A novel improved particle swarm optimization algorithm based on individual difference evolution

[Display omitted] •This paper uses a novel evolution strategy based on individual difference to improve the performance of particle swarm optimization, hence proposes a novel improved particle swarm optimization algorithm based on individual difference evolution, named IDE-PSO.•A new parameter is in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 57; s. 468 - 481
Hlavní autoři: Gou, Jin, Lei, Yu-Xiang, Guo, Wang-Ping, Wang, Cheng, Cai, Yi-Qiao, Luo, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2017
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •This paper uses a novel evolution strategy based on individual difference to improve the performance of particle swarm optimization, hence proposes a novel improved particle swarm optimization algorithm based on individual difference evolution, named IDE-PSO.•A new parameter is introduced in this paper to measure the emotion of each particle, guiding the motion of particles, together with the particles’ fitness.•This paper employs the idea of multigroup, separating the swarm into several subgroups based on particles’ performances during the evolution processes.•One modified restarting mechanism was proposed to enhance the performance of the algorithm. As a well-known stochastic optimization algorithm, the particle swarm optimization (PSO) algorithm has attracted the attention of many researchers all over the world, which has resulted in many variants of the basic algorithm, in addition to a vast number of parameter selection/control strategies. However, most of these algorithms evolve their population using a single fixed pattern, thereby reducing the intelligence of the entire swarm. Some PSO-variants adopt a multimode evolutionary strategy, but lack dynamic adaptability. Furthermore, competition among particles is ignored, with no consideration of individual thinking or decision-making ability. This paper introduces an evolution mechanism based on individual difference, and proposes a novel improved PSO algorithm based on individual difference evolution (IDE-PSO). This algorithm allocates a competition coefficient called the emotional status to each particle for quantifying individual differences, separates the entire swarm into three subgroups, and selects the specific evolutionary method for each particle according to its emotional status and current fitness. The value of the coefficient is adjusted dynamically according to the evolutionary performance of each particle. A modified restarting strategy is employed to regenerate corresponding particles and enhance the diversity of the population. For a series of benchmark functions, simulation results show the effectiveness of the proposed IDE-PSO, which outperforms many state-of-the-art evolutionary algorithms in terms of convergence, robustness, and scalability.
AbstractList [Display omitted] •This paper uses a novel evolution strategy based on individual difference to improve the performance of particle swarm optimization, hence proposes a novel improved particle swarm optimization algorithm based on individual difference evolution, named IDE-PSO.•A new parameter is introduced in this paper to measure the emotion of each particle, guiding the motion of particles, together with the particles’ fitness.•This paper employs the idea of multigroup, separating the swarm into several subgroups based on particles’ performances during the evolution processes.•One modified restarting mechanism was proposed to enhance the performance of the algorithm. As a well-known stochastic optimization algorithm, the particle swarm optimization (PSO) algorithm has attracted the attention of many researchers all over the world, which has resulted in many variants of the basic algorithm, in addition to a vast number of parameter selection/control strategies. However, most of these algorithms evolve their population using a single fixed pattern, thereby reducing the intelligence of the entire swarm. Some PSO-variants adopt a multimode evolutionary strategy, but lack dynamic adaptability. Furthermore, competition among particles is ignored, with no consideration of individual thinking or decision-making ability. This paper introduces an evolution mechanism based on individual difference, and proposes a novel improved PSO algorithm based on individual difference evolution (IDE-PSO). This algorithm allocates a competition coefficient called the emotional status to each particle for quantifying individual differences, separates the entire swarm into three subgroups, and selects the specific evolutionary method for each particle according to its emotional status and current fitness. The value of the coefficient is adjusted dynamically according to the evolutionary performance of each particle. A modified restarting strategy is employed to regenerate corresponding particles and enhance the diversity of the population. For a series of benchmark functions, simulation results show the effectiveness of the proposed IDE-PSO, which outperforms many state-of-the-art evolutionary algorithms in terms of convergence, robustness, and scalability.
Author Wang, Cheng
Luo, Wei
Cai, Yi-Qiao
Guo, Wang-Ping
Gou, Jin
Lei, Yu-Xiang
Author_xml – sequence: 1
  givenname: Jin
  surname: Gou
  fullname: Gou, Jin
  email: goujin@gmail.com
– sequence: 2
  givenname: Yu-Xiang
  orcidid: 0000-0002-3784-8983
  surname: Lei
  fullname: Lei, Yu-Xiang
– sequence: 3
  givenname: Wang-Ping
  surname: Guo
  fullname: Guo, Wang-Ping
– sequence: 4
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
– sequence: 5
  givenname: Yi-Qiao
  surname: Cai
  fullname: Cai, Yi-Qiao
– sequence: 6
  givenname: Wei
  surname: Luo
  fullname: Luo, Wei
BookMark eNp9kMtOwzAQRS1UJNrCD7DyDyT4kaa2xKaqeElIbGBtOX7AVElc2WkQfD0OZcWiq7kazbmaexdo1ofeIXRNSUkJrW92pU7BlIzQdUmqkrDVGZpTsWaFrAWdZb2qRVHJqr5Ai5R2JEOSiTlSG9yH0bUYun3MwuK9jgOY1uH0qWOHw36ADr71AKHHun0PEYaPDjc65du8gt7CCPagW2zBexddbxx2Y2gPE3KJzr1uk7v6m0v0dn_3un0snl8enrab58JUVA5FveK18VZ4x7XxfO05Ia7JG0okl16yhmvqBHXMsBxOcMlp4xtSWW3qihO-ROLoa2JIKTqvDAy_Tw9RQ6soUVNRaqemotRUlCKVyl4ZZf_QfYROx6_T0O0RcjnUCC6qZGCKbiE6Mygb4BT-A8bvhxE
CitedBy_id crossref_primary_10_3390_eng6080172
crossref_primary_10_1016_j_swevo_2019_100573
crossref_primary_10_1016_j_engappai_2020_103771
crossref_primary_10_1016_j_ins_2018_12_030
crossref_primary_10_3390_info10030103
crossref_primary_10_1155_2021_5544133
crossref_primary_10_1177_14759217221076366
crossref_primary_10_3390_a12090190
crossref_primary_10_1038_s41598_024_63358_4
crossref_primary_10_1109_ACCESS_2018_2832074
crossref_primary_10_1109_ACCESS_2019_2916334
crossref_primary_10_3390_rs14122912
crossref_primary_10_3390_computation9060068
crossref_primary_10_3390_informatics6020021
crossref_primary_10_1109_ACCESS_2023_3278261
crossref_primary_10_1016_j_asoc_2018_09_022
crossref_primary_10_1155_2021_6686826
crossref_primary_10_1109_ACCESS_2023_3329749
crossref_primary_10_1016_j_swevo_2020_100700
crossref_primary_10_3390_s18051393
crossref_primary_10_1016_j_swevo_2025_101993
crossref_primary_10_20965_jaciii_2019_p0592
crossref_primary_10_1007_s13369_018_3383_z
crossref_primary_10_1016_j_swevo_2018_01_011
crossref_primary_10_1007_s00158_020_02501_x
crossref_primary_10_1016_j_nima_2018_09_156
crossref_primary_10_1177_0954407019862079
crossref_primary_10_3233_JCM_190003
crossref_primary_10_1007_s10712_021_09638_4
crossref_primary_10_1016_j_asoc_2023_110401
crossref_primary_10_3390_math9182230
crossref_primary_10_1016_j_matcom_2020_08_013
crossref_primary_10_3390_s24154791
crossref_primary_10_1007_s10489_018_1371_3
crossref_primary_10_1016_j_asoc_2021_107681
crossref_primary_10_1007_s13349_025_00915_z
crossref_primary_10_1016_j_anucene_2019_04_057
crossref_primary_10_1177_10775463251372309
crossref_primary_10_1080_09540091_2021_2002266
crossref_primary_10_1016_j_tra_2020_09_005
crossref_primary_10_1007_s40192_023_00301_x
crossref_primary_10_1108_IJSI_04_2024_0066
crossref_primary_10_1109_ACCESS_2019_2938063
crossref_primary_10_1016_j_swevo_2019_04_011
crossref_primary_10_21595_jve_2017_18755
crossref_primary_10_1109_ACCESS_2025_3560624
crossref_primary_10_1007_s00521_022_08179_0
crossref_primary_10_1016_j_eswa_2024_123958
crossref_primary_10_1109_ACCESS_2019_2900925
crossref_primary_10_1007_s11276_021_02764_2
crossref_primary_10_1016_j_eswa_2023_121417
crossref_primary_10_3390_s23031108
crossref_primary_10_1016_j_engappai_2023_107243
crossref_primary_10_1155_2021_8819333
crossref_primary_10_1016_j_swevo_2024_101533
crossref_primary_10_1016_j_eswa_2018_01_030
crossref_primary_10_1016_j_artmed_2020_101790
crossref_primary_10_2478_jaiscr_2025_0019
crossref_primary_10_3390_math9050519
crossref_primary_10_1016_j_asoc_2018_04_008
crossref_primary_10_1109_ACCESS_2022_3142859
crossref_primary_10_3390_ijgi10120817
crossref_primary_10_1111_1365_2478_13474
crossref_primary_10_1111_exsy_13002
crossref_primary_10_1016_j_swevo_2022_101207
crossref_primary_10_1186_s43093_025_00612_9
crossref_primary_10_3390_s23136014
crossref_primary_10_1007_s00500_024_09814_9
crossref_primary_10_1016_j_jclepro_2022_133418
crossref_primary_10_1016_j_knosys_2018_05_042
crossref_primary_10_1016_j_apm_2020_02_023
crossref_primary_10_1016_j_micpro_2020_103050
crossref_primary_10_1007_s42835_025_02423_y
crossref_primary_10_2478_amns_2024_3627
crossref_primary_10_1007_s10586_024_04879_5
crossref_primary_10_3390_a14020029
Cites_doi 10.1016/j.eswa.2013.09.012
10.1007/s10596-014-9422-2
10.1016/j.asoc.2013.05.003
10.1016/j.ins.2012.05.017
10.1016/j.asoc.2014.03.004
10.1016/j.ins.2014.05.006
10.1093/comjnl/7.4.308
10.1016/S1364-6613(03)00055-X
10.1016/j.chemolab.2014.01.003
10.1016/j.apm.2011.08.006
10.1162/EVCO_a_00097
10.1007/s10489-013-0459-z
10.1016/j.ins.2014.02.143
10.1109/TSMCC.2011.2160941
10.1016/j.asoc.2014.01.034
10.1109/TEVC.2011.2173577
10.1016/j.eswa.2011.06.029
10.1016/j.eswa.2012.12.033
10.1007/s10732-014-9245-2
10.1016/j.ins.2014.09.053
10.1080/17439884.2014.919321
10.1166/sl.2013.2714
10.1016/j.eswa.2013.10.061
10.1016/j.ins.2012.04.028
10.1016/j.ins.2011.08.014
10.1109/TEVC.2010.2052054
10.1016/j.ins.2008.02.014
10.1016/j.engappai.2013.06.014
10.1166/sl.2012.2641
10.1016/j.cor.2013.11.019
10.1023/A:1008202821328
10.1109/TEVC.2004.826071
10.1016/j.eswa.2011.04.009
10.1109/TEVC.2003.814902
10.1109/TSMCB.2009.2015956
10.1016/j.neucom.2013.03.074
10.1016/j.asoc.2012.05.019
10.1016/j.neucom.2013.09.026
10.1109/4235.985692
10.1016/j.neucom.2013.03.075
10.1109/TEVC.2012.2232931
10.1016/j.eswa.2013.07.110
10.1016/j.engappai.2014.02.018
10.1109/TSMCC.2007.900654
10.1016/j.ins.2014.03.031
10.1016/j.cnsns.2012.07.017
10.1007/s00158-008-0238-3
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2017.04.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 481
ExternalDocumentID 10_1016_j_asoc_2017_04_025
S1568494617301977
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c419t-6536cfd8fe3acf37f300ebcfd10939f92b3a1e81e2c202583931bfb04dac64303
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405457200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:05:31 EST 2025
Tue Nov 18 22:39:58 EST 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Subgroup
Emotional PSO
Individual difference
Particle swarm optimization
Dynamic adjustment
Psychology model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c419t-6536cfd8fe3acf37f300ebcfd10939f92b3a1e81e2c202583931bfb04dac64303
ORCID 0000-0002-3784-8983
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2017_04_025
crossref_primary_10_1016_j_asoc_2017_04_025
elsevier_sciencedirect_doi_10_1016_j_asoc_2017_04_025
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nguyen, Li, Zhang, Truong (bib0095) 2014; 41
Melin, Olivas, Castillo, Valdez, Soria, Valdez (bib0300) 2013; 40
Shi, Eberhart (bib0120) 1998
Ding, Liu, Chowdhury, Zhang, Hu, Lei (bib0090) 2014; 137
Harmanani, Drouby, Ghosn (bib0390) 2009
Wang, Yang, Chen (bib0080) 2014; 274
Epitropakis, Plagianakos, Vrahatis (bib0205) 2012; 216
Wang (bib0330) 2000; 22
Lim, Isa (bib0020) 2014; 273
Kundu, Das, Mukherjee, Debchoudhury (bib0030) 2014; 129
Han, Liu (bib0075) 2014; 137
Thida, Eng, Monekosso, Remagnino (bib0060) 2013; 13
Hu, Wu, Weir (bib0155) 2013; 17
Kennedy, Eberhart (bib0010) 1995
Zhou, Gao, Liu, Mei, Jiang, Liu (bib0005) 2011; 38
Yang (bib0220) 2010
Li, Gao (bib0130) 2009
Wang, Zhao, Wang, Xia, Tu (bib0045) 2014; 40
Har, Smith, Krasnogor (bib0200) 2005; vol. 166
Zhang, Ma, Wei, Liang (bib0085) 2014; 41
Godoy, Zuben (bib0265) 2009
Ge, Rubo (bib0360) 2005; vol. 3612
Liu, Zhou (bib0050) 2014; 132
Ghosh, Das, Roy, Islam, Suganthan (bib0180) 2012; 182
Beheshti, Shamsuddin (bib0275) 2013; 5
Wang, Zhao, Wang, Xia, Tu (bib0015) 2014; 40
Alfi, Fateh (bib0140) 2011; 38
Storn, Price (bib0210) 1997; 11
Wang, Wang, Gu, Zheng (bib0290) 2009; vol. 5755
Robati, Barani, Pour, Fadaee, Anaraki (bib0035) 2012; 36
Dehaene (bib0365) 2003; 7
Zhang, Jiang, Zhang, Geng, Wang, Sang (bib0165) 2014; 18
Haber, Alique (bib0375) 2007; 37
Pulido, Melin, Castillo (bib0025) 2014; 280
Kennedy, Mendes (bib0255) 2002; vol. 2
Eberhart, Shi (bib0125) 2001
Xi, Sun, Xu (bib0240) 2008; 205
Nelder, Mead (bib0245) 1965; 7
Wang (bib0335) 2007
Wu, Cui, Liu (bib0355) 2011
Wang, Liu, Zhao, Chen (bib0280) 2014; 32
Tanweer, Suresh, Sundararajan (bib0410) 2015; 294
Saha, Kar, Mandal, Ghoshal (bib0100) 2013
Zhan, Zhang, Li, Chung (bib0110) 2009; 39
Hu, Eberhart (bib0260) 2002; vol. 2
Huang, Huang, Chang, Yeh, Tsai (bib0185) 2013; 13
Kennedy (bib0250) 1999; vol. 3
Ding, Jiang, Li, Tang (bib0285) 2014; 18
Moscato (bib0195) 1989
Cui, Fan, Shi (bib0350) 2013; 11
Beheshti, Shamsuddin, Hasan (bib0065) 2013; 219
Zhang, Luo, Wang (bib0420) 2008; 178
Li, Wang (bib0145) 2014
Fierro, Castillo, Valdez (bib0315) 2013
Zhao, Tang, Wang, Jonrinaldi (bib0070) 2014; 45
Xin, Chen, Zhang, Fang, Peng (bib0190) 2012; 42
Zhan, Zhang, Li, Shi (bib0405) 2011; 15
Allmendinger, Knowles (bib0380) 2012; 21
Gandomi, Yun, Yang, Talatahari (bib0215) 2013; 18
Davoodi, Hagh, Zadeh (bib0230) 2014; 21
Li, Cheng, Chen (bib0160) 2014
Liang, Qu, Suganthan, Hernández-Díaz (bib0395) 2013
Yang, Deb, Fong (bib0225) 2011; vol. 136
Majercik (bib0270) 2014
Zhang, Zhang, Xin (bib0370) 2007
Chen, Zhang, Lin, Chen, Zhan, Chung, Li, Shi (bib0105) 2013; 17
Ray, Liew (bib0430) 2003; 7
Bonyadi, Michalewicz, Li (bib0305) 2014; 20
Thangaraj, Pant, Abraham, Bouvry (bib0175) 2011; 217
Kennedy (bib0400) 2003
Wang, Cai, Zhou, Fan (bib0425) 2009; 37
Lim, Isa (bib0040) 2013; 26
Sun, Feng, Xu (bib0235) 2004; vol. 1
Howard-Jones, Ott, van Leeuwen, De Smedt (bib0340) 2015; 40
Li, Cui, Shi (bib0345) 2012; 10
Shi, Eberhart (bib0320) 1999; vol. 3
Eberhart, Shi (bib0115) 2000
LeDoux, Hirst (bib0325) 1986
Alcalá-Fdez, Fernández, Luengo, Derrac, García (bib0415) 2011; 17
Ratnaweera, Halgamuge, Watson (bib0170) 2004; 8
Clerc, Kennedy (bib0310) 2002; 6
Gao, Duan (bib0150) 2007; vol. 2
Shi, Eberhart (bib0135) 2001
Wu, Cui, Liu (bib0295) 2011
Nasir, Das, Maity, Sengupta, Halder, Suganthan (bib0055) 2012; 209
Precup, David, Petriu, Preitl, Radac (bib0385) 2014; 41
Saha (10.1016/j.asoc.2017.04.025_bib0100) 2013
Ghosh (10.1016/j.asoc.2017.04.025_bib0180) 2012; 182
Hu (10.1016/j.asoc.2017.04.025_bib0155) 2013; 17
Fierro (10.1016/j.asoc.2017.04.025_bib0315) 2013
Dehaene (10.1016/j.asoc.2017.04.025_bib0365) 2003; 7
Pulido (10.1016/j.asoc.2017.04.025_bib0025) 2014; 280
Zhang (10.1016/j.asoc.2017.04.025_bib0420) 2008; 178
Zhao (10.1016/j.asoc.2017.04.025_bib0070) 2014; 45
Wang (10.1016/j.asoc.2017.04.025_bib0080) 2014; 274
Hu (10.1016/j.asoc.2017.04.025_bib0260) 2002; vol. 2
Ding (10.1016/j.asoc.2017.04.025_bib0090) 2014; 137
Xin (10.1016/j.asoc.2017.04.025_bib0190) 2012; 42
Precup (10.1016/j.asoc.2017.04.025_bib0385) 2014; 41
Lim (10.1016/j.asoc.2017.04.025_bib0040) 2013; 26
Kennedy (10.1016/j.asoc.2017.04.025_bib0010) 1995
Li (10.1016/j.asoc.2017.04.025_bib0145) 2014
Harmanani (10.1016/j.asoc.2017.04.025_bib0390) 2009
Shi (10.1016/j.asoc.2017.04.025_bib0135) 2001
Wang (10.1016/j.asoc.2017.04.025_bib0330) 2000; 22
Kennedy (10.1016/j.asoc.2017.04.025_bib0255) 2002; vol. 2
Sun (10.1016/j.asoc.2017.04.025_bib0235) 2004; vol. 1
Zhan (10.1016/j.asoc.2017.04.025_bib0405) 2011; 15
Storn (10.1016/j.asoc.2017.04.025_bib0210) 1997; 11
Godoy (10.1016/j.asoc.2017.04.025_bib0265) 2009
Gao (10.1016/j.asoc.2017.04.025_bib0150) 2007; vol. 2
Alfi (10.1016/j.asoc.2017.04.025_bib0140) 2011; 38
Wang (10.1016/j.asoc.2017.04.025_bib0290) 2009; vol. 5755
Gandomi (10.1016/j.asoc.2017.04.025_bib0215) 2013; 18
Zhang (10.1016/j.asoc.2017.04.025_bib0165) 2014; 18
Xi (10.1016/j.asoc.2017.04.025_bib0240) 2008; 205
Zhang (10.1016/j.asoc.2017.04.025_bib0085) 2014; 41
Davoodi (10.1016/j.asoc.2017.04.025_bib0230) 2014; 21
Allmendinger (10.1016/j.asoc.2017.04.025_bib0380) 2012; 21
Bonyadi (10.1016/j.asoc.2017.04.025_bib0305) 2014; 20
Shi (10.1016/j.asoc.2017.04.025_bib0120) 1998
Majercik (10.1016/j.asoc.2017.04.025_bib0270) 2014
Clerc (10.1016/j.asoc.2017.04.025_bib0310) 2002; 6
Tanweer (10.1016/j.asoc.2017.04.025_bib0410) 2015; 294
Li (10.1016/j.asoc.2017.04.025_bib0345) 2012; 10
Thangaraj (10.1016/j.asoc.2017.04.025_bib0175) 2011; 217
Huang (10.1016/j.asoc.2017.04.025_bib0185) 2013; 13
Wu (10.1016/j.asoc.2017.04.025_bib0295) 2011
Shi (10.1016/j.asoc.2017.04.025_bib0320) 1999; vol. 3
Liang (10.1016/j.asoc.2017.04.025_bib0395) 2013
Han (10.1016/j.asoc.2017.04.025_bib0075) 2014; 137
Beheshti (10.1016/j.asoc.2017.04.025_bib0275) 2013; 5
Li (10.1016/j.asoc.2017.04.025_bib0130) 2009
Wang (10.1016/j.asoc.2017.04.025_bib0015) 2014; 40
Wang (10.1016/j.asoc.2017.04.025_bib0425) 2009; 37
Har (10.1016/j.asoc.2017.04.025_bib0200) 2005; vol. 166
Alcalá-Fdez (10.1016/j.asoc.2017.04.025_bib0415) 2011; 17
LeDoux (10.1016/j.asoc.2017.04.025_bib0325) 1986
Chen (10.1016/j.asoc.2017.04.025_bib0105) 2013; 17
Haber (10.1016/j.asoc.2017.04.025_bib0375) 2007; 37
Robati (10.1016/j.asoc.2017.04.025_bib0035) 2012; 36
Melin (10.1016/j.asoc.2017.04.025_bib0300) 2013; 40
Cui (10.1016/j.asoc.2017.04.025_bib0350) 2013; 11
Wang (10.1016/j.asoc.2017.04.025_bib0280) 2014; 32
Yang (10.1016/j.asoc.2017.04.025_bib0225) 2011; vol. 136
Ding (10.1016/j.asoc.2017.04.025_bib0285) 2014; 18
Lim (10.1016/j.asoc.2017.04.025_bib0020) 2014; 273
Ratnaweera (10.1016/j.asoc.2017.04.025_bib0170) 2004; 8
Howard-Jones (10.1016/j.asoc.2017.04.025_bib0340) 2015; 40
Eberhart (10.1016/j.asoc.2017.04.025_bib0125) 2001
Kundu (10.1016/j.asoc.2017.04.025_bib0030) 2014; 129
Eberhart (10.1016/j.asoc.2017.04.025_bib0115) 2000
Kennedy (10.1016/j.asoc.2017.04.025_bib0250) 1999; vol. 3
Ge (10.1016/j.asoc.2017.04.025_bib0360) 2005; vol. 3612
Zhang (10.1016/j.asoc.2017.04.025_bib0370) 2007
Kennedy (10.1016/j.asoc.2017.04.025_bib0400) 2003
Epitropakis (10.1016/j.asoc.2017.04.025_bib0205) 2012; 216
Li (10.1016/j.asoc.2017.04.025_bib0160) 2014
Wang (10.1016/j.asoc.2017.04.025_bib0045) 2014; 40
Zhan (10.1016/j.asoc.2017.04.025_bib0110) 2009; 39
Zhou (10.1016/j.asoc.2017.04.025_bib0005) 2011; 38
Thida (10.1016/j.asoc.2017.04.025_bib0060) 2013; 13
Beheshti (10.1016/j.asoc.2017.04.025_bib0065) 2013; 219
Nasir (10.1016/j.asoc.2017.04.025_bib0055) 2012; 209
Moscato (10.1016/j.asoc.2017.04.025_bib0195) 1989
Yang (10.1016/j.asoc.2017.04.025_bib0220) 2010
Nelder (10.1016/j.asoc.2017.04.025_bib0245) 1965; 7
Ray (10.1016/j.asoc.2017.04.025_bib0430) 2003; 7
Liu (10.1016/j.asoc.2017.04.025_bib0050) 2014; 132
Nguyen (10.1016/j.asoc.2017.04.025_bib0095) 2014; 41
Wang (10.1016/j.asoc.2017.04.025_bib0335) 2007
Wu (10.1016/j.asoc.2017.04.025_bib0355) 2011
References_xml – year: 2013
  ident: bib0395
  article-title: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization, Tech. rep.
– volume: 209
  start-page: 16
  year: 2012
  end-page: 36
  ident: bib0055
  article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
  publication-title: Inf. Sci.
– volume: 18
  start-page: 747
  year: 2014
  end-page: 762
  ident: bib0285
  article-title: Optimization of well placement by combination of a modified particle swarm optimization algorithm and quality map method
  publication-title: Comput. Geosci.
– volume: 7
  start-page: 145
  year: 2003
  end-page: 147
  ident: bib0365
  article-title: The neural basis of the Weber–Fechner law: a logarithmic mental number line
  publication-title: Trends Cogn. Sci.
– volume: vol. 166
  year: 2005
  ident: bib0200
  article-title: Recent Advances in Memetic Algorithms
  publication-title: Studies in Fuzziness and Soft Computing
– volume: 5
  start-page: 1
  year: 2013
  end-page: 35
  ident: bib0275
  article-title: A review of population-based meta-heuristic algorithms
  publication-title: Int. J. Adv. Soft Comput. Appl.
– start-page: 94
  year: 2001
  end-page: 100
  ident: bib0125
  article-title: Tracking and optimizing dynamic systems with particle swarms
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1
– volume: 40
  start-page: 131
  year: 2015
  end-page: 151
  ident: bib0340
  article-title: The potential relevance of cognitive neuroscience for the development and use of technology-enhanced learning
  publication-title: Learn. Media Technol.
– volume: 18
  start-page: 167
  year: 2014
  end-page: 177
  ident: bib0165
  article-title: An adaptive particle swarm optimization algorithm for reservoir operation optimization
  publication-title: Appl. Soft Comput.
– start-page: 84
  year: 2000
  end-page: 88
  ident: bib0115
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
  publication-title: Proceedings of the 2000 Congress on Evolutionary Computation, 2000, vol. 1
– volume: vol. 2
  start-page: 342
  year: 2007
  end-page: 350
  ident: bib0150
  article-title: An adaptive particle swarm optimization algorithm with new random inertia weight
  publication-title: Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques
– volume: vol. 3612
  start-page: 553
  year: 2005
  end-page: 561
  ident: bib0360
  article-title: An emotional particle swarm optimization algorithm
  publication-title: Advances in Natural Computation
– volume: 273
  start-page: 49
  year: 2014
  end-page: 72
  ident: bib0020
  article-title: An adaptive two-layer particle swarm optimization with elitist learning strategy
  publication-title: Inf. Sci.
– start-page: 208
  year: 2007
  end-page: 217
  ident: bib0335
  article-title: Artificial psychology
  publication-title: Human Interface and the Management of Information. Methods, Techniques and Tools in Information Design
– volume: 17
  start-page: 705
  year: 2013
  end-page: 720
  ident: bib0155
  article-title: An adaptive particle swarm optimization with multiple adaptive methods
  publication-title: IEEE Trans. Evol. Comput.
– volume: 182
  start-page: 199
  year: 2012
  end-page: 219
  ident: bib0180
  article-title: A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization
  publication-title: Inf. Sci.
– volume: 41
  start-page: 2134
  year: 2014
  end-page: 2143
  ident: bib0095
  article-title: A hybrid algorithm based on particle swarm and chemical reaction optimization
  publication-title: Expert Syst. Appl.
– volume: 294
  start-page: 182
  year: 2015
  end-page: 202
  ident: bib0410
  article-title: Self regulating particle swarm optimization algorithm
  publication-title: Inf. Sci.
– volume: 22
  start-page: 478
  year: 2000
  end-page: 481
  ident: bib0330
  article-title: Artificial psychology – a most accessible science research to human brain
  publication-title: J. Univ. Sci. Technol. Beijing
– volume: 7
  start-page: 386
  year: 2003
  end-page: 396
  ident: bib0430
  article-title: Society and civilization: an optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
– volume: 217
  start-page: 5208
  year: 2011
  end-page: 5226
  ident: bib0175
  article-title: Particle swarm optimization: hybridization perspectives and experimental illustrations
  publication-title: Appl. Math. Comput.
– start-page: 66
  year: 2009
  end-page: 69
  ident: bib0130
  article-title: Particle swarm optimization algorithm with exponent decreasing inertia weight and stochastic mutation
  publication-title: Second International Conference on Information and Computing Science, 2009. ICIC’09, vol. 1
– volume: 8
  start-page: 240
  year: 2004
  end-page: 255
  ident: bib0170
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 270
  year: 2014
  end-page: 277
  ident: bib0270
  article-title: Using fluid neural networks to create dynamic neighborhood topologies in particle swarm optimization
  publication-title: International Conference on Swarm Intelligence
– volume: 137
  start-page: 234
  year: 2014
  end-page: 240
  ident: bib0075
  article-title: A diversity-guided hybrid particle swarm optimization based on gradient search
  publication-title: Neurocomputing
– volume: 20
  start-page: 417
  year: 2014
  end-page: 452
  ident: bib0305
  article-title: An analysis of the velocity updating rule of the particle swarm optimization algorithm
  publication-title: J. Heuristics
– volume: 280
  start-page: 188
  year: 2014
  end-page: 204
  ident: bib0025
  article-title: Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange
  publication-title: Inf. Sci.
– volume: 38
  start-page: 12312
  year: 2011
  end-page: 12317
  ident: bib0140
  article-title: Intelligent identification and control using improved fuzzy particle swarm optimization
  publication-title: Expert Syst. Appl.
– volume: 32
  start-page: 63
  year: 2014
  end-page: 75
  ident: bib0280
  article-title: A hybrid topology scale-free Gaussian-dynamic particle swarm optimization algorithm applied to real power loss minimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 129
  start-page: 315
  year: 2014
  end-page: 333
  ident: bib0030
  article-title: An improved particle swarm optimizer with difference mean based perturbation
  publication-title: Neurocomputing
– volume: 219
  start-page: 5817
  year: 2013
  end-page: 5836
  ident: bib0065
  article-title: MPSO: median-oriented particle swarm optimization
  publication-title: Appl. Math. Comput.
– start-page: 208
  year: 2014
  end-page: 212
  ident: bib0145
  article-title: Fuzzy dynamic turning for particle swarm optimization with weighted particle
  publication-title: 11th IEEE International Conference on Control Automation (ICCA)
– start-page: 80
  year: 2003
  end-page: 87
  ident: bib0400
  article-title: Bare bones particle swarms
  publication-title: Proceedings of the Swarm Intelligence Symposium, 2003. SIS’03
– volume: 45
  start-page: 38
  year: 2014
  end-page: 50
  ident: bib0070
  article-title: An improved particle swarm optimization with decline disturbance index (DDPSO) for multi-objective job-shop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 13
  start-page: 3864
  year: 2013
  end-page: 3872
  ident: bib0185
  article-title: Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering
  publication-title: Appl. Soft Comput.
– volume: 274
  start-page: 70
  year: 2014
  end-page: 94
  ident: bib0080
  article-title: Improving particle swarm optimization using multi-layer searching strategy
  publication-title: Inf. Sci.
– volume: 17
  start-page: 241
  year: 2013
  end-page: 258
  ident: bib0105
  article-title: Particle swarm optimization with an aging leader and challengers
  publication-title: IEEE Trans. Evol. Comput.
– volume: vol. 1
  start-page: 325
  year: 2004
  end-page: 331
  ident: bib0235
  article-title: Particle swarm optimization with particles having quantum behavior
  publication-title: Congress on Evolutionary Computation, 2004. CEC2004
– start-page: 363
  year: 2011
  end-page: 370
  ident: bib0355
  article-title: A hybrid social emotional optimization algorithm with metropolis rule
  publication-title: Proceedings of 2011 International Conference on Modelling, Identification and Control (ICMIC)
– volume: 40
  start-page: 322
  year: 2014
  end-page: 342
  ident: bib0045
  article-title: Cooperative velocity updating model based particle swarm optimization
  publication-title: Appl. Intell.
– year: 2010
  ident: bib0220
  article-title: Nature-Inspired Metaheuristic Algorithms
– year: 1986
  ident: bib0325
  article-title: Mind and Brain: Dialogues in Cognitive Neuroscience
– start-page: 1310
  year: 2014
  end-page: 1315
  ident: bib0160
  article-title: Chaotic particle swarm optimization algorithm based on adaptive inertia weight
  publication-title: The 26th Chinese Control and Decision Conference (2014 CCDC)
– start-page: 19
  year: 2013
  end-page: 23
  ident: bib0100
  article-title: Adaptive particle swarm optimization for low pass finite impulse response filter design
  publication-title: 2013 International Conference on Communications and Signal Processing (ICCSP)
– volume: 178
  start-page: 3043
  year: 2008
  end-page: 3074
  ident: bib0420
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Inf. Sci.
– volume: 41
  start-page: 3576
  year: 2014
  end-page: 3584
  ident: bib0085
  article-title: A parameter selection strategy for particle swarm optimization based on particle positions
  publication-title: Expert Syst. Appl.
– volume: vol. 2
  start-page: 1671
  year: 2002
  end-page: 1676
  ident: bib0255
  article-title: Population structure and particle swarm performance
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC’02
– volume: 39
  start-page: 1362
  year: 2009
  end-page: 1381
  ident: bib0110
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern.
– volume: 10
  start-page: 1676
  year: 2012
  end-page: 1681
  ident: bib0345
  article-title: Newman and watts small world social emotional optimization algorithm with WSN
  publication-title: Sensor Lett.
– volume: 216
  start-page: 50
  year: 2012
  end-page: 92
  ident: bib0205
  article-title: Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach
  publication-title: Inf. Sci.
– volume: 15
  start-page: 832
  year: 2011
  end-page: 847
  ident: bib0405
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 36
  start-page: 2169
  year: 2012
  end-page: 2177
  ident: bib0035
  article-title: Balanced fuzzy particle swarm optimization
  publication-title: Appl. Math. Model.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib0310
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 40
  start-page: 3196
  year: 2013
  end-page: 3206
  ident: bib0300
  article-title: Optimal design of fuzzy classification systems using {PSO} with dynamic parameter adaptation through fuzzy logic
  publication-title: Expert Syst. Appl.
– volume: vol. 5755
  start-page: 766
  year: 2009
  end-page: 775
  ident: bib0290
  article-title: Emotional particle swarm optimization
  publication-title: Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence
– volume: 132
  start-page: 82
  year: 2014
  end-page: 90
  ident: bib0050
  article-title: An improved QPSO algorithm and its application in the high-dimensional complex problems
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 11
  start-page: 259
  year: 2013
  end-page: 263
  ident: bib0350
  article-title: Social emotional optimization algorithm with Gaussian distribution for optimal coverage problem
  publication-title: Sensor Lett.
– volume: 13
  start-page: 3106
  year: 2013
  end-page: 3117
  ident: bib0060
  article-title: A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets
  publication-title: Appl. Soft Comput.
– year: 1989
  ident: bib0195
  article-title: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms
– volume: 41
  start-page: 1168
  year: 2014
  end-page: 1175
  ident: bib0385
  article-title: Novel adaptive charged system search algorithm for optimal tuning of fuzzy controllers
  publication-title: Expert Syst. Appl.
– volume: vol. 3
  start-page: 1945
  year: 1999
  end-page: 1950
  ident: bib0320
  article-title: Empirical study of particle swarm optimization
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC’99
– volume: 26
  start-page: 2327
  year: 2013
  end-page: 2348
  ident: bib0040
  article-title: Two-layer particle swarm optimization with intelligent division of labor
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 720
  year: 2009
  end-page: 727
  ident: bib0265
  article-title: A complex neighborhood based particle swarm optimization
  publication-title: IEEE Congress on Evolutionary Computation, 2009. CEC’09
– volume: 42
  start-page: 744
  year: 2012
  end-page: 767
  ident: bib0190
  article-title: Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy
  publication-title: IEEE Trans. Syst. Man Cybern. C
– volume: vol. 3
  start-page: 1391
  year: 1999
  end-page: 1938
  ident: bib0250
  article-title: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99
– start-page: 405
  year: 2011
  end-page: 411
  ident: bib0295
  article-title: Using hybrid social emotional optimization algorithm with metropolis rule to solve nonlinear equations
  publication-title: 2011 10th IEEE International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC)
– volume: 40
  start-page: 322
  year: 2014
  end-page: 342
  ident: bib0015
  article-title: Cooperative velocity updating model based particle swarm optimization
  publication-title: Appl. Intell.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0210
  article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– start-page: 51
  year: 2013
  end-page: 56
  ident: bib0315
  article-title: Optimization of fuzzy control systems with different variants of particle swarm optimization
  publication-title: 2013 IEEE Workshop on Hybrid Intelligent Models and Applications (HIMA)
– volume: 21
  start-page: 171
  year: 2014
  end-page: 179
  ident: bib0230
  article-title: A hybrid improved quantum-behaved particle swarm optimization-simplex method (IQPSOS) to solve power system load flow problems
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 497
  year: 2012
  end-page: 531
  ident: bib0380
  article-title: On handling ephemeral resource constraints in evolutionary search
  publication-title: Evol. Comput.
– volume: 17
  start-page: 255
  year: 2011
  end-page: 287
  ident: bib0415
  publication-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework
– volume: 37
  start-page: 395
  year: 2009
  end-page: 413
  ident: bib0425
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Struct. Multidiscip. Optim.
– start-page: 1
  year: 2009
  end-page: 8
  ident: bib0390
  article-title: A parallel genetic algorithm for the open-shop scheduling problem using deterministic and random moves
  publication-title: Spring Simulation Multiconference, Springsim, 2009
– volume: 137
  start-page: 261
  year: 2014
  end-page: 267
  ident: bib0090
  article-title: A particle swarm optimization using local stochastic search and enhancing diversity for continuous optimization
  publication-title: Neurocomputing
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib0120
  article-title: A modified particle swarm optimizer
  publication-title: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence
– volume: 18
  start-page: 327
  year: 2013
  end-page: 340
  ident: bib0215
  article-title: Chaos-enhanced accelerated particle swarm optimization
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: vol. 136
  start-page: 53
  year: 2011
  end-page: 66
  ident: bib0225
  article-title: Accelerated particle swarm optimization and support vector machine for business optimization and applications
  publication-title: Networked Digital Technologies
– start-page: 2342
  year: 2007
  end-page: 2346
  ident: bib0370
  article-title: An improved particle swarm optimization algorithm with sentient mode
  publication-title: International Conference on Mechatronics and Automation, 2007. ICMA 2007
– start-page: 101
  year: 2001
  end-page: 106
  ident: bib0135
  article-title: Fuzzy adaptive particle swarm optimization
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1
– volume: 205
  start-page: 751
  year: 2008
  end-page: 759
  ident: bib0240
  article-title: An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position
  publication-title: Appl. Math. Comput.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: bib0245
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0010
  article-title: Particle swarm optimization
  publication-title: IEEE International Conference on Neural Networks, 1995. Proceedings, vol. 4
– volume: 38
  start-page: 15356
  year: 2011
  end-page: 15364
  ident: bib0005
  article-title: Randomization in particle swarm optimization for global search ability
  publication-title: Expert Syst. Appl.
– volume: vol. 2
  start-page: 1677
  year: 2002
  end-page: 1681
  ident: bib0260
  article-title: Multiobjective optimization using dynamic neighborhood particle swarm optimization
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC’02
– volume: 37
  start-page: 941
  year: 2007
  end-page: 950
  ident: bib0375
  article-title: Fuzzy logic-based torque control system for milling process optimization
  publication-title: IEEE Trans. Syst. Man Cybern. C
– volume: 41
  start-page: 2134
  issue: 5
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0095
  article-title: A hybrid algorithm based on particle swarm and chemical reaction optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.09.012
– volume: 18
  start-page: 747
  issue: 5
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0285
  article-title: Optimization of well placement by combination of a modified particle swarm optimization algorithm and quality map method
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-014-9422-2
– volume: 13
  start-page: 3864
  issue: 9
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0185
  article-title: Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.05.003
– volume: 216
  start-page: 50
  year: 2012
  ident: 10.1016/j.asoc.2017.04.025_bib0205
  article-title: Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.05.017
– volume: 21
  start-page: 171
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0230
  article-title: A hybrid improved quantum-behaved particle swarm optimization-simplex method (IQPSOS) to solve power system load flow problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.03.004
– year: 2010
  ident: 10.1016/j.asoc.2017.04.025_bib0220
– start-page: 2342
  year: 2007
  ident: 10.1016/j.asoc.2017.04.025_bib0370
  article-title: An improved particle swarm optimization algorithm with sentient mode
– volume: vol. 2
  start-page: 1677
  year: 2002
  ident: 10.1016/j.asoc.2017.04.025_bib0260
  article-title: Multiobjective optimization using dynamic neighborhood particle swarm optimization
– year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0395
– volume: 280
  start-page: 188
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0025
  article-title: Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.05.006
– volume: 217
  start-page: 5208
  issue: 12
  year: 2011
  ident: 10.1016/j.asoc.2017.04.025_bib0175
  article-title: Particle swarm optimization: hybridization perspectives and experimental illustrations
  publication-title: Appl. Math. Comput.
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  ident: 10.1016/j.asoc.2017.04.025_bib0245
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 7
  start-page: 145
  issue: 4
  year: 2003
  ident: 10.1016/j.asoc.2017.04.025_bib0365
  article-title: The neural basis of the Weber–Fechner law: a logarithmic mental number line
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(03)00055-X
– volume: 132
  start-page: 82
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0050
  article-title: An improved QPSO algorithm and its application in the high-dimensional complex problems
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.01.003
– start-page: 19
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0100
  article-title: Adaptive particle swarm optimization for low pass finite impulse response filter design
– start-page: 405
  year: 2011
  ident: 10.1016/j.asoc.2017.04.025_bib0295
  article-title: Using hybrid social emotional optimization algorithm with metropolis rule to solve nonlinear equations
– start-page: 66
  year: 2009
  ident: 10.1016/j.asoc.2017.04.025_bib0130
  article-title: Particle swarm optimization algorithm with exponent decreasing inertia weight and stochastic mutation
– volume: vol. 166
  year: 2005
  ident: 10.1016/j.asoc.2017.04.025_bib0200
  article-title: Recent Advances in Memetic Algorithms
– volume: 36
  start-page: 2169
  issue: 5
  year: 2012
  ident: 10.1016/j.asoc.2017.04.025_bib0035
  article-title: Balanced fuzzy particle swarm optimization
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.08.006
– start-page: 69
  year: 1998
  ident: 10.1016/j.asoc.2017.04.025_bib0120
  article-title: A modified particle swarm optimizer
– volume: 5
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0275
  article-title: A review of population-based meta-heuristic algorithms
  publication-title: Int. J. Adv. Soft Comput. Appl.
– volume: 21
  start-page: 497
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2017.04.025_bib0380
  article-title: On handling ephemeral resource constraints in evolutionary search
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00097
– volume: 40
  start-page: 322
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0045
  article-title: Cooperative velocity updating model based particle swarm optimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-013-0459-z
– volume: 274
  start-page: 70
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0080
  article-title: Improving particle swarm optimization using multi-layer searching strategy
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.143
– volume: 42
  start-page: 744
  issue: 5
  year: 2012
  ident: 10.1016/j.asoc.2017.04.025_bib0190
  article-title: Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy
  publication-title: IEEE Trans. Syst. Man Cybern. C
  doi: 10.1109/TSMCC.2011.2160941
– volume: 18
  start-page: 167
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0165
  article-title: An adaptive particle swarm optimization algorithm for reservoir operation optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.01.034
– volume: vol. 136
  start-page: 53
  year: 2011
  ident: 10.1016/j.asoc.2017.04.025_bib0225
  article-title: Accelerated particle swarm optimization and support vector machine for business optimization and applications
– volume: 17
  start-page: 241
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0105
  article-title: Particle swarm optimization with an aging leader and challengers
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2173577
– volume: 38
  start-page: 15356
  issue: 12
  year: 2011
  ident: 10.1016/j.asoc.2017.04.025_bib0005
  article-title: Randomization in particle swarm optimization for global search ability
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.06.029
– volume: 205
  start-page: 751
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2017.04.025_bib0240
  article-title: An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position
  publication-title: Appl. Math. Comput.
– start-page: 101
  year: 2001
  ident: 10.1016/j.asoc.2017.04.025_bib0135
  article-title: Fuzzy adaptive particle swarm optimization
– volume: 40
  start-page: 3196
  issue: 8
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0300
  article-title: Optimal design of fuzzy classification systems using {PSO} with dynamic parameter adaptation through fuzzy logic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.12.033
– volume: 20
  start-page: 417
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0305
  article-title: An analysis of the velocity updating rule of the particle swarm optimization algorithm
  publication-title: J. Heuristics
  doi: 10.1007/s10732-014-9245-2
– volume: 294
  start-page: 182
  year: 2015
  ident: 10.1016/j.asoc.2017.04.025_bib0410
  article-title: Self regulating particle swarm optimization algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.09.053
– volume: 219
  start-page: 5817
  issue: 11
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0065
  article-title: MPSO: median-oriented particle swarm optimization
  publication-title: Appl. Math. Comput.
– volume: 40
  start-page: 131
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2017.04.025_bib0340
  article-title: The potential relevance of cognitive neuroscience for the development and use of technology-enhanced learning
  publication-title: Learn. Media Technol.
  doi: 10.1080/17439884.2014.919321
– volume: 11
  start-page: 259
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0350
  article-title: Social emotional optimization algorithm with Gaussian distribution for optimal coverage problem
  publication-title: Sensor Lett.
  doi: 10.1166/sl.2013.2714
– volume: 40
  start-page: 322
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0015
  article-title: Cooperative velocity updating model based particle swarm optimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-013-0459-z
– volume: 41
  start-page: 3576
  issue: 7
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0085
  article-title: A parameter selection strategy for particle swarm optimization based on particle positions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.10.061
– volume: 209
  start-page: 16
  year: 2012
  ident: 10.1016/j.asoc.2017.04.025_bib0055
  article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.04.028
– volume: vol. 3612
  start-page: 553
  year: 2005
  ident: 10.1016/j.asoc.2017.04.025_bib0360
  article-title: An emotional particle swarm optimization algorithm
– volume: 182
  start-page: 199
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2017.04.025_bib0180
  article-title: A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.08.014
– volume: 15
  start-page: 832
  issue: 6
  year: 2011
  ident: 10.1016/j.asoc.2017.04.025_bib0405
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2052054
– volume: 178
  start-page: 3043
  issue: 15
  year: 2008
  ident: 10.1016/j.asoc.2017.04.025_bib0420
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2008.02.014
– volume: 26
  start-page: 2327
  issue: 10
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0040
  article-title: Two-layer particle swarm optimization with intelligent division of labor
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.06.014
– volume: 10
  start-page: 1676
  issue: 8
  year: 2012
  ident: 10.1016/j.asoc.2017.04.025_bib0345
  article-title: Newman and watts small world social emotional optimization algorithm with WSN
  publication-title: Sensor Lett.
  doi: 10.1166/sl.2012.2641
– start-page: 80
  year: 2003
  ident: 10.1016/j.asoc.2017.04.025_bib0400
  article-title: Bare bones particle swarms
– volume: 45
  start-page: 38
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0070
  article-title: An improved particle swarm optimization with decline disturbance index (DDPSO) for multi-objective job-shop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.11.019
– volume: vol. 2
  start-page: 342
  year: 2007
  ident: 10.1016/j.asoc.2017.04.025_bib0150
  article-title: An adaptive particle swarm optimization algorithm with new random inertia weight
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.asoc.2017.04.025_bib0210
  article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– start-page: 363
  year: 2011
  ident: 10.1016/j.asoc.2017.04.025_bib0355
  article-title: A hybrid social emotional optimization algorithm with metropolis rule
– year: 1989
  ident: 10.1016/j.asoc.2017.04.025_bib0195
– volume: vol. 5755
  start-page: 766
  year: 2009
  ident: 10.1016/j.asoc.2017.04.025_bib0290
  article-title: Emotional particle swarm optimization
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2017.04.025_bib0010
  article-title: Particle swarm optimization
– volume: vol. 3
  start-page: 1391
  year: 1999
  ident: 10.1016/j.asoc.2017.04.025_bib0250
  article-title: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance
– start-page: 84
  year: 2000
  ident: 10.1016/j.asoc.2017.04.025_bib0115
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
– start-page: 270
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0270
  article-title: Using fluid neural networks to create dynamic neighborhood topologies in particle swarm optimization
– volume: 8
  start-page: 240
  issue: 3
  year: 2004
  ident: 10.1016/j.asoc.2017.04.025_bib0170
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826071
– volume: 38
  start-page: 12312
  issue: 10
  year: 2011
  ident: 10.1016/j.asoc.2017.04.025_bib0140
  article-title: Intelligent identification and control using improved fuzzy particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.009
– volume: 7
  start-page: 386
  issue: 4
  year: 2003
  ident: 10.1016/j.asoc.2017.04.025_bib0430
  article-title: Society and civilization: an optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.814902
– volume: 39
  start-page: 1362
  issue: 6
  year: 2009
  ident: 10.1016/j.asoc.2017.04.025_bib0110
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern.
  doi: 10.1109/TSMCB.2009.2015956
– volume: 137
  start-page: 234
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0075
  article-title: A diversity-guided hybrid particle swarm optimization based on gradient search
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.074
– start-page: 1310
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0160
  article-title: Chaotic particle swarm optimization algorithm based on adaptive inertia weight
– volume: 13
  start-page: 3106
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0060
  article-title: A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.019
– volume: vol. 1
  start-page: 325
  year: 2004
  ident: 10.1016/j.asoc.2017.04.025_bib0235
  article-title: Particle swarm optimization with particles having quantum behavior
– volume: vol. 2
  start-page: 1671
  year: 2002
  ident: 10.1016/j.asoc.2017.04.025_bib0255
  article-title: Population structure and particle swarm performance
– volume: 22
  start-page: 478
  issue: 5
  year: 2000
  ident: 10.1016/j.asoc.2017.04.025_bib0330
  article-title: Artificial psychology – a most accessible science research to human brain
  publication-title: J. Univ. Sci. Technol. Beijing
– volume: 129
  start-page: 315
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0030
  article-title: An improved particle swarm optimizer with difference mean based perturbation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.026
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.asoc.2017.04.025_bib0310
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 137
  start-page: 261
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0090
  article-title: A particle swarm optimization using local stochastic search and enhancing diversity for continuous optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.075
– volume: 17
  start-page: 705
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0155
  article-title: An adaptive particle swarm optimization with multiple adaptive methods
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2232931
– start-page: 720
  year: 2009
  ident: 10.1016/j.asoc.2017.04.025_bib0265
  article-title: A complex neighborhood based particle swarm optimization
– start-page: 94
  year: 2001
  ident: 10.1016/j.asoc.2017.04.025_bib0125
  article-title: Tracking and optimizing dynamic systems with particle swarms
– start-page: 208
  year: 2007
  ident: 10.1016/j.asoc.2017.04.025_bib0335
  article-title: Artificial psychology
– volume: 41
  start-page: 1168
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0385
  article-title: Novel adaptive charged system search algorithm for optimal tuning of fuzzy controllers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.07.110
– volume: 32
  start-page: 63
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0280
  article-title: A hybrid topology scale-free Gaussian-dynamic particle swarm optimization algorithm applied to real power loss minimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.02.018
– year: 1986
  ident: 10.1016/j.asoc.2017.04.025_bib0325
– start-page: 1
  year: 2009
  ident: 10.1016/j.asoc.2017.04.025_bib0390
  article-title: A parallel genetic algorithm for the open-shop scheduling problem using deterministic and random moves
– start-page: 208
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0145
  article-title: Fuzzy dynamic turning for particle swarm optimization with weighted particle
– volume: 17
  start-page: 255
  year: 2011
  ident: 10.1016/j.asoc.2017.04.025_bib0415
  publication-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework
– volume: 37
  start-page: 941
  issue: 5
  year: 2007
  ident: 10.1016/j.asoc.2017.04.025_bib0375
  article-title: Fuzzy logic-based torque control system for milling process optimization
  publication-title: IEEE Trans. Syst. Man Cybern. C
  doi: 10.1109/TSMCC.2007.900654
– volume: 273
  start-page: 49
  year: 2014
  ident: 10.1016/j.asoc.2017.04.025_bib0020
  article-title: An adaptive two-layer particle swarm optimization with elitist learning strategy
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.03.031
– volume: vol. 3
  start-page: 1945
  year: 1999
  ident: 10.1016/j.asoc.2017.04.025_bib0320
  article-title: Empirical study of particle swarm optimization
– start-page: 51
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0315
  article-title: Optimization of fuzzy control systems with different variants of particle swarm optimization
– volume: 18
  start-page: 327
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2017.04.025_bib0215
  article-title: Chaos-enhanced accelerated particle swarm optimization
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.07.017
– volume: 37
  start-page: 395
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2017.04.025_bib0425
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-008-0238-3
SSID ssj0016928
Score 2.477219
Snippet [Display omitted] •This paper uses a novel evolution strategy based on individual difference to improve the performance of particle swarm optimization, hence...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 468
SubjectTerms Dynamic adjustment
Emotional PSO
Individual difference
Particle swarm optimization
Psychology model
Subgroup
Title A novel improved particle swarm optimization algorithm based on individual difference evolution
URI https://dx.doi.org/10.1016/j.asoc.2017.04.025
Volume 57
WOSCitedRecordID wos000405457200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEOXNn0hSdOCQzeBhSTKEjkaQYo0Q5AhRdxJkCiycWDLhiy5WfLfe6RIWk3boBm6CMKZOj3u093pfA-EPsaV0HUHKckYVSSJy4ro8kdCOSuVgF9Uqsywiez8nE2n_GI0unO1MJt5Vtfs9pav_quogQbC1qWzjxC3ZwoE2AehwxbEDtt_EvwkqJcbOdf1jw3sVMHKLgrWP4pmESxBSSxs9WVQzL8vm1l7vQi0OasCk_joS7Tc9BR49-XGXvTQm3Uu7Bp0uUlO71pnCU3L_c5gZDbI-jG5A986MgVUbhd2Jl57BSRyMWBwZWPZx9fSEm14AkyeS47zGjVlJOE2zmhVbt-T2urMpJ-rY81v0k9w-U2z90GGm08FgFZn5GWmQ21fNP1rG-175s0nHbp8tptc88g1jzxMcuDxBO3G2ZiDUtydfDmZnvm_oVJuhvP6e7BVV32C4P0r-bNnM_BWLvfQc_uZgSe95F-ikaxfoRduhAe2Gv01yifYoAU7tGCHFmzQgodowR4t2KAFA2mLFrxFC_ZoeYO-fj65PD4lduYGEUnEW5KOaSpUxZSkhVA0UzQMZQkU3XaMKx6XtIgki2QsYrhncK9pVKoyTKpCgHMb0rdop17Wch_hcZzGokwrxcBNLzPB4WOkEkVW6CZrlIkDFLnnlQvbkF7PRZnnf5fUAQr8Mau-HcuDq8dODLl1KHtHMQdUPXDc4aPO8g492wL_CO20TSffo6di087WzQcLqZ8QQppy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+improved+particle+swarm+optimization+algorithm+based+on+individual+difference+evolution&rft.jtitle=Applied+soft+computing&rft.au=Gou%2C+Jin&rft.au=Lei%2C+Yu-Xiang&rft.au=Guo%2C+Wang-Ping&rft.au=Wang%2C+Cheng&rft.date=2017-08-01&rft.issn=1568-4946&rft.volume=57&rft.spage=468&rft.epage=481&rft_id=info:doi/10.1016%2Fj.asoc.2017.04.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2017_04_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon