Deep neural operator for learning transient response of interpenetrating phase composites subject to dynamic loading

Additive manufacturing has been recognized as an industrial technological revolution for manufacturing, which allows fabrication of materials with complex three-dimensional (3D) structures directly from computer-aided design models. Using two or more constituent materials with different physical and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics Jg. 72; H. 3; S. 563 - 576
Hauptverfasser: Lu, Minglei, Mohammadi, Ali, Meng, Zhaoxu, Meng, Xuhui, Li, Gang, Li, Zhen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2023
Springer
Springer Nature B.V
Schlagworte:
ISSN:0178-7675, 1432-0924
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Additive manufacturing has been recognized as an industrial technological revolution for manufacturing, which allows fabrication of materials with complex three-dimensional (3D) structures directly from computer-aided design models. Using two or more constituent materials with different physical and mechanical properties, it becomes possible to construct interpenetrating phase composites (IPCs) with 3D interconnected structures to provide superior mechanical properties as compared to the conventional reinforced composites with discrete particles or fibers. The mechanical properties of IPCs, especially response to dynamic loading, highly depend on their 3D structures. In general, for each specified structural design, it could take hours or days to perform either finite element analysis (FEA) or experiments to test the mechanical response of IPCs to a given dynamic load. To accelerate the physics-based prediction of mechanical properties of IPCs for various structural designs, we employ a deep neural operator (DNO) to learn the transient response of IPCs under dynamic loading as surrogate of physics-based FEA models. We consider a 3D IPC beam formed by two metals with a ratio of Young’s modulus of 2.7, wherein random blocks of constituent materials are used to demonstrate the generality and robustness of the DNO model. To obtain FEA results of IPC properties, 5000 random time-dependent strain loads generated by a Gaussian process kennel are applied to the 3D IPC beam, and the reaction forces and stress fields inside the IPC beam under various loading are collected. Subsequently, the DNO model is trained using an incremental learning method with sequence-to-sequence training implemented in JAX, leading to a 100X speedup compared to widely used vanilla deep operator network models. After an offline training, the DNO model can act as surrogate of physics-based FEA to predict the transient mechanical response in terms of reaction force and stress distribution of the IPCs to various strain loads in one second at an accuracy of 98%. Also, the learned operator is able to provide extended prediction of the IPC beam subject to longer random strain loads at a reasonably well accuracy. Such superfast and accurate prediction of mechanical properties of IPCs could significantly accelerate the IPC structural design and related composite designs for desired mechanical properties.
AbstractList Additive manufacturing has been recognized as an industrial technological revolution for manufacturing, which allows fabrication of materials with complex three-dimensional (3D) structures directly from computer-aided design models. Using two or more constituent materials with different physical and mechanical properties, it becomes possible to construct interpenetrating phase composites (IPCs) with 3D interconnected structures to provide superior mechanical properties as compared to the conventional reinforced composites with discrete particles or fibers. The mechanical properties of IPCs, especially response to dynamic loading, highly depend on their 3D structures. In general, for each specified structural design, it could take hours or days to perform either finite element analysis (FEA) or experiments to test the mechanical response of IPCs to a given dynamic load. To accelerate the physics-based prediction of mechanical properties of IPCs for various structural designs, we employ a deep neural operator (DNO) to learn the transient response of IPCs under dynamic loading as surrogate of physics-based FEA models. We consider a 3D IPC beam formed by two metals with a ratio of Young's modulus of 2.7, wherein random blocks of constituent materials are used to demonstrate the generality and robustness of the DNO model. To obtain FEA results of IPC properties, 5000 random time-dependent strain loads generated by a Gaussian process kennel are applied to the 3D IPC beam, and the reaction forces and stress fields inside the IPC beam under various loading are collected. Subsequently, the DNO model is trained using an incremental learning method with sequence-to-sequence training implemented in JAX, leading to a 100X speedup compared to widely used vanilla deep operator network models. After an offline training, the DNO model can act as surrogate of physics-based FEA to predict the transient mechanical response in terms of reaction force and stress distribution of the IPCs to various strain loads in one second at an accuracy of 98%. Also, the learned operator is able to provide extended prediction of the IPC beam subject to longer random strain loads at a reasonably well accuracy. Such superfast and accurate prediction of mechanical properties of IPCs could significantly accelerate the IPC structural design and related composite designs for desired mechanical properties.
Not provided.
Audience Academic
Author Meng, Zhaoxu
Li, Zhen
Meng, Xuhui
Mohammadi, Ali
Li, Gang
Lu, Minglei
Author_xml – sequence: 1
  givenname: Minglei
  surname: Lu
  fullname: Lu, Minglei
  organization: Department of Mechanical Engineering, Clemson University
– sequence: 2
  givenname: Ali
  surname: Mohammadi
  fullname: Mohammadi, Ali
  organization: Department of Mechanical Engineering, Clemson University
– sequence: 3
  givenname: Zhaoxu
  surname: Meng
  fullname: Meng, Zhaoxu
  organization: Department of Mechanical Engineering, Clemson University
– sequence: 4
  givenname: Xuhui
  surname: Meng
  fullname: Meng, Xuhui
  organization: School of Mathematics and Statistics, Huazhong University of Science and Technology
– sequence: 5
  givenname: Gang
  surname: Li
  fullname: Li, Gang
  organization: Department of Mechanical Engineering, Clemson University
– sequence: 6
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  email: zli7@clemson.edu
  organization: Department of Mechanical Engineering, Clemson University
BackLink https://www.osti.gov/servlets/purl/2422436$$D View this record in Osti.gov
BookMark eNp9kctqHDEQRUVwIGMnP5CVSFZZtKNXS62lcV4GQyCPtdCoq8caeqSOpAH771OTDgRnYUQhUJ0rbtU9J2cpJyDkNWeXnDHzvjKmtO6YkKdSstPPyIYrKTpmhTojG8bN0Blt-hfkvNY9Y7wfZL8h7QPAQhMci59pXqD4lgudsGbwJcW0o634VCOkRgvUJacKNE80pgZlgQTYbidsufPYCfmw5BobVFqP2z2ERlum40PyhxjonP2I7EvyfPJzhVd_7wvy89PHH9dfutuvn2-ur267oLhtneHo1_txawahBysnyyFYYP3IFbPG6GE7jRZ8kHZU3vfYEoNV2uuRe7BMXpA367-5tuhqQFvhLuSU0JYTSgglNUJvV2gp-dcRanP7fCwJfTkxSCl7hWtD6nKldn4GF9OUce6AZwQcDMOYIr5fmV4zPkjDUfDukQCZBvdt54-1upvv3x6zw8qGkmstMDm0iltFSfFxdpy5U8puTdlhwu5Pyu7kXvwnXUo8-PLwtEiuoopw2kH5N_ITqt_qG7xn
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2024_125659
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104959
crossref_primary_10_1016_j_ymssp_2025_112914
crossref_primary_10_1038_s41524_025_01718_y
crossref_primary_10_1002_nme_7637
crossref_primary_10_1016_j_biombioe_2025_108217
crossref_primary_10_3390_buildings14113515
crossref_primary_10_1016_j_powtec_2024_119830
crossref_primary_10_1088_2632_2153_ada0a5
crossref_primary_10_1016_j_cma_2024_117229
crossref_primary_10_1016_j_compstruc_2024_107425
Cites_doi 10.1016/j.matpr.2021.06.276
10.1016/S0143-974X(02)00018-4
10.1016/j.compositesa.2018.10.026
10.1016/j.compositesb.2020.108513
10.1016/j.cirp.2016.05.004
10.1021/acsami.7b09223
10.1103/PhysRevE.79.066108
10.1126/science.1252291
10.1016/j.compstruct.2021.114085
10.1007/978-3-319-01815-7_25
10.1137/19M1274067
10.1016/j.engstruct.2022.114594
10.1002/adma.201502485
10.1016/j.compstruct.2020.113267
10.1016/j.matdes.2022.111206
10.1061/(ASCE)ST.1943-541X.0002999
10.1038/s41598-021-04693-8
10.1061/(ASCE)0733-9445(2003)129:2(160)
10.1016/j.neunet.2015.09.001
10.1016/j.commatsci.2008.06.010
10.1016/j.compositesb.2016.11.034
10.1016/j.polymertesting.2022.107580
10.1016/j.jeurceramsoc.2008.07.034
10.1016/0921-5093(95)10078-4
10.1016/j.jcp.2022.111073
10.1016/j.msea.2008.09.042
10.1016/j.ceramint.2014.05.031
10.1007/s10570-019-02899-8
10.1016/j.jmps.2018.08.022
10.1016/S1359-6462(03)00441-X
10.1016/j.compstruct.2017.05.026
10.1038/s42256-021-00302-5
10.1016/j.actamat.2014.06.045
10.1016/S0020-7403(99)00026-0
10.1002/admt.201800271
10.1177/13694332221088946
10.1016/S0020-7403(99)00025-9
10.1016/j.compositesa.2015.07.016
10.1016/j.radphyschem.2022.110208
10.1016/j.cma.2021.114548
10.1016/j.jcp.2020.109913
10.1016/0921-5093(94)09771-2
10.1016/j.ijplas.2014.05.001
10.1038/s41598-017-00048-4
10.1063/5.0041203
10.1016/j.compstruct.2021.113693
10.1016/j.cma.2022.115027
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
CorporateAuthor Clemson Univ., SC (United States)
CorporateAuthor_xml – name: Clemson Univ., SC (United States)
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
OIOZB
OTOTI
DOI 10.1007/s00466-023-02343-6
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
Mathematics
EISSN 1432-0924
EndPage 576
ExternalDocumentID 2422436
A756018371
10_1007_s00466_023_02343_6
GrantInformation_xml – fundername: Department of Energy
  grantid: DE-SC0023389
– fundername: National Science Foundation
  grantid: 2103967,2204011
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E.L
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
XH6
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
ID FETCH-LOGICAL-c419t-71675aadb7826893f91ec9e05d14097768bfd9eac39d4aa59e028946a6d1ae903
IEDL.DBID BENPR
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000982745500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-7675
IngestDate Mon Nov 24 02:23:34 EST 2025
Wed Nov 26 14:52:07 EST 2025
Sat Nov 29 10:28:14 EST 2025
Wed Nov 26 11:08:09 EST 2025
Sat Nov 29 06:01:24 EST 2025
Tue Nov 18 20:27:49 EST 2025
Fri Feb 21 02:42:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Additive manufacturing
Neural network
Finite element analysis
Deep operator network
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-71675aadb7826893f91ec9e05d14097768bfd9eac39d4aa59e028946a6d1ae903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0023389
None
USDOE Office of Science (SC)
OpenAccessLink https://www.osti.gov/servlets/purl/2422436
PQID 2833354767
PQPubID 2043755
PageCount 14
ParticipantIDs osti_scitechconnect_2422436
proquest_journals_2833354767
gale_infotracacademiconefile_A756018371
gale_incontextgauss_ISR_A756018371
crossref_citationtrail_10_1007_s00466_023_02343_6
crossref_primary_10_1007_s00466_023_02343_6
springer_journals_10_1007_s00466_023_02343_6
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationSubtitle Solids, Materials, Complex Fluids, Fluid-Structure-Interaction, Biological Systems, Micromechanics, Multiscale Mechanics, Additive Manufacturing
PublicationTitle Computational mechanics
PublicationTitleAbbrev Comput Mech
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Talja A, Salmi P (1995) Design of stainless steel RHS beams, columns and beam-columns. Number 1619 in VTT Tiedotteita - Meddelanden - Research Notes. VTT Technical Research Centre of Finland
LiXKimMZhaiWCeramic microlattice and epoxy interpenetrating phase composites with simultaneous high specific strength and specific energy absorptionMater Des202222310.1016/j.matdes.2022.111206
ZhengXLeeHWeisgraberTHShusteffMDeOtteJDuossEBKuntzJDBienerMMGeQJacksonJAKucheyevSOFangNXSpadacciniCMUltralight, ultrastiff mechanical metamaterialsScience201434461901373137710.1126/science.1252291
CaiRWangKWenWPengYBaniassadiMAhziSApplication of machine learning methods on dynamic strength analysis for additive manufactured polypropylene-based compositesPolym Test202211010758010.1016/j.polymertesting.2022.107580
WegnerLDGibsonLJThe mechanical behaviour of interpenetrating phase composites—II: a case study of a three-dimensionally printed materialInt J Mech Sci20004259439640964.7401610.1016/S0020-7403(99)00026-0
TaoFLiuXDuHYuWFinite element coupled positive definite deep neural networks mechanics system for constitutive modeling of compositesComput Methods Appl Mech Eng202239111454843705001507.7451310.1016/j.cma.2021.114548
MarchiCSKouzeliMRaoRLewisJADunandDCAlumina-aluminum interpenetrating-phase composites with three-dimensional periodic architectureScr Mater200349986186610.1016/S1359-6462(03)00441-X
LiuSLiAHeSXuanPCyclic compression behavior and energy dissipation of aluminum foam-polyurethane interpenetrating phase compositesCompos A Appl Sci Manuf201578354110.1016/j.compositesa.2015.07.016
LuLJinPPangGZhangZKarniadakisGELearning nonlinear operators via DeepONet based on the universal approximation theorem of operatorsNat Mach Intell20213321822910.1038/s42256-021-00302-5
MalidarreRBAkkurtIMalidarrehPBArslankayaSInvestigation and ANN-based prediction of the radiation shielding, structural and mechanical properties of the hydroxyapatite (HAP) bio-composite as artificial boneRadiat Phys Chem202219710.1016/j.radphyschem.2022.110208
LinCLiZLuLCaiSMaxeyMKarniadakisGEOperator learning for predicting multiscale bubble growth dynamicsJ Chem Phys20211541010.1063/5.0041203
LoyolaRDPedergnanaMGimenoGSSmart sampling and incremental function learning for very large high dimensional dataNeural Netw20167875871414.6806610.1016/j.neunet.2015.09.001
WegnerLDGibsonLJThe mechanical behaviour of interpenetrating phase composites—I: modellingInt J Mech Sci20004259259420964.7401610.1016/S0020-7403(99)00025-9
GuoQYaoWLiWGuptaNConstitutive models for the structural analysis of composite materials for the finite element analysis: a review of recent practicesCompos Struct202126011326710.1016/j.compstruct.2020.113267
Guoju LiXZhangQFWangLZhangHWangFWangYSimulation of damage and failure processes of interpenetrating SiC/Al composites subjected to dynamic compressive loadingActa Mater20147819020210.1016/j.actamat.2014.06.045
YinMZhangEYuYKarniadakisGEInterfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problemsComput Methods Appl Mech Eng202240211502745146881507.7452310.1016/j.cma.2022.115027
ZhaYMoanTExperimental and numerical prediction of collapse of flatbar stiffeners in aluminum panelsJ Struct Eng2003129216016810.1061/(ASCE)0733-9445(2003)129:2(160)
JhaverRTippurHProcessing, compression response and finite element modeling of syntactic foam based interpenetrating phase composite (IPC)Mater Sci Eng A20094991–250751710.1016/j.msea.2008.09.042
Kovachki N, Li Z, Liu B, Azizzadenesheli K, Bhattacharya K, Stuart A, Anandkumar A (2021) Neural operator: learning maps between function spaces. arXiv preprint arXiv:2108.08481
ZhangYHsiehM-TValdevitLMechanical performance of 3D printed interpenetrating phase composites with spinodal topologiesCompos Struct202126311369310.1016/j.compstruct.2021.113693
ChengFKimS-MReddyJNAbu Al-RubRKModeling of elastoplastic behavior of stainless-steel/bronze interpenetrating phase composites with damage evolutionInt J Plast2014619411110.1016/j.ijplas.2014.05.001
BinnerJChangHHigginsonRProcessing of ceramic-metal interpenetrating compositesJ Eur Ceram Soc200929583784210.1016/j.jeurceramsoc.2008.07.034
PoniznikZSalitVBasistaMGrossDEffective elastic properties of interpenetrating phase compositesComput Mater Sci200844281382010.1016/j.commatsci.2008.06.010
GhazlanANgoTTanPXieYMTranPDonoughMInspiration from nature’s body armours—a review of biological and bioinspired compositesCompos B Eng202120510851310.1016/j.compositesb.2020.108513
MaGYangWWangLStrength-constrained simultaneous optimization of topology and fiber orientation of fiber-reinforced composite structures for additive manufacturingAdv Struct Eng20222571636165110.1177/13694332221088946
ClausenAWangFJensenJSSigmundOLewisJATopology optimized architectures with programmable Poisson’s ratio over large deformationsAdv Mater201527375523552710.1002/adma.201502485
ThompsonMKMoroniGVanekerTFadelGCampbellRIGibsonIBernardASchulzJGrafPAhujaBMartinaFDesign for additive manufacturing: trends, opportunities, considerations, and constraintsCIRP Ann201665273776010.1016/j.cirp.2016.05.004
OkulovIVWeissmullerJMarkmannJDealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human boneSci Rep2017712010.1038/s41598-017-00048-4
MengXYangLMaoZdel ÁguilaFJKarniadakisGELearning functional priors and posteriors from data and physicsJ Comput Phys202245720822843858710752382010.1016/j.jcp.2022.111073
YangLMengXKarniadakisGEB-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy dataJ Comput Phys202142510991341660660750850710.1016/j.jcp.2020.109913
AoyanagiYOkumuraKStress and displacement around a crack in layered network systems mimicking nacrePhys Rev E20097910.1103/PhysRevE.79.066108
LiuWKösterUMicrostructures and properties of interpenetrating alumina/aluminium composites made by reaction of SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{SiO}_2$$\end{document} glass preforms with molten aluminiumMater Sci Eng A199621011710.1016/0921-5093(95)10078-4
PrielippHKnechtelMClaussenNStreifferSKMüllejansHRühleMRüdelJStrength and fracture toughness of aluminum/alumina composites with interpenetrating networksMater Sci Eng A19951971193010.1016/0921-5093(94)09771-2
MoustafaARDinwiddieRBPawlowskiAESplitterDAShyamACorderoZCMesostructure and porosity effects on the thermal conductivity of additively manufactured interpenetrating phase compositesAddit Manuf201822223229
TamuraYTaniMKuritaROrigin of nonlinear force distributions in a composite systemSci Rep202212163210.1038/s41598-021-04693-8
GohGDYapYLAgarwalaSYeongWYRecent progress in additive manufacturing of fiber reinforced polymer compositeAdv Mater Technol201941180027110.1002/admt.201800271
TiwaryAKumarRChohanJSA review on characteristics of composite and advanced materials used for aerospace applicationsMater Today Proc202251186587010.1016/j.matpr.2021.06.276
LuLMengXMaoZKarniadakisGEDeepXDE: a deep learning library for solving differential equationsSIAM Rev202163120822842096611459.6500210.1137/19M1274067
Al-KetanOAdelMAAbu Al-RubRKMechanical properties of periodic interpenetrating phase composites with novel architected microstructuresCompos Struct201717691910.1016/j.compstruct.2017.05.026
Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A (2020) Fourier neural operator for parametric partial differential equations
LiuSLiAXuanPMechanical behavior of aluminum foam/polyurethane interpenetrating phase composites under monotonic and cyclic compressionCompos A Appl Sci Manuf2019116879710.1016/j.compositesa.2018.10.026
BrenkenBBarocioEFavaloroAKuncVPipesRBFused filament fabrication of fiber-reinforced polymers: a reviewAddit Manuf201821116
XiangYZhongxingWLeroyGFull-range stress-strain curves for aluminum alloysJ Struct Eng202114760402106010.1061/(ASCE)ST.1943-541X.0002999
WangFZhangXWangYFanQLiGDamage evolution and distribution of interpenetrating phase composites under dynamic loadingCeram Int2014408132411324810.1016/j.ceramint.2014.05.031
SolalaIIglesiasMCPeresinMSOn the potential of lignin-containing cellulose nanofibrils LCNFs: a review on properties and applicationsCellulose20202741853187710.1007/s10570-019-02899-8
TongLChenLWangXZhuJShaoXZhaoZExperiment and finite element analysis of bending behavior of high strength steel-UHPC composite beamsEng Struct202226611459410.1016/j.engstruct.2022.114594
Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D, Necula G, Paszke A, VanderPlas J, Wanderman-Milne S, Zhang Q (2018) JAX: composable transformations of Python+NumPy programs
BonattiCMohrDMechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experimentsJ Mech Phys Solids201912212610.1016/j.jmps.2018.08.022
WangXJiangMZhouZGouJHuiD3D printing of polymer matrix composites: a review and prospectiveCompos B Eng201711044245810.1016/j.compositesb.2016.11.034
PalaganasNBMangadlaoJDde LeonACCPalaganasJOPangilinanKDLeeYJAdvinculaRC3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithographyACS Appl Mater Interfaces2017939343143432410.1021/acsami.7b09223
MetinFAvcıAIn-plane quasi-static and out-of-plane dynamic behavior of nanofiber interleaved glass/epoxy composites and finite element simulationCompos Struct202127011408510.1016/j.compstruct.2021.114085
RasmussenKJRFull-range stress-strain curves for stainless steel alloysJ Constr Steel Res2003591476110.1016/S0143-974X(02)00018-4
MurrLEExamples of natural composites and composite structures2015ChamSpringer10.1007/978-3-319-01815-7_25
AR Moustafa (2343_CR11) 2018; 22
W Liu (2343_CR13) 1996; 210
Y Xiang (2343_CR48) 2021; 147
O Al-Ketan (2343_CR24) 2017; 176
R Jhaver (2343_CR29) 2009; 499
Q Guo (2343_CR35) 2021; 260
X Wang (2343_CR19) 2017; 110
X Meng (2343_CR53) 2022; 457
A Ghazlan (2343_CR7) 2021; 205
B Brenken (2343_CR10) 2018; 21
IV Okulov (2343_CR27) 2017; 7
X Guoju Li (2343_CR30) 2014; 78
RB Malidarre (2343_CR38) 2022; 197
NB Palaganas (2343_CR18) 2017; 9
S Liu (2343_CR28) 2019; 116
LD Wegner (2343_CR16) 2000; 42
Y Tamura (2343_CR2) 2022; 12
F Wang (2343_CR31) 2014; 40
C Bonatti (2343_CR17) 2019; 122
M Yin (2343_CR40) 2022; 402
KJR Rasmussen (2343_CR46) 2003; 59
RD Loyola (2343_CR49) 2016; 78
L Lu (2343_CR50) 2021; 63
CS Marchi (2343_CR14) 2003; 49
A Clausen (2343_CR4) 2015; 27
Y Zhang (2343_CR20) 2021; 263
LE Murr (2343_CR1) 2015
J Binner (2343_CR25) 2009; 29
L Tong (2343_CR34) 2022; 266
Y Aoyanagi (2343_CR5) 2009; 79
L Lu (2343_CR44) 2021; 3
2343_CR45
GD Goh (2343_CR15) 2019; 4
2343_CR43
F Cheng (2343_CR23) 2014; 61
2343_CR42
F Metin (2343_CR36) 2021; 270
G Ma (2343_CR9) 2022; 25
X Li (2343_CR33) 2022; 223
LD Wegner (2343_CR32) 2000; 42
X Zheng (2343_CR3) 2014; 344
Z Poniznik (2343_CR22) 2008; 44
S Liu (2343_CR26) 2015; 78
F Tao (2343_CR41) 2022; 391
I Solala (2343_CR6) 2020; 27
A Tiwary (2343_CR8) 2022; 51
R Cai (2343_CR39) 2022; 110
MK Thompson (2343_CR12) 2016; 65
H Prielipp (2343_CR21) 1995; 197
L Yang (2343_CR52) 2021; 425
Y Zha (2343_CR47) 2003; 129
2343_CR51
C Lin (2343_CR37) 2021; 154
References_xml – reference: ThompsonMKMoroniGVanekerTFadelGCampbellRIGibsonIBernardASchulzJGrafPAhujaBMartinaFDesign for additive manufacturing: trends, opportunities, considerations, and constraintsCIRP Ann201665273776010.1016/j.cirp.2016.05.004
– reference: XiangYZhongxingWLeroyGFull-range stress-strain curves for aluminum alloysJ Struct Eng202114760402106010.1061/(ASCE)ST.1943-541X.0002999
– reference: BinnerJChangHHigginsonRProcessing of ceramic-metal interpenetrating compositesJ Eur Ceram Soc200929583784210.1016/j.jeurceramsoc.2008.07.034
– reference: GohGDYapYLAgarwalaSYeongWYRecent progress in additive manufacturing of fiber reinforced polymer compositeAdv Mater Technol201941180027110.1002/admt.201800271
– reference: OkulovIVWeissmullerJMarkmannJDealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human boneSci Rep2017712010.1038/s41598-017-00048-4
– reference: LinCLiZLuLCaiSMaxeyMKarniadakisGEOperator learning for predicting multiscale bubble growth dynamicsJ Chem Phys20211541010.1063/5.0041203
– reference: Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D, Necula G, Paszke A, VanderPlas J, Wanderman-Milne S, Zhang Q (2018) JAX: composable transformations of Python+NumPy programs
– reference: ChengFKimS-MReddyJNAbu Al-RubRKModeling of elastoplastic behavior of stainless-steel/bronze interpenetrating phase composites with damage evolutionInt J Plast2014619411110.1016/j.ijplas.2014.05.001
– reference: LiXKimMZhaiWCeramic microlattice and epoxy interpenetrating phase composites with simultaneous high specific strength and specific energy absorptionMater Des202222310.1016/j.matdes.2022.111206
– reference: WangFZhangXWangYFanQLiGDamage evolution and distribution of interpenetrating phase composites under dynamic loadingCeram Int2014408132411324810.1016/j.ceramint.2014.05.031
– reference: WegnerLDGibsonLJThe mechanical behaviour of interpenetrating phase composites—I: modellingInt J Mech Sci20004259259420964.7401610.1016/S0020-7403(99)00025-9
– reference: ZhengXLeeHWeisgraberTHShusteffMDeOtteJDuossEBKuntzJDBienerMMGeQJacksonJAKucheyevSOFangNXSpadacciniCMUltralight, ultrastiff mechanical metamaterialsScience201434461901373137710.1126/science.1252291
– reference: AoyanagiYOkumuraKStress and displacement around a crack in layered network systems mimicking nacrePhys Rev E20097910.1103/PhysRevE.79.066108
– reference: YinMZhangEYuYKarniadakisGEInterfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problemsComput Methods Appl Mech Eng202240211502745146881507.7452310.1016/j.cma.2022.115027
– reference: TaoFLiuXDuHYuWFinite element coupled positive definite deep neural networks mechanics system for constitutive modeling of compositesComput Methods Appl Mech Eng202239111454843705001507.7451310.1016/j.cma.2021.114548
– reference: MalidarreRBAkkurtIMalidarrehPBArslankayaSInvestigation and ANN-based prediction of the radiation shielding, structural and mechanical properties of the hydroxyapatite (HAP) bio-composite as artificial boneRadiat Phys Chem202219710.1016/j.radphyschem.2022.110208
– reference: TamuraYTaniMKuritaROrigin of nonlinear force distributions in a composite systemSci Rep202212163210.1038/s41598-021-04693-8
– reference: MetinFAvcıAIn-plane quasi-static and out-of-plane dynamic behavior of nanofiber interleaved glass/epoxy composites and finite element simulationCompos Struct202127011408510.1016/j.compstruct.2021.114085
– reference: SolalaIIglesiasMCPeresinMSOn the potential of lignin-containing cellulose nanofibrils LCNFs: a review on properties and applicationsCellulose20202741853187710.1007/s10570-019-02899-8
– reference: MarchiCSKouzeliMRaoRLewisJADunandDCAlumina-aluminum interpenetrating-phase composites with three-dimensional periodic architectureScr Mater200349986186610.1016/S1359-6462(03)00441-X
– reference: ClausenAWangFJensenJSSigmundOLewisJATopology optimized architectures with programmable Poisson’s ratio over large deformationsAdv Mater201527375523552710.1002/adma.201502485
– reference: PrielippHKnechtelMClaussenNStreifferSKMüllejansHRühleMRüdelJStrength and fracture toughness of aluminum/alumina composites with interpenetrating networksMater Sci Eng A19951971193010.1016/0921-5093(94)09771-2
– reference: WangXJiangMZhouZGouJHuiD3D printing of polymer matrix composites: a review and prospectiveCompos B Eng201711044245810.1016/j.compositesb.2016.11.034
– reference: Guoju LiXZhangQFWangLZhangHWangFWangYSimulation of damage and failure processes of interpenetrating SiC/Al composites subjected to dynamic compressive loadingActa Mater20147819020210.1016/j.actamat.2014.06.045
– reference: Kovachki N, Li Z, Liu B, Azizzadenesheli K, Bhattacharya K, Stuart A, Anandkumar A (2021) Neural operator: learning maps between function spaces. arXiv preprint arXiv:2108.08481
– reference: MaGYangWWangLStrength-constrained simultaneous optimization of topology and fiber orientation of fiber-reinforced composite structures for additive manufacturingAdv Struct Eng20222571636165110.1177/13694332221088946
– reference: GuoQYaoWLiWGuptaNConstitutive models for the structural analysis of composite materials for the finite element analysis: a review of recent practicesCompos Struct202126011326710.1016/j.compstruct.2020.113267
– reference: RasmussenKJRFull-range stress-strain curves for stainless steel alloysJ Constr Steel Res2003591476110.1016/S0143-974X(02)00018-4
– reference: Talja A, Salmi P (1995) Design of stainless steel RHS beams, columns and beam-columns. Number 1619 in VTT Tiedotteita - Meddelanden - Research Notes. VTT Technical Research Centre of Finland
– reference: Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A (2020) Fourier neural operator for parametric partial differential equations
– reference: Al-KetanOAdelMAAbu Al-RubRKMechanical properties of periodic interpenetrating phase composites with novel architected microstructuresCompos Struct201717691910.1016/j.compstruct.2017.05.026
– reference: JhaverRTippurHProcessing, compression response and finite element modeling of syntactic foam based interpenetrating phase composite (IPC)Mater Sci Eng A20094991–250751710.1016/j.msea.2008.09.042
– reference: TongLChenLWangXZhuJShaoXZhaoZExperiment and finite element analysis of bending behavior of high strength steel-UHPC composite beamsEng Struct202226611459410.1016/j.engstruct.2022.114594
– reference: LiuWKösterUMicrostructures and properties of interpenetrating alumina/aluminium composites made by reaction of SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{SiO}_2$$\end{document} glass preforms with molten aluminiumMater Sci Eng A199621011710.1016/0921-5093(95)10078-4
– reference: MurrLEExamples of natural composites and composite structures2015ChamSpringer10.1007/978-3-319-01815-7_25
– reference: LiuSLiAXuanPMechanical behavior of aluminum foam/polyurethane interpenetrating phase composites under monotonic and cyclic compressionCompos A Appl Sci Manuf2019116879710.1016/j.compositesa.2018.10.026
– reference: LuLMengXMaoZKarniadakisGEDeepXDE: a deep learning library for solving differential equationsSIAM Rev202163120822842096611459.6500210.1137/19M1274067
– reference: BonattiCMohrDMechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experimentsJ Mech Phys Solids201912212610.1016/j.jmps.2018.08.022
– reference: LuLJinPPangGZhangZKarniadakisGELearning nonlinear operators via DeepONet based on the universal approximation theorem of operatorsNat Mach Intell20213321822910.1038/s42256-021-00302-5
– reference: LoyolaRDPedergnanaMGimenoGSSmart sampling and incremental function learning for very large high dimensional dataNeural Netw20167875871414.6806610.1016/j.neunet.2015.09.001
– reference: ZhaYMoanTExperimental and numerical prediction of collapse of flatbar stiffeners in aluminum panelsJ Struct Eng2003129216016810.1061/(ASCE)0733-9445(2003)129:2(160)
– reference: YangLMengXKarniadakisGEB-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy dataJ Comput Phys202142510991341660660750850710.1016/j.jcp.2020.109913
– reference: ZhangYHsiehM-TValdevitLMechanical performance of 3D printed interpenetrating phase composites with spinodal topologiesCompos Struct202126311369310.1016/j.compstruct.2021.113693
– reference: CaiRWangKWenWPengYBaniassadiMAhziSApplication of machine learning methods on dynamic strength analysis for additive manufactured polypropylene-based compositesPolym Test202211010758010.1016/j.polymertesting.2022.107580
– reference: PalaganasNBMangadlaoJDde LeonACCPalaganasJOPangilinanKDLeeYJAdvinculaRC3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithographyACS Appl Mater Interfaces2017939343143432410.1021/acsami.7b09223
– reference: GhazlanANgoTTanPXieYMTranPDonoughMInspiration from nature’s body armours—a review of biological and bioinspired compositesCompos B Eng202120510851310.1016/j.compositesb.2020.108513
– reference: TiwaryAKumarRChohanJSA review on characteristics of composite and advanced materials used for aerospace applicationsMater Today Proc202251186587010.1016/j.matpr.2021.06.276
– reference: PoniznikZSalitVBasistaMGrossDEffective elastic properties of interpenetrating phase compositesComput Mater Sci200844281382010.1016/j.commatsci.2008.06.010
– reference: WegnerLDGibsonLJThe mechanical behaviour of interpenetrating phase composites—II: a case study of a three-dimensionally printed materialInt J Mech Sci20004259439640964.7401610.1016/S0020-7403(99)00026-0
– reference: LiuSLiAHeSXuanPCyclic compression behavior and energy dissipation of aluminum foam-polyurethane interpenetrating phase compositesCompos A Appl Sci Manuf201578354110.1016/j.compositesa.2015.07.016
– reference: MoustafaARDinwiddieRBPawlowskiAESplitterDAShyamACorderoZCMesostructure and porosity effects on the thermal conductivity of additively manufactured interpenetrating phase compositesAddit Manuf201822223229
– reference: MengXYangLMaoZdel ÁguilaFJKarniadakisGELearning functional priors and posteriors from data and physicsJ Comput Phys202245720822843858710752382010.1016/j.jcp.2022.111073
– reference: BrenkenBBarocioEFavaloroAKuncVPipesRBFused filament fabrication of fiber-reinforced polymers: a reviewAddit Manuf201821116
– volume: 51
  start-page: 865
  issue: 1
  year: 2022
  ident: 2343_CR8
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2021.06.276
– volume: 59
  start-page: 47
  issue: 1
  year: 2003
  ident: 2343_CR46
  publication-title: J Constr Steel Res
  doi: 10.1016/S0143-974X(02)00018-4
– volume: 116
  start-page: 87
  year: 2019
  ident: 2343_CR28
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2018.10.026
– volume: 205
  start-page: 108513
  year: 2021
  ident: 2343_CR7
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2020.108513
– volume: 65
  start-page: 737
  issue: 2
  year: 2016
  ident: 2343_CR12
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2016.05.004
– volume: 9
  start-page: 34314
  issue: 39
  year: 2017
  ident: 2343_CR18
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b09223
– volume: 79
  year: 2009
  ident: 2343_CR5
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.79.066108
– ident: 2343_CR45
– volume: 344
  start-page: 1373
  issue: 6190
  year: 2014
  ident: 2343_CR3
  publication-title: Science
  doi: 10.1126/science.1252291
– volume: 270
  start-page: 114085
  year: 2021
  ident: 2343_CR36
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.114085
– volume-title: Examples of natural composites and composite structures
  year: 2015
  ident: 2343_CR1
  doi: 10.1007/978-3-319-01815-7_25
– volume: 63
  start-page: 208
  issue: 1
  year: 2021
  ident: 2343_CR50
  publication-title: SIAM Rev
  doi: 10.1137/19M1274067
– volume: 266
  start-page: 114594
  year: 2022
  ident: 2343_CR34
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.114594
– ident: 2343_CR51
– volume: 27
  start-page: 5523
  issue: 37
  year: 2015
  ident: 2343_CR4
  publication-title: Adv Mater
  doi: 10.1002/adma.201502485
– volume: 260
  start-page: 113267
  year: 2021
  ident: 2343_CR35
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.113267
– volume: 223
  year: 2022
  ident: 2343_CR33
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2022.111206
– volume: 147
  start-page: 04021060
  issue: 6
  year: 2021
  ident: 2343_CR48
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002999
– volume: 12
  start-page: 632
  issue: 1
  year: 2022
  ident: 2343_CR2
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-04693-8
– volume: 129
  start-page: 160
  issue: 2
  year: 2003
  ident: 2343_CR47
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2003)129:2(160)
– volume: 78
  start-page: 75
  year: 2016
  ident: 2343_CR49
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2015.09.001
– volume: 44
  start-page: 813
  issue: 2
  year: 2008
  ident: 2343_CR22
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2008.06.010
– volume: 110
  start-page: 442
  year: 2017
  ident: 2343_CR19
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2016.11.034
– volume: 110
  start-page: 107580
  year: 2022
  ident: 2343_CR39
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2022.107580
– volume: 29
  start-page: 837
  issue: 5
  year: 2009
  ident: 2343_CR25
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2008.07.034
– volume: 210
  start-page: 1
  issue: 1
  year: 1996
  ident: 2343_CR13
  publication-title: Mater Sci Eng A
  doi: 10.1016/0921-5093(95)10078-4
– volume: 457
  start-page: 208
  year: 2022
  ident: 2343_CR53
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2022.111073
– volume: 499
  start-page: 507
  issue: 1–2
  year: 2009
  ident: 2343_CR29
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.09.042
– volume: 40
  start-page: 13241
  issue: 8
  year: 2014
  ident: 2343_CR31
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2014.05.031
– volume: 27
  start-page: 1853
  issue: 4
  year: 2020
  ident: 2343_CR6
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02899-8
– volume: 22
  start-page: 223
  year: 2018
  ident: 2343_CR11
  publication-title: Addit Manuf
– volume: 122
  start-page: 1
  year: 2019
  ident: 2343_CR17
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2018.08.022
– volume: 49
  start-page: 861
  issue: 9
  year: 2003
  ident: 2343_CR14
  publication-title: Scr Mater
  doi: 10.1016/S1359-6462(03)00441-X
– volume: 176
  start-page: 9
  year: 2017
  ident: 2343_CR24
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.05.026
– volume: 3
  start-page: 218
  issue: 3
  year: 2021
  ident: 2343_CR44
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00302-5
– volume: 78
  start-page: 190
  year: 2014
  ident: 2343_CR30
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2014.06.045
– volume: 42
  start-page: 943
  issue: 5
  year: 2000
  ident: 2343_CR32
  publication-title: Int J Mech Sci
  doi: 10.1016/S0020-7403(99)00026-0
– volume: 4
  start-page: 1800271
  issue: 1
  year: 2019
  ident: 2343_CR15
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.201800271
– ident: 2343_CR43
– volume: 25
  start-page: 1636
  issue: 7
  year: 2022
  ident: 2343_CR9
  publication-title: Adv Struct Eng
  doi: 10.1177/13694332221088946
– volume: 42
  start-page: 925
  issue: 5
  year: 2000
  ident: 2343_CR16
  publication-title: Int J Mech Sci
  doi: 10.1016/S0020-7403(99)00025-9
– volume: 78
  start-page: 35
  year: 2015
  ident: 2343_CR26
  publication-title: Compos A Appl Sci Manuf
  doi: 10.1016/j.compositesa.2015.07.016
– volume: 197
  year: 2022
  ident: 2343_CR38
  publication-title: Radiat Phys Chem
  doi: 10.1016/j.radphyschem.2022.110208
– volume: 21
  start-page: 1
  year: 2018
  ident: 2343_CR10
  publication-title: Addit Manuf
– volume: 391
  start-page: 114548
  year: 2022
  ident: 2343_CR41
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114548
– volume: 425
  start-page: 109913
  year: 2021
  ident: 2343_CR52
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.109913
– volume: 197
  start-page: 19
  issue: 1
  year: 1995
  ident: 2343_CR21
  publication-title: Mater Sci Eng A
  doi: 10.1016/0921-5093(94)09771-2
– volume: 61
  start-page: 94
  year: 2014
  ident: 2343_CR23
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2014.05.001
– ident: 2343_CR42
– volume: 7
  start-page: 20
  issue: 1
  year: 2017
  ident: 2343_CR27
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-00048-4
– volume: 154
  issue: 10
  year: 2021
  ident: 2343_CR37
  publication-title: J Chem Phys
  doi: 10.1063/5.0041203
– volume: 263
  start-page: 113693
  year: 2021
  ident: 2343_CR20
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.113693
– volume: 402
  start-page: 115027
  year: 2022
  ident: 2343_CR40
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.115027
SSID ssj0015835
Score 2.4722373
Snippet Additive manufacturing has been recognized as an industrial technological revolution for manufacturing, which allows fabrication of materials with complex...
Not provided.
SourceID osti
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 563
SubjectTerms 3D printing
Accuracy
Beamforming
CAD
CAD-CAM systems
Classical and Continuum Physics
Comparative analysis
Computational Science and Engineering
Computer aided design
Computer programs
Constituents
Dynamic loads
Engineering
Finite element method
Force distribution
Gaussian beams (optics)
Gaussian process
Learning
Manufacturing
Mathematics
Mechanical analysis
Mechanical properties
Mechanics
Modulus of elasticity
Original Paper
Particulate composites
Physical properties
Physics
Strain
Stress distribution
Structural design
Theoretical and Applied Mechanics
Three dimensional composites
Training
Transient response
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5Btwd4GOPHRAebLITEA0TCxLHrR7QNbS8IwUC8WY7jQKUuqZoUif9-d67TrRNMgudcmsQ-333Xu_sOYF9JX-YIAxKL3iIRspCJzZRKlEN_lOlcp7oIwybU-fng9lZfxKawpqt271KSwVLPm90olKOCWco7piJN5DK8QXc3oON4eXUzzx1kg9lYTY7xEVGVxFaZp39jwR1Fo9yr8XQtIM5_kqTB95ytve6t38O7iDXZ6Uw51mHJVxuwFnEni6e62YDVv0gJN6H96v2YEc8l3luPfcjDM8S2LE6YuGMtOThqpGSTWYmtZ3XJhqF-EW1nYOJFsfE9ukhGRetUGeYb1kxz-tuHtTUrHiv7a-jYqA5F_Ftwffbt55fvSZzNkDjBdZtgmKUya4scEYZEzFNq7p32x1kRGLQwiMnLQqNVx70W1mZ4CUM7Ia0suPX6OP0Avaqu_DYwRcnX0krOy0woJ3SeC-FKq0WO8JJnfeDdFhkXictpfsbIzCmXwyIbXGATFtnIPhzO7xnPaDv-K71HO2-ID6Oigps7O20a8-Pq0pwqClkxiud9OIhCZY2Pdzb2L-BHEIXWguQOaZBBDENEvI4qllxrEAydiBQfttsplon2ojEI8tIUv16qPhx1ivTn8vOv_vFl4juwchJ0kYrkdqHXTqb-E7x1D-2wmXwO5-g3fIwVoA
  priority: 102
  providerName: Springer Nature
Title Deep neural operator for learning transient response of interpenetrating phase composites subject to dynamic loading
URI https://link.springer.com/article/10.1007/s00466-023-02343-6
https://www.proquest.com/docview/2833354767
https://www.osti.gov/servlets/purl/2422436
Volume 72
WOSCitedRecordID wos000982745500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: M7S
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5BB9J4YFCYKBuThZB4AIt5cez5CQ3YBC_V1ALam-U4zqg0ktCkSPx77ly3o0jshZe-xE2a-nz3ne_zdwAvtApVgTCAO4wWXKpScZdrzbXHeJSbwmSmjM0m9Hh8fHFhztOGW5dolSufGB112XjaI3-DYTDLcqmVftv-4NQ1iqqrqYXGbdgipTI5gK13p-PzybqOkB8vW2wKzJVItiQdm4mH5yg1JAIu1TEzmXG1EZqSgx40uNI20OdfBdMYh852_vcNHsD9hEDZydJkHsKtUA9hJ6FRltZ6N4R7f0gVDuFupIr67hH0H0JoGelg4l2aNsQ6PUPsy1IHikvWUwCkg5ZsvqTgBtZUbBb5jehbo1IvDmu_YQhlRGon5ljoWLcoaFuI9Q0rf9Xu-8yzqyaS_B_Dl7PTz-8_8tS7gXspTM8xDdO5c2WBCEQhJqqMCN6Ew7yMCluY5BRVadDroy1I53K8hKmfVE6VwgVzmO3CoG7q8ASYpuJs5ZQQFf57XpqikNJXzsgC4afIRyBW02Z9Ejan_hpXdi3JHKfa4jTbONVWjeDV-jvtUtbjxtHPyRos6WXURMi5dIuus5-mE3uiKaXFLF-M4GUaVDX4eO_S-QZ8CZLY2hi5R1ZlEeOQUK8nRpPvLYKlI5nhw_ZX5mOTP-nste2M4PXKAK8v__unP735bnuwfRRXAJHm9mHQzxfhGdzxP_tZNz9Iq-mACLFT_JxMv_4Gnn4mJg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBVQ4UFiKWFrAQiAOJaLZOPH6gFBFqbpqWSFapN6M4zhlpZKETRbUP8VvZMZxtiwSvfXAOY7zmmfmm28AnovE5imGAYFGbxHwJEsCHQsRCIP-KJapjGTmhk2IyWR0ciI_rsCvrheGYJWdTXSGOisN_SN_jW4wimIuEvG2-h7Q1CiqrnYjNFqxOLDnPzFlq9-Md_H7vhgO994fv9sP_FSBwPBQNgEmCCLWOkvRNyborXMZWiPtdpw57icMv9M8k2iP8C651jEewqSEJzrJQm3ldoT7XoPrnKy_gwoeLaoW8agd6BliZkYkKb5Jx7XqUSJKcF-qmkY8CpIlR-jdQa9EvV6Kdf8qzzqvt7f2v72vu3DHx9dsp1WIe7Biiz6s-VibeUtW9-H2H0SMfbjpgLCmvg_NrrUVI5ZP3KWsrEMhMIzsmZ-vccoacu_URspmLcDYsjJnU4feRM_heIhxWfUVAwRGkH3Cxdma1fOUfnqxpmTZeaG_TQ07K10Lwzp8vpJ38gB6RVnYh8AElZ5znYRhjl_LcJmmnJtcS55icB3GAwg7MVHG07bT9JAztSCcdqKlUKyUEy2VDGBrcU7VkpZcuvoZSZ8iNpCC4Eanel7Xanz0Se0ISthHkQgH8NIvyku8vNG-ewMfggjEllZukBQrjOCIhtgQXss0CkPBIY_wYpuduCpvLWt1IasDeNUJ_MXhf9_6o8t3ewqr-8cfDtXheHKwAbeGTvsIHrgJvWY2t4_hhvnRTOvZE6fHDL5ctSL8BtFJfzg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEB70FNEHq1Xp2apBBB90adPNJs1jsR4W5ShWpW8hm03qQbu73O4J_vfOZHNnT1QQnzf7I7lJ5pubb74BeKGkDyXCgMyit8iErGRmC6Uy5dAfFbrUua5iswk1nR6cnemTK1X8ke2-TEkONQ2k0lT3u20VdleFbxTWEXmWcpC5yDN5HW4IahpE8frpl1UeoTgYWmxyjJVItiSVzfz-GWuuKR3QowZ32hr6_CVhGv3QZOP_Z3AP7iYMyg4Ho7kP13y9CRsJj7K027tNuHNFrPAB9Efet4z0L_HepvUxP88Q87LUeeKc9eT4qMCSzQfqrWdNYLPIa8QzNSr04rD2K7pORmR2Yoz5jnWLkv4OYn3Dqu-1vZw5dtFEcv9D-Dx5--nNuyz1bMic4LrPMPxShbVVichDIhYKmnun_V5RRWUtDG7KUGk87dEGhLUFXsKQT0grK2693ssfwahuar8FTFFSNljJeSiEckKXpRAuWC1KhJ28GANf_lzGJUFz6qtxYVZSzHGRDS6wiYts5Bhere5pBzmPv45-TlZgSCejJiLOuV10nTk-_WgOFYWyGN3zMbxMg0KDr3c21TXgJEhaa23kNlmTQWxDAr2OmEyuNwiS9kWOL9tZGplJ50hnEPzlOc5eqjG8XhrVz8t__vTH_zb8Gdw6OZqYD8fT99twez-aJfHodmDUzxf-Cdx03_pZN38at9cP1MshaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+neural+operator+for+learning+transient+response+of+interpenetrating+phase+composites+subject+to+dynamic+loading&rft.jtitle=Computational+mechanics&rft.au=Lu%2C+Minglei&rft.au=Mohammadi%2C+Ali&rft.au=Meng%2C+Zhaoxu&rft.au=Meng%2C+Xuhui&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-7675&rft.eissn=1432-0924&rft.volume=72&rft.issue=3&rft.spage=563&rft.epage=576&rft_id=info:doi/10.1007%2Fs00466-023-02343-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon