDAssociation between diabetes mellitus and multi-drug-resistant tuberculosis: evidence from a systematic review and meta-analysisSyst. Rev.2018730322409619055710.1186/s13643-018-0828-0 – reference: SvenssonEMDooleyKEKarlssonMOImpact of lopinavir–ritonavir or nevirapine on bedaquiline exposures and potential implications for patients with tuberculosis–HIV coinfectionAntimicrob. Agents Chemother.2014586406641225114140424940510.1128/AAC.03246-14 – reference: MaugansCBest practices for the care of pregnant people living with TBInt. J. Tuberc. Lung Dis.2023273573661:STN:280:DC%2BB2s7ptFyqsg%3D%3D371432221017148910.5588/ijtld.23.0031 – reference: Ashley-NormanPBalancing tuberculosis therapy and substance useLancet Infect. Dis.20232354210.1016/S1473-3099(23)00194-9 – reference: MaslovDAShurKVVatlinAADanilenkoVNMmpS5–MmpL5 transporters provide Mycobacterium smegmatis resistance to imidazo[1,2-b][1,2,4,5]tetrazinesPathogens202091661:CAS:528:DC%2BB3cXisFGgtL3J32121069715756310.3390/pathogens9030166 – reference: LienhardtCGlobal tuberculosis control: lessons learnt and future prospectsNat. Rev. Microbiol.2012104074161:CAS:528:DC%2BC38XmvFCitLs%3D2258036410.1038/nrmicro2797 – reference: LazarchikANyaruhiriraAUChiangCYWaresFHorsburghCRGlobal availability of susceptibility testing for second-line anti-tuberculosis agentsInt. J. Tuberc. Lung Dis.2022265245281:STN:280:DC%2BB2MjgtFensQ%3D%3D3565070810.5588/ijtld.21.0420 – reference: LoiseauCThe relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspotNat. Commun.20231419881:CAS:528:DC%2BB3sXnslWksLY%3D370312251008283110.1038/s41467-023-37719-y – reference: VaziriFGenetic diversity of multi- and extensively drug-resistant Mycobacterium tuberculosis isolates in the capital of iran, revealed by whole-genome sequencingJ. Clin. Microbiol.201957e01477e015181:CAS:528:DC%2BC1MXhtFagsb%2FO30404943632247210.1128/JCM.01477-18 – reference: Huynh, D. & Nguyen, N. Q. in Diet and Nutrition in Critical Care (eds Rajendram, R., Preedy, V. R. & Patel V. B.) (Springer, 2015). – reference: Ethics Guidance for the Implementation of the End TB Strategy (WHO, 2017). – reference: ConradieFBedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosisN. Engl. J. Med.20223878108231:CAS:528:DC%2BB38XitlCqu7%2FM36053506949030210.1056/NEJMoa2119430Demonstrates that the BPaL regimen performed well in patients with pre-XDR-TB, XDR-TB and MDR-TB treatment failures. – reference: WHO. Definitions. World Health Organizationhttps://tbksp.org/en/node/1882 (2023). – reference: TheronGBacterial and host determinants of cough aerosol culture positivity in patients with drug-resistant versus drug-susceptible tuberculosisNat. Med.202026143514431:CAS:528:DC%2BB3cXht1yjtbfI32601338835387210.1038/s41591-020-0940-2Work indicating that DR-TB strains were as infectious as DS-TB strains, and that infectiousness was not associated withM. tuberculosisgenetic variants (suggesting that epigenetic factors or host–pathogen interactions are likely important in the pathogenesis of resistance amplification). – reference: NguyenQHContaminLNguyenTVABañulsALInsights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosisEvol. Appl.2018111498151130344622618345710.1111/eva.12654 – reference: PaiHBedaquiline safety, efficacy, utilization and emergence of resistance following treatment of multidrug-resistant tuberculosis patients in South Africa: a retrospective cohort analysisBMC Infect. Dis.2022221:CAS:528:DC%2BB38XjtVelsrvO36414938968284010.1186/s12879-022-07861-x – reference: UN. Resolution adopted by the General Assembly on 25 September 2015. 70/1. Transforming our world: the 2030 Agenda for Sustainable Development. United Nationshttps://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (2015). – reference: SrilohasinPGenomic evidence supporting the clonal expansion of extensively drug-resistant tuberculosis bacteria belonging to a rare proto-Beijing genotypeEmerg. Microbes Infect.20209263226411:CAS:528:DC%2BB3MXkvFGksL4%3D33205698773829810.1080/22221751.2020.1852891 – reference: ZhaoYNational survey of drug-resistant tuberculosis in ChinaN. Engl. J. Med.2012366216121701:CAS:528:DC%2BC38XovVShs7c%3D2267090210.1056/NEJMoa1108789 – reference: TheronGFeasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trialLancet20143834244351:CAS:528:DC%2BC3sXhslSmt7fL2417614410.1016/S0140-6736(13)62073-5 – reference: LangeCVasiliuAMandalakasAMEmerging bedaquiline-resistant tuberculosisLancet Microbe20234e964e9653793163910.1016/S2666-5247(23)00321-X – reference: HeyckendorfJRelapse-free cure from multidrug-resistant tuberculosis in GermanyEur. Respir. J.20185117021222946720510.1183/13993003.02122-2017 – reference: Kokesch-HimmelreichJDo anti-tuberculosis drugs reach their target? — high-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging provides information on drug penetration into necrotic granulomasAnal. Chem.202294548354921:CAS:528:DC%2BB38XotVOntrc%3D3534433910.1021/acs.analchem.1c03462 – reference: Australian New Zealand Clinical Trials Registry. The V-QUIN MDR TRIAL: A Randomized Controlled Trial of Six Months of Daily Levofloxacin for the Prevention of Tuberculosis Among Household Contacts of Patients with Multi-Drug Resistant Tuberculosis. https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=369817 (2019). – reference: WHO. Consensus meeting report: development of a target product profile (TPP) and a framework for evaluation for a test for predicting progression from tuberculosis infection to active disease. World Health Organizationhttps://www.who.int/publications/i/item/WHO-HTM-TB-2017.18 (2017). – reference: WHO. Global Tuberculosis Report 2022.World Health Organizationhttps://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (2022). – reference: EsmailASaburNFOkpechiIDhedaKManagement of drug-resistant tuberculosis in special sub-populations including those with HIV co-infection, pregnancy, diabetes, organ-specific dysfunction, and in the critically illJ. Thorac. Dis.2018103102311829997980600607210.21037/jtd.2018.05.11 – reference: WHO. Palliative care fact sheet. World Health Organizationhttps://cdn.who.int/media/docs/default-source/integrated-health-services-(ihs)/palliative-care/palliative-care-essential-facts.pdf?sfvrsn=c5fed6dc_1 (2020). – reference: CampbellJRLow body mass index at treatment initiation and rifampicin-resistant tuberculosis treatment outcomes: an individual participant data meta-analysisClin. Infect. Dis.202275220122101:CAS:528:DC%2BB3sXhtFSltLjJ3547613410.1093/cid/ciac322 – reference: OxladeOMurrayMTuberculosis and poverty: why are the poor at greater risk in India?PLoS ONE201271:CAS:528:DC%2BC38XhvVSrsbbK23185241350150910.1371/journal.pone.0047533 – reference: MansonALGenomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistanceNat. Genet.2017493954021:CAS:528:DC%2BC2sXhtVCls7k%3D28092681540276210.1038/ng.3767 – reference: DhedaKThe epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosisLancet Respir. Med.2017529136010.1016/S2213-2600(17)30079-6 – reference: NdjekaNTreatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort studyLancet Infect. Dis.202222104210511:CAS:528:DC%2BB38Xhtlams77O35512718921775410.1016/S1473-3099(21)00811-2 – reference: KöserCUWhole-genome sequencing for rapid susceptibility testing of M. tuberculosisN. Engl. J. Med.20133692902922386307210.1056/NEJMc1215305 – reference: WalkerTMThe 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysisLancet Microbe20223e265e2731:CAS:528:DC%2BB38Xht1WmsLrI35373160761255410.1016/S2666-5247(21)00301-3 – reference: TaitDRFinal analysis of a trial of M72/AS01(E) vaccine to prevent tuberculosisN. Engl. J. Med.2019381242924391:CAS:528:DC%2BC1MXisV2mt7fN3166119810.1056/NEJMoa1909953Phase II(b) study showing that the M72 vaccine had a 50% efficacy in preventing the development of active TB. This will have implications for reducing both DS-TB and DR-TB burden. – reference: Global Fund. List of tuberculosis pharmaceutical products classified according to the global fund quality assurance policy. The Global Fundhttps://www.theglobalfund.org/media/4757/psm_productstb_list_en.pdf (2023). – reference: International Standards for Tubcerculosis Care. 3rd edn (TB CARE I, 2014). – reference: TanneauLAssessing prolongation of the corrected QT interval with bedaquiline and delamanid coadministration to predict the cardiac safety of simplified dosing regimensClin. Pharmacol. Ther.20221128738811:CAS:528:DC%2BB38XhvFGqs73M35687528947469310.1002/cpt.2685 – reference: Curry International Tuberculosis Center & State of California Department of Public Health Tuberculosis Control Branch. Drug-resistant Tuberculosis: A Survival Guide for Clinicians. 3rd edn (2016). – reference: BoereeMJUNITE4TB: a new consortium for clinical drug and regimen development for TBInt. J. Tuberc. Lung Dis.2021258868891:STN:280:DC%2BB2cjjvFSkug%3D%3D34686229854492210.5588/ijtld.21.0515 – reference: Davies ForsmanLSuboptimal moxifloxacin and levofloxacin drug exposure during treatment of patients with multidrug-resistant tuberculosis: results from a prospective study in ChinaEur. Respir. J.20215720034633315402810.1183/13993003.03463-2020 – reference: VreeMSurvival and relapse rate of tuberculosis patients who successfully completed treatment in VietnamInt. J. Tuberc. Lung Dis.2007113923971:STN:280:DC%2BD2s7ptlSmsg%3D%3D17394684 – reference: OngKLGlobal, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021Lancet202340220323410.1016/S0140-6736(23)01301-6 – reference: SaidBNPharmacodynamic biomarkers for quantifying the mycobacterial effect of high doses of rifampin in patients with rifampin-susceptible pulmonary tuberculosisInt. J. Mycobacteriol.2021104574621:CAS:528:DC%2BB38XjslKrtLs%3D34916467761256710.4103/ijmy.ijmy_178_21 – reference: MokJ9 months of delamanid, linezolid, levofloxacin, and pyrazinamide versus conventional therapy for treatment of fluoroquinolone-sensitive multidrug-resistant tuberculosis (MDR-END): a multicentre, randomised, open-label phase 2/3 non-inferiority trial in South KoreaLancet2022400152215301:CAS:528:DC%2BB38XislCltrnL3652220810.1016/S0140-6736(22)01883-9 – reference: PetersJSGenetic diversity in Mycobacterium tuberculosis clinical isolates and resulting outcomes of tuberculosis infection and diseaseAnnu. Rev. Genet.2020545115371:CAS:528:DC%2BB3cXhvVCju7nI3292679310.1146/annurev-genet-022820-085940 – reference: Gómez-GonzálezPJGenetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanidSci. Rep.20211134593898848454310.1038/s41598-021-98862-4 – reference: FlynnJLChanJImmune cell interactions in tuberculosisCell2022185468247021:CAS:528:DC%2BB38XjtVOqsb%2FE3649375110.1016/j.cell.2022.10.025Comprehensive summary of the immunopathogenesis of TB. – reference: ChesovDFailing treatment of multidrug-resistant tuberculosis: a matter of definitionInt. J. Tuberc. Lung Dis.2019235225241:STN:280:DC%2BB3M7jtlOjsg%3D%3D3106463310.5588/ijtld.18.0756 – reference: VatlinAATranscriptomic profile of Mycobacterium smegmatis in response to an Imidazo[1,2-b][1,2,4,5]tetrazine reveals its possible impact on iron metabolismFront. Microbiol.20211272404234421882837148210.3389/fmicb.2021.724042 – reference: PerdigãoJUsing genomics to understand the origin and dispersion of multidrug and extensively drug resistant tuberculosis in PortugalSci. Rep.20201032054988701896310.1038/s41598-020-59558-3 – reference: RagonnetRTrauerJMDenholmJTMaraisBJMcBrydeESHigh rates of multidrug-resistant and rifampicin-resistant tuberculosis among re-treatment cases: where do they come fromBMC Infect. Dis.20171728061832521759610.1186/s12879-016-2171-1 – reference: SchenaEDelamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC™ MGIT™ 960 systemJ. Antimicrob. Chemother.201671153215391:CAS:528:DC%2BC28XhsVKgsrzM2707610110.1093/jac/dkw044 – reference: FaustiniAHallAJPerucciCARisk factors for multidrug resistant tuberculosis in Europe: a systematic reviewThorax2006611581631:STN:280:DC%2BD28%2FmtVWjtQ%3D%3D1625405610.1136/thx.2005.045963 – reference: WHO. The end TB strategy (WHO, 2015). – reference: HuXThe mycobacterial DNA methyltransferase HsdM decreases intrinsic isoniazid susceptibilityAntibiotics20211013231:CAS:528:DC%2BB38Xisl2nu7g%3D34827261861478010.3390/antibiotics10111323 – reference: YeMAntibiotic heteroresistance in Mycobacterium tuberculosis isolates: a systematic review and meta-analysisAnn. Clin. Microb. Antimicrob.2021207310.1186/s12941-021-00478-z – reference: WHO. Ten Threats to Global Health in 2019. World Health Organizationhttps://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (2019). – reference: GagneuxSImpact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosisPLoS Pathog.2006216789833147904610.1371/journal.ppat.0020061 – reference: O’DonnellMIsoniazid monoresistance: a precursor to multidrug-resistant tuberculosisAnn. Am. Thorac. Soc.20181530630729493332588052510.1513/AnnalsATS.201711-885ED – reference: PasipanodyaJGSerum drug concentrations predictive of pulmonary tuberculosis outcomesJ. Infect. Dis.2013208146414731:CAS:528:DC%2BC3sXhs1SisLnN23901086378957310.1093/infdis/jit352 – reference: Otto-KnappRLong-term multidrug- and rifampicin-resistant tuberculosis treatment outcome by new WHO definitions in GermanyEur. Respir. J.20226022007651:CAS:528:DC%2BB38XjtFGhtL%2FN3642391910.1183/13993003.00765-2022 – reference: ConnorSRPalliative care for tuberculosisJ. Pain. Symptom Manag.201855S178S18010.1016/j.jpainsymman.2017.03.019 – reference: WHO Global Tuberculosis Programme. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. 2nd edn. World Health Organizationhttps://www.who.int/publications/i/item/9789240082410#:~:Text=The%20catalogue%20provides%20a%20reference,countries%20for%20the%2013%20medicines (2023). – reference: BehrMAEdelsteinPHRamakrishnanLIs Mycobacterium tuberculosis infection life long?BMJ2019367l577031649096681259510.1136/bmj.l5770 – reference: GuntherGTreatment outcomes in multidrug-resistant tuberculosisN. Engl. J. Med.2016375110311052762653910.1056/NEJMc1603274 – reference: AdamDCClustering and superspreading potential of SARS-CoV-2 infections in Hong KongNat. Med.202026171417191:CAS:528:DC%2BB3cXhvVGhtL3F3294378710.1038/s41591-020-1092-0 – reference: GuntherGAvailability and costs of medicines for the treatment of tuberculosis in EuropeClin. Microbiol. Infect.20232977843596148810.1016/j.cmi.2022.07.026 – reference: BoereeMJA dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosisAm. J. Respir. Crit. Care Med.2015191105810651:CAS:528:DC%2BC2MXpsFGitbs%3D2565435410.1164/rccm.201407-1264OC – reference: RadhakrishnanACrystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosisJ. Biol. Chem.201428916526165401:CAS:528:DC%2BC2cXptl2qtbs%3D24737322404741910.1074/jbc.M113.538959 – reference: BhargavaABhargavaMBenedittiAKurpadAAttributable is preventable: corrected and revised estimates of population attributable fraction of TB related to undernutrition in 30 high TB burden countriesJ. Clin. Tuberc. Other Mycobact. Dis.2022271003091:CAS:528:DC%2BB3sXjtl2isL4%3D35308808892468310.1016/j.jctube.2022.100309 – reference: ChuHHuYZhangBSunZZhuBDNA methyltransferase HsdM induce drug resistance on Mycobacterium tuberculosis via multiple effectsAntibiotics20211015441:CAS:528:DC%2BB38Xksl2isro%3D34943756869843610.3390/antibiotics10121544 – reference: MottaIRecent advances in the treatment of tuberculosisClin. Microbiol. Infect.202310.1016/j.cmi.2023.07.01337482332 – reference: StrydomNTuberculosis drugs’ distribution and emergence of resistance in patient’s lung lesions: a mechanistic model and tool for regimen and dose optimizationPLoS Med.2019161:CAS:528:DC%2BC1MXisVWhsb7I30939136644541310.1371/journal.pmed.1002773 – reference: HaasDWPharmacogenetics of between-individual variability in plasma clearance of bedaquiline and clofazimine in South AfricaJ. Infect. Dis.20222261471561:CAS:528:DC%2BB38XitFCgs73M35091749937314810.1093/infdis/jiac024 – reference: KendallEAShresthaSDowdyDWThe epidemiological importance of subclinical tuberculosis. A critical reappraisalAm. J. Respir. Crit. Care Med.202120316817433197210787440510.1164/rccm.202006-2394PP – reference: MallickJSNairPAbbewETVan DeunADecrooTAcquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic reviewJAC Antimicrob. Resist.20224dlac02935356403896328610.1093/jacamr/dlac029 – reference: Meeting Report of the WHO Expert Consultation on the Definition of Extensively Drug-Resistant Tuberculosis, 27–29 October 2020. Report No. 9789240018662 (electronic version) 9789240018679 (print version) (WHO, 2021). – reference: Technical Manual for Drug Susceptibility Testing of Medicines Used in the Treatment of Tuberculosis. Report NO. 9789241514842 (WHO, 2018). – reference: ShahNSTransmission of extensively drug-resistant tuberculosis in South AfricaN. Engl. J. Med.201737624325328099825533020810.1056/NEJMoa1604544 – reference: WHO. WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment - Drug-Resistant Tuberculosis Treatment, 2022 Update. World Health Organizationhttps://www.who.int/publications/i/item/9789240063129 (2022). – reference: WHO. Optimizing active case-finding for tuberculosis: implementation lessons from South-East Asia. World Health Organizationhttps://www.who.int/publications/i/item/9789290228486 (2021). – reference: WHO. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children: policy update. World Health Organizationhttps://www.ncbi.nlm.nih.gov/books/NBK258608/ (2013). – reference: ChesovEEmergence of bedaquiline resistance in a high tuberculosis burden countryEur. Respir. J.20225921006211:CAS:528:DC%2BB38XhtFWrurzE34503982894326810.1183/13993003.00621-2021 – reference: MarxFMThe temporal dynamics of relapse and reinfection tuberculosis after successful treatment: a retrospective cohort studyClin. Infect. Dis.201458167616831:CAS:528:DC%2BC2cXptVCgt78%3D2464702010.1093/cid/ciu186 – reference: DhedaKThe intersecting pandemics of tuberculosis and COVID-19: population-level and patient-level impact, clinical presentation, and corrective interventionsLancet Respir. Med.2022106036221:CAS:528:DC%2BB38XotlGjs7g%3D35338841894248110.1016/S2213-2600(22)00092-3 – reference: ButovDMultidrug-resistant tuberculosis in the Kharkiv region, UkraineInt. J. Tuberc. Lung Dis.2020244854911:STN:280:DC%2BB38vlvFGmtg%3D%3D3239819710.5588/ijtld.19.0508 – reference: PatankarSMaking the case for all-oral, shorter regimens for children with drug-resistant tuberculosisAm. J. Respir. Crit. Care Med.2023208130131372765311039549710.1164/rccm.202304-0670VP – reference: PaiMYadavPAnupindiRTuberculosis control needs a complete and patient-centric solutionLancet Glob. Health20142e189e1902510304910.1016/S2214-109X(14)70198-6 – reference: IsmailNOmarSVIsmailNAPetersRPHCollated data of mutation frequencies and associated genetic variants of bedaquiline, clofazimine and linezolid resistance in Mycobacterium tuberculosisData Brief.201820197519831:STN:280:DC%2BB3cznvVequg%3D%3D30306102617243010.1016/j.dib.2018.09.057 – reference: EsmailAComparison of two diagnostic intervention packages for community-based active case finding for tuberculosis: an open-label randomized controlled trialNat. Med.202329100910161:CAS:528:DC%2BB3sXltFGhtb8%3D3689465110.1038/s41591-023-02247-1Validation of an ACF model using a mobile van shows that portable PCR technology can be used to effectively diagnose DR-TB in the community. – reference: GhodousiAAcquisition of cross-resistance to bedaquiline and clofazimine following treatment for tuberculosis in PakistanAntimicrob. Agents Chemother.201963e00915-1931262765670944910.1128/AAC.00915-19 – reference: WHO. Use of targeted next-generation sequencing to detect drug-resistant tuberculosis: rapid communication, July 2023. World Health Organizationhttps://www.who.int/publications/i/item/9789240076372 (2023). – reference: GhoshANSSahaSSurvey of drug resistance associated gene mutations in Mycobacterium tuberculosis, ESKAPE and other bacterial speciesSci. Rep.2020101:CAS:528:DC%2BB3cXhtV2ku7jI32488120726545510.1038/s41598-020-65766-8 – reference: RockwoodNLow frequency of acquired isoniazid and rifampicin resistance in rifampicin-susceptible pulmonary tuberculosis in a setting of high HIV-1 infection and tuberculosis coprevalenceJ. Infect. Dis.20172166326401:CAS:528:DC%2BC1cXitFOqu7nK28934422581562310.1093/infdis/jix337 – reference: Green, A. G. et al. Analysis of genome-wide mutational dependence in naturally evolving Mycobacterium tuberculosis populations. Mol. Biol. Evol.https://doi.org/10.1093/molbev/msad131 (2023). – reference: de VallièreSBarkerRDResidual lung damage after completion of treatment for multidrug-resistant tuberculosisInt. J. Tuberc. Lung Dis.2004876777115182148 – reference: NgKCSHow well do routine molecular diagnostics detect rifampin heteroresistance in Mycobacterium tuberculosis?J. Clin. Microbiol.201957e00717e007191:CAS:528:DC%2BB3cXovVWmt7w%3D31413081681299010.1128/JCM.00717-19 – reference: FengMRisk factors of multidrug-resistant tuberculosis in China: a meta-analysisPublic Health Nurs.2019362572693068079610.1111/phn.12582 – reference: ConradieFTreatment of highly drug-resistant pulmonary tuberculosisN. Engl. J. Med.20203828939021:CAS:528:DC%2BB3cXkvVKrsb0%3D32130813695564010.1056/NEJMoa1901814 – reference: GuptaALifesaving, cost-saving: innovative simplified regimens for drug-resistant tuberculosisPLoS Glob. Public Health20222369626261002168210.1371/journal.pgph.0001287 – reference: McMurray, D. N. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom B. R.) 135–147 (ASM, 1994). – reference: LeeGImpact of mental disorders on active TB treatment outcomes: a systematic review and meta-analysisInt. J. Tuberc. Lung Dis.202024127912841:STN:280:DC%2BB3sznsVyrtg%3D%3D3331767210.5588/ijtld.20.0458 – reference: WuZmbtD and celA1 association with ethambutol resistance in Mycobacterium tuberculosis: a multiomics analysisFront. Cell. Infect. Microbiol.2022129599111:CAS:528:DC%2BB3sXkt1GjsL4%3D36118032947115210.3389/fcimb.2022.959911 – reference: WuSHXiaoYXHsiaoHCJouRDevelopment and assessment of a novel whole-gene-based targeted next-generation sequencing assay for detecting the susceptibility of Mycobacterium tuberculosis to 14 drugsMicrobiol. Spectr.2022103625532810.1128/spectrum.02605-22 – reference: LangeCKohlerNGuntherGRegimens for drug-resistant tuberculosisN. Engl. J. Med.202338819036630637 – reference: CegielskiJPExtensive drug resistance acquired during treatment of multidrug-resistant tuberculosisClin. Infect. Dis.201459104910631:CAS:528:DC%2BC28XhvFWlsL7K25057101418434110.1093/cid/ciu572 – reference: WHO. WHO operational handbook on tuberculosis. Module 4: treatment - drug-resistant tuberculosis treatment, 2022 update. World Health Organizationhttps://www.who.int/publications/i/item/9789240065116 (2022). – reference: FeuerriegelSRapid genomic first- and second-line drug resistance prediction from clinical Mycobacterium tuberculosis specimens using Deeplex-MycTBEur. Respir. J.20215720017961:CAS:528:DC%2BB3MXhvVCms70%3D3276411310.1183/13993003.01796-2020 – reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT04303104?term=NCT04303104&rank=1 (2022). – reference: BecerraMCTransmissibility and potential for disease progression of drug resistant Mycobacterium tuberculosis: prospective cohort studyBMJ2019367l589431649017681258310.1136/bmj.l5894 – reference: WHO. Global Tuberculosis Report 2023. World Health Organizationhttps://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023 (2023). – reference: O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. AMRhttps://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (2016). – reference: WHO Consolidated Guidelines on Drug-resistant Tuberculosis Treatment (WHO, 2019). – reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT02754765 (2023). – reference: MiottoPTranscriptional regulation and drug resistance in Mycobacterium tuberculosisFront. Cell Infect. Microbiol.2022129903121:CAS:528:DC%2BB3sXkt1Cqtbw%3D36118045948083410.3389/fcimb.2022.990312 – reference: HoffmannHDelamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral beijing genotype causing extensively drug-resistant tuberculosis in a tibetan refugeeAm. J. Respir. Crit. Care Med.20161933373401:CAS:528:DC%2BC28XpsFOru7Y%3D2682942510.1164/rccm.201502-0372LE – reference: BergvalIPre-existing isoniazid resistance, but not the genotype of Mycobacterium tuberculosis drives rifampicin resistance codon preference in vitroPLoS ONE201271:CAS:528:DC%2BC38XnsFaktQ%3D%3D22235262325039510.1371/journal.pone.0029108 – reference: WingfieldTTovarMADattaSSaundersMJEvansCAAddressing social determinants to end tuberculosisLancet20183911129113229595481761114010.1016/S0140-6736(18)30484-7 – reference: US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT03568383?term=NCT03568383&rank=1 (2023). – reference: MokrousovIMolecular insight into Mycobacterium tuberculosis resistance to nitrofuranyl amides gained through metagenomics-like analysis of spontaneous mutantsPharmaceuticals20221511361:CAS:528:DC%2BB38XisFagsLzN36145357950400910.3390/ph15091136 – reference: PasipanodyaJGGumboTA meta-analysis of self-administered vs directly observed therapy effect on microbiologic failure, relapse, and acquired drug resistance in tuberculosis patientsClin. Infect. Dis.20135721311:CAS:528:DC%2BC3sXptFeltrk%3D23487389366952510.1093/cid/cit167 – reference: SalvatoRSGenomic-based surveillance reveals high ongoing transmission of multi-drug-resistant Mycobacterium tuberculosis in Southern BrazilInt. J. Antimicrob. Agents2021581064011:CAS:528:DC%2BB3MXhvVSjtLzJ3428940310.1016/j.ijantimicag.2021.106401 – reference: MvelaseNRMlisanaKPXpert MTB/XDR for rapid detection of drug-resistant tuberculosis beyond rifampicinLancet Infect. Dis.2022221561571:CAS:528:DC%2BB38XjvVyiurw%3D3462749510.1016/S1473-3099(21)00481-3 – reference: CobelensFvan KampenSOchodoEAtunRLienhardtCResearch on implementation of interventions in tuberculosis control in low- and middle-income countries: a systematic reviewPLoS Med.2012923271959352552810.1371/journal.pmed.1001358 – reference: WHO. Use of delamanid in children and adolescents with multidrug- and rifampicin-resistant tuberculosis: information note. World Health Organizationhttps://www.who.int/publications/i/item/9789240074309 (2023). – reference: HoltEPhase 2 trial of a novel tuberculosis drug launchedLancet Microbe202410.1016/S2666-5247(23)00401-93838747210914669 – reference: WHO. WHO consolidated guidelines on tuberculosis: module 5: management of tuberculosis in children and adolescents. World Health Organizationhttps://www.who.int/publications/i/item/9789240046764 (2022). – reference: DooleyKEPhase I safety, pharmacokinetics, and pharmacogenetics study of the antituberculosis drug PA-824 with concomitant lopinavir-ritonavir, efavirenz, or rifampinAntimicrob. Agents Chemother.2014585245525224957823413584910.1128/AAC.03332-14 – reference: SultanaZZHIV infection and multidrug resistant tuberculosis: a systematic review and meta-analysisBMC Infect. Dis.20212133430786780216810.1186/s12879-020-05749-2 – reference: DhedaKGumboTLangeCHorsburghCRJr.FurinJPan-tuberculosis regimens: an argument againstLancet Respir. Med.201862402422959550210.1016/S2213-2600(18)30097-3 – reference: BouchetBFranciscoMOvretveitJThe Zambia quality assurance program: successes and challengesInt. J. Qual. Health Care200214Suppl. 189951257279210.1093/intqhc/14.suppl_1.89 – reference: WHO. WHO consolidated guidelines on tuberculosis: Module 4: treatment: drug-susceptible tuberculosis treatment. World Health Organizationhttps://www.who.int/publications/i/item/9789240048126 (2022). – reference: WinterMAGuhrKNBergGMImpact of various body weights and serum creatinine concentrations on the bias and accuracy of the Cockcroft–Gault equationPharmacotherapy2012326046121:CAS:528:DC%2BC38Xht1OnsbrJ2257679110.1002/j.1875-9114.2012.01098.x – reference: CasaliNEvolution and transmission of drug-resistant tuberculosis in a Russian populationNat. Genet.2014462792861:CAS:528:DC%2BC2cXht12itb8%3D24464101393936110.1038/ng.2878 – reference: Nyang’waBTA 24-week, all-oral regimen for rifampin-resistant tuberculosisN. Engl. J. Med.2022387233123433654662510.1056/NEJMoa2117166Demonstration that an all-oral 6-month regimen (BPaLM) produced equivalent outcomes, and with reduced adverse effects, to a longer injectable-containing control regimen. – reference: WHO. Global Research Agenda for Antimicrobial Resistance in Human Health. World Health Organizationhttps://www.who.int/publications/m/item/global-research-agenda-for-antimicrobial-resistance-in-human-health#:~:Text=It%20aims%20to%20guide%20policy,and%2Dmiddle%2Dincome%20countries (2023). – reference: DiaconAHPhase II dose-ranging trial of the early bactericidal activity of PA-824Antimicrob. Agents Chemother.201256302730311:CAS:528:DC%2BC38XnslWrtrk%3D22430968337077710.1128/AAC.06125-11 – reference: PaiMSchumacherSGAbimbolaSSurrogate endpoints in global health research: still searching for killer apps and silver bullets?BMJ Glob. Health2018329607104587354210.1136/bmjgh-2018-000755 – reference: Jones-LópezECCough aerosols of Mycobacterium tuberculosis predict new infection. A household contact studyAm. J. Respir. Crit. Care Med.20131871007101523306539370736610.1164/rccm.201208-1422OC – reference: DhedaKThe Lancet Respiratory Medicine Commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosisLancet Respir. Med.201978208261:CAS:528:DC%2BC1MXhslWnsrjF3148639310.1016/S2213-2600(19)30263-2 – reference: FrascellaBSubclinical tuberculosis disease-a review and analysis of prevalence surveys to inform definitions, burden, associations, and screening methodologyClin. Infect. Dis.202173e830e8413293687710.1093/cid/ciaa1402 – reference: FoxGJSurgery as an adjunctive treatment for multidrug-resistant tuberculosis: an individual patient data metaanalysisClin. Infect. Dis.2016628878952675780410.1093/cid/ciw002 – reference: TornheimJAIncreased moxifloxacin dosing among patients with multidrug-resistant tuberculosis with low-level resistance to moxifloxacin did not improve treatment outcomes in a tertiary care center in Mumbai, IndiaOpen. Forum Infect. Dis.20229ofab6153509715210.1093/ofid/ofab615 – reference: HeyckendorfJPrediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic modelEur. Respir. J.20215820034921:CAS:528:DC%2BB3MXitV2lurzF3357407810.1183/13993003.03492-2020 – reference: ByrneALChronic airflow obstruction after successful treatment of multidrug-resistant tuberculosisERJ Open Res.2017300026-201728717643550716010.1183/23120541.00026-2017 – reference: NunnAJA trial of a shorter regimen for rifampin-resistant tuberculosisN. Engl. J. Med.2019380120112131:CAS:528:DC%2BC1MXntVKisb8%3D3086579110.1056/NEJMoa1811867Randomized controlled trial showing that a shorter 9- to 11-month injection-based regimen had similar outcomes to the longer 18- to 20-month injection-based regimen. This established the foundational basis for treatment shortening. – reference: JanssensJPRiederHLAn ecological analysis of incidence of tuberculosis and ‘per capita′ gross domestic productEur. Respir. J.20083214151897814610.1183/09031936.00078708 – reference: DiNardoARGene expression signatures identify biologically and clinically distinct tuberculosis endotypesEur. Respir. J.202260210226335169026947489210.1183/13993003.02263-2021 – reference: WongSYFunctional role of methylation of G518 of the 16S rRNA 530 loop by GidB in Mycobacterium tuberculosisAntimicrob. Agents Chemother.201357631163181:CAS:528:DC%2BC3sXhvVCjurzN24100503383790310.1128/AAC.00905-13 – reference: MenziesDGardinerGFarhatMGreenawayCPaiMThinking in three dimensions: a web-based algorithm to aid the interpretation of tuberculin skin test resultsInt. J. Tuberc. Lung Dis.2008124985051:STN:280:DC%2BD1c3lvFKhtg%3D%3D18419884 – reference: CattamanchiAInterferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysisJ. Acquir. Immune Defic. Syndr.2011562302381:CAS:528:DC%2BC3MXhvFWgs7s%3D21239993338332810.1097/QAI.0b013e31820b07ab – reference: WassermanSMeintjesGMaartensGLinezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic indexExpert Rev. Anti Infect. Ther.2016149019151:CAS:528:DC%2BC28XhsVehu7vL2753229210.1080/14787210.2016.1225498 – reference: GuglielmettiLQT prolongation and cardiac toxicity of new tuberculosis drugs in Europe: a Tuberculosis Network European Trialsgroup (TBnet) studyEur. Respir. J.20185218005372988065610.1183/13993003.00537-2018 – reference: TanneauLKarlssonMOSvenssonEMUnderstanding the drug exposure-response relationship of bedaquiline to predict efficacy for novel dosing regimens in the treatment of multidrug-resistant tuberculosisBr. J. Clin. Pharmacol.2020869139221:CAS:528:DC%2BB3cXntlamtbs%3D31840278716337310.1111/bcp.14199 – reference: endTB Consortium. endTB clinical trial results. endTBhttps://endtb.org/endtb-clinical-trial-results (2023). – reference: US National Library of Medicine. ClinicalTrials.govhttps://www.clinicaltrials.gov/study/NCT05941052?term=NCT05941052&rank=1 (2023). – reference: AginsBDImproving the cascade of global tuberculosis care: moving from the “what” to the “how” of quality improvementLancet Infect. Dis.201919e437e4433144730510.1016/S1473-3099(19)30420-7 – reference: MaierCLong-term treatment outcomes in patients with multidrug-resistant tuberculosisClin. Microbiol. Infect.2023297517571:CAS:528:DC%2BB3sXls1Omur0%3D3684263710.1016/j.cmi.2023.02.013 – volume: 24 start-page: 485 year: 2020 ident: 504_CR177 publication-title: Int. J. Tuberc. Lung Dis. doi: 10.5588/ijtld.19.0508 – volume: 54 start-page: 511 year: 2020 ident: 504_CR80 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-022820-085940 – volume: 13 year: 2016 ident: 504_CR86 publication-title: AIDS Res. Ther. doi: 10.1186/s12981-016-0106-y – volume: 22 year: 2022 ident: 504_CR16 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-022-07598-7 – volume: 11 start-page: 367 year: 2023 ident: 504_CR112 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(23)00097-8 – volume: 7 year: 2012 ident: 504_CR23 publication-title: PLoS ONE doi: 10.1371/journal.pone.0047533 – volume: 51 start-page: 1702122 year: 2018 ident: 504_CR179 publication-title: Eur. Respir. J. doi: 10.1183/13993003.02122-2017 – volume: 29 start-page: 751 year: 2023 ident: 504_CR180 publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2023.02.013 – ident: 504_CR208 – volume: 10 start-page: 1323 year: 2021 ident: 504_CR82 publication-title: Antibiotics doi: 10.3390/antibiotics10111323 – volume: 18 year: 2023 ident: 504_CR205 publication-title: PLoS ONE doi: 10.1371/journal.pone.0281097 – volume: 29 start-page: 77 year: 2023 ident: 504_CR10 publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2022.07.026 – ident: 504_CR175 – volume: 5 start-page: 269 year: 2017 ident: 504_CR209 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(16)30433-7 – volume: 11 start-page: 392 year: 2007 ident: 504_CR135 publication-title: Int. J. Tuberc. Lung Dis. – volume: 11 start-page: 566608 year: 2020 ident: 504_CR172 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.566608 – volume: 72 start-page: 3398 year: 2017 ident: 504_CR90 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkx317 – ident: 504_CR232 – volume: 60 start-page: 2200765 year: 2022 ident: 504_CR181 publication-title: Eur. Respir. J. doi: 10.1183/13993003.00765-2022 – volume: 32 start-page: 220221 year: 2023 ident: 504_CR201 publication-title: Eur. Respir. Rev. doi: 10.1183/16000617.0221-2022 – volume: 49 start-page: 688 year: 2017 ident: 504_CR168 publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2017.01.017 – ident: 504_CR140 – volume: 402 start-page: 203 year: 2023 ident: 504_CR27 publication-title: Lancet doi: 10.1016/S0140-6736(23)01301-6 – ident: 504_CR226 – volume: 26 start-page: 1714 year: 2020 ident: 504_CR40 publication-title: Nat. Med. doi: 10.1038/s41591-020-1092-0 – volume: 382 start-page: 893 year: 2020 ident: 504_CR155 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1901814 – volume: 12 start-page: 959911 year: 2022 ident: 504_CR84 publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2022.959911 – volume: 59 start-page: 1049 year: 2014 ident: 504_CR102 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciu572 – volume: 5 start-page: 291 year: 2017 ident: 504_CR60 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(17)30079-6 – volume: 59 start-page: 101979 year: 2023 ident: 504_CR198 publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2023.101979 – volume: 4 start-page: dlac029 year: 2022 ident: 504_CR166 publication-title: JAC Antimicrob. Resist. doi: 10.1093/jacamr/dlac029 – volume: 10 start-page: 457 year: 2021 ident: 504_CR65 publication-title: Int. J. Mycobacteriol. doi: 10.4103/ijmy.ijmy_178_21 – ident: 504_CR30 doi: 10.1101/2023.03.14.23287284 – ident: 504_CR237 – volume: 381 start-page: 2429 year: 2019 ident: 504_CR143 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1909953 – ident: 504_CR8 – volume: 62 start-page: e02266 year: 2018 ident: 504_CR133 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02266-17 – volume: 25 start-page: 886 year: 2021 ident: 504_CR247 publication-title: Int. J. Tuberc. Lung Dis. doi: 10.5588/ijtld.21.0515 – volume: 289 start-page: 4172 year: 2022 ident: 504_CR79 publication-title: FEBS J. doi: 10.1111/febs.16170 – year: 2024 ident: 504_CR242 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(23)00401-9 – ident: 504_CR12 – ident: 504_CR141 – ident: 504_CR248 – ident: 504_CR225 – volume: 208 start-page: 1464 year: 2013 ident: 504_CR162 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jit352 – volume: 20 year: 2022 ident: 504_CR68 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001721 – volume: 52 start-page: 1800537 year: 2018 ident: 504_CR93 publication-title: Eur. Respir. J. doi: 10.1183/13993003.00537-2018 – volume: 11 year: 2021 ident: 504_CR37 publication-title: Sci. Rep. doi: 10.1038/s41598-021-98862-4 – volume: 86 start-page: 913 year: 2020 ident: 504_CR91 publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/bcp.14199 – volume: 23 start-page: 542 year: 2023 ident: 504_CR206 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(23)00194-9 – volume: 52 start-page: 1801617 year: 2018 ident: 504_CR189 publication-title: Eur. Respir. J. doi: 10.1183/13993003.01617-2018 – volume: 45 start-page: 305 year: 2020 ident: 504_CR101 publication-title: Eur. J. Drug Metab. Pharmacokinet. doi: 10.1007/s13318-019-00604-5 – ident: 504_CR219 – volume: 12 start-page: 990312 year: 2022 ident: 504_CR69 publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2022.990312 – ident: 504_CR146 – volume: 380 start-page: 1201 year: 2019 ident: 504_CR153 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1811867 – volume: 61 start-page: 158 year: 2006 ident: 504_CR17 publication-title: Thorax doi: 10.1136/thx.2005.045963 – volume: 62 start-page: 887 year: 2016 ident: 504_CR182 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciw002 – volume: 20 start-page: 810 year: 1970 ident: 504_CR59 publication-title: Appl. Microbiol. doi: 10.1128/am.20.5.810-814.1970 – volume: 10 year: 2022 ident: 504_CR125 publication-title: Microbiol. Spectr. doi: 10.1128/spectrum.02605-22 – volume: 15 start-page: 1193 year: 2015 ident: 504_CR127 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(15)00062-6 – volume: 10 start-page: 1544 year: 2021 ident: 504_CR81 publication-title: Antibiotics doi: 10.3390/antibiotics10121544 – volume: 58 start-page: 2003492 year: 2021 ident: 504_CR173 publication-title: Eur. Respir. J. doi: 10.1183/13993003.03492-2020 – volume: 57 start-page: 2002544 year: 2021 ident: 504_CR178 publication-title: Eur. Respir. J. doi: 10.1183/13993003.02544-2020 – ident: 504_CR231 – ident: 504_CR221 doi: 10.1007/978-1-4614-5800-5 – volume: 20 start-page: 819 year: 2016 ident: 504_CR164 publication-title: Int. J. Tuberc. Lung Dis. doi: 10.5588/ijtld.15.0803 – volume: 21 year: 2021 ident: 504_CR25 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-020-05749-2 – volume: 77 start-page: 1685 year: 2022 ident: 504_CR36 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkac070 – volume: 73 start-page: 1194 year: 2021 ident: 504_CR128 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab359 – ident: 504_CR185 – ident: 504_CR14 – ident: 504_CR46 – volume: 56 start-page: 230 year: 2011 ident: 504_CR48 publication-title: J. Acquir. Immune Defic. Syndr. doi: 10.1097/QAI.0b013e31820b07ab – volume: 7 start-page: 820 year: 2019 ident: 504_CR39 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(19)30263-2 – volume: 57 start-page: e01477 year: 2019 ident: 504_CR45 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.01477-18 – volume: 375 start-page: 1103 year: 2016 ident: 504_CR9 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc1603274 – volume: 289 start-page: 16526 year: 2014 ident: 504_CR76 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.538959 – ident: 504_CR138 – volume: 366 start-page: 2161 year: 2012 ident: 504_CR109 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1108789 – ident: 504_CR57 doi: 10.1093/molbev/msad131 – volume: 387 start-page: 810 year: 2022 ident: 504_CR154 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2119430 – ident: 504_CR222 – volume: 7 year: 2018 ident: 504_CR28 publication-title: Syst. Rev. doi: 10.1186/s13643-018-0828-0 – volume: 2 year: 2006 ident: 504_CR110 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0020061 – volume: 83 start-page: 104350 year: 2020 ident: 504_CR78 publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2020.104350 – volume: 24 start-page: 1279 year: 2020 ident: 504_CR203 publication-title: Int. J. Tuberc. Lung Dis. doi: 10.5588/ijtld.20.0458 – volume: 57 start-page: 2780 year: 2013 ident: 504_CR87 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00191-13 – ident: 504_CR151 – volume: 3 year: 2023 ident: 504_CR184 publication-title: PLoS Glob. Public Health doi: 10.1371/journal.pgph.0001357 – ident: 504_CR4 – volume: 95 start-page: 104 year: 2020 ident: 504_CR83 publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.13625 – ident: 504_CR116 – volume: 14 start-page: 901 year: 2016 ident: 504_CR100 publication-title: Expert Rev. Anti Infect. Ther. doi: 10.1080/14787210.2016.1225498 – volume: 60 start-page: 2102263 year: 2022 ident: 504_CR174 publication-title: Eur. Respir. J. doi: 10.1183/13993003.02263-2021 – volume: 8 start-page: 383 year: 2020 ident: 504_CR152 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30047-3 – volume: 14 start-page: 89 issue: Suppl. 1 year: 2002 ident: 504_CR196 publication-title: Int. J. Qual. Health Care doi: 10.1093/intqhc/14.suppl_1.89 – volume: 73 start-page: e830 year: 2021 ident: 504_CR51 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa1402 – volume: 2 start-page: e189 year: 2014 ident: 504_CR193 publication-title: Lancet Glob. Health doi: 10.1016/S2214-109X(14)70198-6 – volume: 10 start-page: 407 year: 2012 ident: 504_CR22 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2797 – volume: 58 start-page: 1676 year: 2014 ident: 504_CR31 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciu186 – volume: 208 start-page: 130 year: 2023 ident: 504_CR233 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.202304-0670VP – volume: 17 year: 2017 ident: 504_CR137 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-016-2171-1 – ident: 504_CR150 – volume: 58 start-page: 5245 year: 2014 ident: 504_CR96 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.03332-14 – volume: 55 start-page: 101728 year: 2023 ident: 504_CR183 publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2022.101728 – volume: 59 start-page: 2100621 year: 2022 ident: 504_CR239 publication-title: Eur. Respir. J. doi: 10.1183/13993003.00621-2021 – volume: 16 year: 2019 ident: 504_CR67 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002773 – volume: 384 start-page: 1705 year: 2021 ident: 504_CR147 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2033400 – volume: 3 start-page: 00026-2017 year: 2017 ident: 504_CR199 publication-title: ERJ Open Res. doi: 10.1183/23120541.00026-2017 – volume: 400 start-page: 1858 year: 2022 ident: 504_CR245 publication-title: Lancet doi: 10.1016/S0140-6736(22)02078-5 – volume: 57 start-page: e00717 year: 2019 ident: 504_CR105 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00717-19 – volume: 205 start-page: 1214 year: 2022 ident: 504_CR156 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.202107-1779OC – volume: 216 start-page: 632 year: 2017 ident: 504_CR134 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix337 – volume: 387 start-page: 2331 year: 2022 ident: 504_CR158 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2117166 – volume: 9 start-page: ofab615 year: 2022 ident: 504_CR72 publication-title: Open. Forum Infect. Dis. doi: 10.1093/ofid/ofab615 – ident: 504_CR249 – volume: 56 start-page: 424 year: 2023 ident: 504_CR18 publication-title: J. Microbiol. Immunol. Infect. doi: 10.1016/j.jmii.2022.08.014 – volume: 57 start-page: 2003463 year: 2021 ident: 504_CR63 publication-title: Eur. Respir. J. doi: 10.1183/13993003.03463-2020 – volume: 41 start-page: 592 year: 2020 ident: 504_CR111 publication-title: Semin. Respir. Crit. Care Med. doi: 10.1055/s-0040-1710583 – volume: 383 start-page: 424 year: 2014 ident: 504_CR120 publication-title: Lancet doi: 10.1016/S0140-6736(13)62073-5 – volume: 388 start-page: 190 year: 2023 ident: 504_CR170 publication-title: N. Engl. J. Med. – volume: 7 start-page: 000620 year: 2021 ident: 504_CR38 publication-title: Microb. Genom. – volume: 36 start-page: 257 year: 2019 ident: 504_CR19 publication-title: Public Health Nurs. doi: 10.1111/phn.12582 – volume: 203 start-page: 168 year: 2021 ident: 504_CR52 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.202006-2394PP – volume: 56 start-page: 3027 year: 2012 ident: 504_CR214 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.06125-11 – volume: 19 start-page: e437 year: 2019 ident: 504_CR190 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(19)30420-7 – volume: 26 start-page: 1435 year: 2020 ident: 504_CR33 publication-title: Nat. Med. doi: 10.1038/s41591-020-0940-2 – volume: 108 start-page: 77 year: 2018 ident: 504_CR163 publication-title: Tuberculosis doi: 10.1016/j.tube.2017.11.004 – volume: 13 year: 2018 ident: 504_CR26 publication-title: PLoS ONE doi: 10.1371/journal.pone.0193491 – volume: 3 year: 2018 ident: 504_CR195 publication-title: BMJ Glob. Health doi: 10.1136/bmjgh-2018-000755 – volume: 63 start-page: 633 year: 2007 ident: 504_CR131 publication-title: Eur. J. Clin. Pharmacol. doi: 10.1007/s00228-007-0305-5 – volume: 193 start-page: 337 year: 2016 ident: 504_CR103 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201502-0372LE – volume: 10 year: 2020 ident: 504_CR41 publication-title: Sci. Rep. doi: 10.1038/s41598-020-59558-3 – ident: 504_CR5 – volume: 10 start-page: 634 year: 2021 ident: 504_CR216 publication-title: Clin. Pharmacol. Drug Dev. doi: 10.1002/cpdd.898 – volume: 187 start-page: 1007 year: 2013 ident: 504_CR47 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201208-1422OC – volume: 12 start-page: 724042 year: 2021 ident: 504_CR77 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.724042 – volume: 58 start-page: 106401 year: 2021 ident: 504_CR42 publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2021.106401 – volume: 55 start-page: S178 year: 2018 ident: 504_CR186 publication-title: J. Pain. Symptom Manag. doi: 10.1016/j.jpainsymman.2017.03.019 – volume: 23 start-page: 645 year: 2019 ident: 504_CR215 publication-title: Int. J. Tuberc. Lung Dis. doi: 10.5588/ijtld.18.0622 – volume: 20 start-page: 1975 year: 2018 ident: 504_CR61 publication-title: Data Brief. doi: 10.1016/j.dib.2018.09.057 – volume: 47 start-page: 242 year: 2015 ident: 504_CR108 publication-title: Nat. Genet. doi: 10.1038/ng.3195 – volume: 57 start-page: 2001796 year: 2021 ident: 504_CR123 publication-title: Eur. Respir. J. doi: 10.1183/13993003.01796-2020 – ident: 504_CR148 – volume: 386 start-page: 911 year: 2022 ident: 504_CR149 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2104535 – volume: 376 start-page: 243 year: 2017 ident: 504_CR34 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1604544 – volume: 200 start-page: e93 year: 2019 ident: 504_CR145 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201909-1874ST – volume: 22 start-page: 156 year: 2022 ident: 504_CR238 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(21)00481-3 – ident: 504_CR97 – volume: 4 start-page: e964 year: 2023 ident: 504_CR241 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(23)00321-X – volume: 73-74 start-page: 102132 year: 2022 ident: 504_CR217 publication-title: Pulm. Pharmacol. Ther. doi: 10.1016/j.pupt.2022.102132 – volume: 369 start-page: 290 year: 2013 ident: 504_CR121 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc1215305 – volume: 112 start-page: 873 year: 2022 ident: 504_CR95 publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.2685 – volume: 94 start-page: 5483 year: 2022 ident: 504_CR66 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c03462 – volume: 57 start-page: 21 year: 2013 ident: 504_CR132 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/cit167 – volume: 49 start-page: 395 year: 2017 ident: 504_CR129 publication-title: Nat. Genet. doi: 10.1038/ng.3767 – volume: 6 start-page: 240 year: 2018 ident: 504_CR171 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(18)30097-3 – volume: 52 start-page: 1800246 year: 2018 ident: 504_CR43 publication-title: ERJ doi: 10.1183/13993003.00246-2018 – volume: 75 start-page: 2201 year: 2022 ident: 504_CR220 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciac322 – volume: 3 start-page: e265 year: 2022 ident: 504_CR122 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(21)00301-3 – volume: 6 start-page: 265 year: 2018 ident: 504_CR136 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(18)30078-X – ident: 504_CR234 – volume: 57 start-page: 6311 year: 2013 ident: 504_CR85 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00905-13 – volume: 26 start-page: 524 year: 2022 ident: 504_CR144 publication-title: Int. J. Tuberc. Lung Dis. doi: 10.5588/ijtld.21.0420 – volume: 63 start-page: e00915-19 year: 2019 ident: 504_CR240 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00915-19 – volume: 62 start-page: e01550-17 year: 2018 ident: 504_CR71 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01550-17 – volume: 15 start-page: 306 year: 2018 ident: 504_CR130 publication-title: Ann. Am. Thorac. Soc. doi: 10.1513/AnnalsATS.201711-885ED – volume: 10 start-page: 3102 year: 2018 ident: 504_CR161 publication-title: J. Thorac. Dis. doi: 10.21037/jtd.2018.05.11 – volume: 23 year: 2023 ident: 504_CR29 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-023-08765-0 – ident: 504_CR115 – ident: 504_CR188 – volume: 62 start-page: 375 year: 2023 ident: 504_CR169 publication-title: Clin. Pharmacokinet. doi: 10.1007/s40262-023-01220-y – volume: 154 start-page: 1473 year: 1996 ident: 504_CR139 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/ajrccm.154.5.8912767 – volume: 58 start-page: 6406 year: 2014 ident: 504_CR88 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.03246-14 – volume: 3 start-page: 145 year: 2016 ident: 504_CR117 publication-title: Ther. Adv. Infect. Dis. – ident: 504_CR228 – volume: 22 year: 2022 ident: 504_CR167 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-022-07861-x – volume: 37 start-page: 1727 year: 2014 ident: 504_CR94 publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.b14-00311 – volume: 26 start-page: 217 year: 2022 ident: 504_CR227 publication-title: Int. J. Tuberc. Lung Dis. doi: 10.5588/ijtld.21.0538 – volume: 63 start-page: e02164-18 year: 2019 ident: 504_CR98 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02164-18 – volume: 9 start-page: 2632 year: 2020 ident: 504_CR44 publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1852891 – ident: 504_CR74 – year: 2023 ident: 504_CR244 publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2023.07.013 – volume: 67 start-page: 502 year: 2020 ident: 504_CR202 publication-title: Indian J. Tuberculosis doi: 10.1016/j.ijtb.2020.07.020 – volume: 10 year: 2020 ident: 504_CR56 publication-title: Sci. Rep. doi: 10.1038/s41598-020-65766-8 – volume: 24 start-page: 73 year: 2020 ident: 504_CR204 publication-title: Int. J. Tuberc. Lung Dis. doi: 10.5588/ijtld.19.0080 – ident: 504_CR6 – volume: 86 start-page: 520 year: 2023 ident: 504_CR70 publication-title: J. Infect. doi: 10.1016/j.jinf.2023.01.039 – volume: 20 start-page: 73 year: 2021 ident: 504_CR104 publication-title: Ann. Clin. Microb. Antimicrob. doi: 10.1186/s12941-021-00478-z – volume: 22 start-page: 1042 year: 2022 ident: 504_CR157 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(21)00811-2 – ident: 504_CR118 – volume: 391 start-page: 1129 year: 2018 ident: 504_CR20 publication-title: Lancet doi: 10.1016/S0140-6736(18)30484-7 – volume: 379 start-page: 773 year: 2012 ident: 504_CR210 publication-title: Lancet doi: 10.1016/S0140-6736(11)61062-3 – volume: 226 start-page: 147 year: 2022 ident: 504_CR89 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiac024 – ident: 504_CR236 – volume: 502 start-page: S2 year: 2013 ident: 504_CR3 publication-title: Nature doi: 10.1038/502S2a – ident: 504_CR1 – volume: 19 year: 2016 ident: 504_CR194 publication-title: J. Int. AIDS Soc. doi: 10.7448/IAS.19.1.21484 – volume: 367 start-page: l5894 year: 2019 ident: 504_CR32 publication-title: BMJ doi: 10.1136/bmj.l5894 – volume: 25 start-page: 509 year: 2016 ident: 504_CR192 publication-title: BMJ Qual. Saf. doi: 10.1136/bmjqs-2015-004315 – ident: 504_CR213 – volume: 32 start-page: 604 year: 2012 ident: 504_CR224 publication-title: Pharmacotherapy doi: 10.1002/j.1875-9114.2012.01098.x – volume: 9 start-page: 390 year: 2021 ident: 504_CR197 publication-title: Ann. Transl. Med. doi: 10.21037/atm-20-4576 – ident: 504_CR113 – volume: 379 start-page: 1403 year: 2018 ident: 504_CR126 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1800474 – volume: 9 start-page: 166 year: 2020 ident: 504_CR75 publication-title: Pathogens doi: 10.3390/pathogens9030166 – volume: 12 start-page: 45 year: 2012 ident: 504_CR49 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(11)70210-9 – volume: 198 start-page: 1208 year: 2018 ident: 504_CR13 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201711-2333OC – volume: 27 start-page: 100309 year: 2022 ident: 504_CR24 publication-title: J. Clin. Tuberc. Other Mycobact. Dis. doi: 10.1016/j.jctube.2022.100309 – volume: 74 start-page: 1736 year: 2022 ident: 504_CR99 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab699 – volume: 7 year: 2012 ident: 504_CR58 publication-title: PLoS ONE doi: 10.1371/journal.pone.0029108 – volume: 191 start-page: 1058 year: 2015 ident: 504_CR165 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201407-1264OC – volume: 10 start-page: 603 year: 2022 ident: 504_CR15 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(22)00092-3 – ident: 504_CR159 – volume: 8 start-page: 767 year: 2004 ident: 504_CR200 publication-title: Int. J. Tuberc. Lung Dis. – volume: 400 start-page: 1522 year: 2022 ident: 504_CR243 publication-title: Lancet doi: 10.1016/S0140-6736(22)01883-9 – ident: 504_CR229 – volume: 15 start-page: 66 issue: Suppl. 1 year: 2009 ident: 504_CR106 publication-title: Clin. Microbiol. Infect. doi: 10.1111/j.1469-0691.2008.02685.x – ident: 504_CR187 – volume: 46 start-page: 279 year: 2014 ident: 504_CR107 publication-title: Nat. Genet. doi: 10.1038/ng.2878 – volume: 185 start-page: 4682 year: 2022 ident: 504_CR53 publication-title: Cell doi: 10.1016/j.cell.2022.10.025 – volume: 23 start-page: e122 year: 2023 ident: 504_CR54 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(22)00875-1 – ident: 504_CR73 – volume: 9 year: 2012 ident: 504_CR191 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001358 – ident: 504_CR50 – volume: 12 start-page: 498 year: 2008 ident: 504_CR212 publication-title: Int. J. Tuberc. Lung Dis. – volume: 23 start-page: 522 year: 2019 ident: 504_CR176 publication-title: Int. J. Tuberc. Lung Dis. doi: 10.5588/ijtld.18.0756 – volume: 27 start-page: 357 year: 2023 ident: 504_CR223 publication-title: Int. J. Tuberc. Lung Dis. doi: 10.5588/ijtld.23.0031 – ident: 504_CR230 – volume: 2 year: 2022 ident: 504_CR160 publication-title: PLoS Glob. Public Health doi: 10.1371/journal.pgph.0001287 – ident: 504_CR7 – volume: 15 start-page: 1136 year: 2022 ident: 504_CR55 publication-title: Pharmaceuticals doi: 10.3390/ph15091136 – volume: 71 start-page: 1532 year: 2016 ident: 504_CR62 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkw044 – volume: 32 start-page: 1415 year: 2008 ident: 504_CR21 publication-title: Eur. Respir. J. doi: 10.1183/09031936.00078708 – ident: 504_CR142 – ident: 504_CR119 – ident: 504_CR207 – volume: 14 start-page: 1988 year: 2023 ident: 504_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37719-y – ident: 504_CR11 – volume: 76 start-page: e938 year: 2022 ident: 504_CR246 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciac528 – ident: 504_CR2 – ident: 504_CR235 – volume: 61 start-page: 1177 year: 2022 ident: 504_CR92 publication-title: Clin. Pharmacokinet. doi: 10.1007/s40262-022-01133-2 – volume: 127 start-page: 102051 year: 2021 ident: 504_CR124 publication-title: Tuberculosis doi: 10.1016/j.tube.2021.102051 – volume: 29 start-page: 1009 year: 2023 ident: 504_CR114 publication-title: Nat. Med. doi: 10.1038/s41591-023-02247-1 – volume: 367 start-page: l5770 year: 2019 ident: 504_CR211 publication-title: BMJ doi: 10.1136/bmj.l5770 – ident: 504_CR218 – volume: 11 start-page: 1498 year: 2018 ident: 504_CR64 publication-title: Evol. Appl. doi: 10.1111/eva.12654 |
| SSID | ssj0001586986 |
| Score | 2.5869377 |
| SecondaryResourceType | review_article |
| Snippet | Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 22 |
| SubjectTerms | 692/699/255/1856 692/700 Antibiotics Antitubercular Agents - pharmacology Antitubercular Agents - therapeutic use Cancer Research Drug resistance Epidemiology Extensively Drug-Resistant Tuberculosis - diagnosis Extensively Drug-Resistant Tuberculosis - drug therapy Extensively Drug-Resistant Tuberculosis - epidemiology Humans Internal Medicine Isoniazid - therapeutic use Medical Microbiology Medicine Medicine & Public Health Multidrug resistant organisms Primer Public health Quality of Life Research Rifampin - therapeutic use Tuberculosis Tuberculosis, Multidrug-Resistant - diagnosis Tuberculosis, Multidrug-Resistant - drug therapy Tuberculosis, Multidrug-Resistant - epidemiology |
| Title | Multidrug-resistant tuberculosis |
| URI | https://link.springer.com/article/10.1038/s41572-024-00504-2 https://www.ncbi.nlm.nih.gov/pubmed/38523140 https://www.proquest.com/docview/2973799878 https://www.proquest.com/docview/2985797754 |
| Volume | 10 |
| WOSCitedRecordID | wos001190193300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database (Proquest) customDbUrl: eissn: 2056-676X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001586986 issn: 2056-676X databaseCode: M7P dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2056-676X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001586986 issn: 2056-676X databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2056-676X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001586986 issn: 2056-676X databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2056-676X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001586986 issn: 2056-676X databaseCode: M2P dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFD-4TUQQP-acdfNSwQeHhjUfbZKnobLhyy5FFO5byUcjg9G79bb-_SZp7r3IcC--FNqmTchJcn7nnOT8AN570CBZiRXCpmKIGeuQFJVBVmuFK821ciySTfD5XCwWsk4Ot1XaVrleE-NCbZcm-MhPA8cS97YBF2c3tyiwRoXoaqLQ2IG9kCWBxq179dbHUorK15zOyhRUnK68vuIEecWEQuYThsjf-ugOyLwTII165-LZ_7b4OTxNiDP_PA2RF_Cg7fbh0WWKqe_Dk8lzl08Hkl7CSTyTa_vxF_KmeICX3ZAPo257M14v_YP8Qx04AfqTA_h5cf7j6zeUCBWQYVgOiCtXqkKoQhsmi6K1zlsbXHhIqIl2jFmNC2kqZUojTFBbmBFFqfawoVSOYPoKdrtl176G3AMvXjllncPSW5TMy5RWsrRUVNzqkmaA193amJRtPJBeXDcx6k1FM4mi8aJooigaksHHzTc3U66Ne0sfr7u9SfNu1Wz7PIN3m9d-xoQwiOra5RjKiJLLkPkvg8NJypvqqPCGubc5M_i0Fvv25_9uy5v723IEj0kcchQRdgy7Qz-2b-Gh-T1crfoZ7PAFj1cxg70v5_P6u7-7JPUsjuY_IOXzzQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggAJ8SivQIEggUQFVhPbiZ0DQgioWrVd7aFIvRnbiRFSlS15gPhT_EbGTrIrVNFbD1wTx3HyjWc-ezwzAC-QNBQ8SzVJbc4Jt6UjhcwtKY3RaW6E0Y6HYhNiNpPHx8V8DX5PsTD-WOWkE4OiLhfW75Fv-xpLAtcGQr47_U581SjvXZ1KaAxisV_9-olLtvbt3kfE9yWlO5-OPuySsaoAsTwtOiK0y3QidWIsL5KkKh1SbiGRFxlqHOelSZPC5tpmVlqvu1NONWMGbWemHU0Z9nsJLiONoDIcFZyv9nQymeOXjrE5CZPbLdpHQQkaQuIzrXBC_7Z_Z0jtGYdssHM7t_63P3Qbbo6MOn4_TIE7sFbVG3D1cDwzsAE3hp3JeAi4ugtbIea4bPqvpKlaT5_rLu56UzW2P1nghfjV3Nc8aLbuwecLGfh9WK8XdfUQYiSWIne6dC4tcMXMUWZZXmQlk7koTcYiSCcYlR2zqfuiHicqePWZVAP0CqFXAXpFI3i9fOZ0yCVybuvNCWY16pVWrTCO4PnyNmoE7-bRdbXofRuZicJnNozgwSBVy9cxmSGh50kEbyYxW3X-77E8On8sz-Da7tHhgTrYm-0_hus0iDsjlG_Cetf01RO4Yn9039rmaZgvMXy5aPH7A5zMS0s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidrug-resistant+tuberculosis&rft.jtitle=Nature+reviews.+Disease+primers&rft.au=Dheda%2C+Keertan&rft.au=Mirzayev%2C+Fuad&rft.au=Cirillo%2C+Daniela+Maria&rft.au=Udwadia%2C+Zarir&rft.date=2024-03-24&rft.issn=2056-676X&rft.eissn=2056-676X&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41572-024-00504-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41572_024_00504_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-676X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-676X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-676X&client=summon |