A novel improved particle swarm optimization algorithm based on individual difference evolution
[Display omitted] •This paper uses a novel evolution strategy based on individual difference to improve the performance of particle swarm optimization, hence proposes a novel improved particle swarm optimization algorithm based on individual difference evolution, named IDE-PSO.•A new parameter is in...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 57; s. 468 - 481 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.08.2017
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•This paper uses a novel evolution strategy based on individual difference to improve the performance of particle swarm optimization, hence proposes a novel improved particle swarm optimization algorithm based on individual difference evolution, named IDE-PSO.•A new parameter is introduced in this paper to measure the emotion of each particle, guiding the motion of particles, together with the particles’ fitness.•This paper employs the idea of multigroup, separating the swarm into several subgroups based on particles’ performances during the evolution processes.•One modified restarting mechanism was proposed to enhance the performance of the algorithm.
As a well-known stochastic optimization algorithm, the particle swarm optimization (PSO) algorithm has attracted the attention of many researchers all over the world, which has resulted in many variants of the basic algorithm, in addition to a vast number of parameter selection/control strategies. However, most of these algorithms evolve their population using a single fixed pattern, thereby reducing the intelligence of the entire swarm. Some PSO-variants adopt a multimode evolutionary strategy, but lack dynamic adaptability. Furthermore, competition among particles is ignored, with no consideration of individual thinking or decision-making ability. This paper introduces an evolution mechanism based on individual difference, and proposes a novel improved PSO algorithm based on individual difference evolution (IDE-PSO). This algorithm allocates a competition coefficient called the emotional status to each particle for quantifying individual differences, separates the entire swarm into three subgroups, and selects the specific evolutionary method for each particle according to its emotional status and current fitness. The value of the coefficient is adjusted dynamically according to the evolutionary performance of each particle. A modified restarting strategy is employed to regenerate corresponding particles and enhance the diversity of the population. For a series of benchmark functions, simulation results show the effectiveness of the proposed IDE-PSO, which outperforms many state-of-the-art evolutionary algorithms in terms of convergence, robustness, and scalability. |
|---|---|
| AbstractList | [Display omitted]
•This paper uses a novel evolution strategy based on individual difference to improve the performance of particle swarm optimization, hence proposes a novel improved particle swarm optimization algorithm based on individual difference evolution, named IDE-PSO.•A new parameter is introduced in this paper to measure the emotion of each particle, guiding the motion of particles, together with the particles’ fitness.•This paper employs the idea of multigroup, separating the swarm into several subgroups based on particles’ performances during the evolution processes.•One modified restarting mechanism was proposed to enhance the performance of the algorithm.
As a well-known stochastic optimization algorithm, the particle swarm optimization (PSO) algorithm has attracted the attention of many researchers all over the world, which has resulted in many variants of the basic algorithm, in addition to a vast number of parameter selection/control strategies. However, most of these algorithms evolve their population using a single fixed pattern, thereby reducing the intelligence of the entire swarm. Some PSO-variants adopt a multimode evolutionary strategy, but lack dynamic adaptability. Furthermore, competition among particles is ignored, with no consideration of individual thinking or decision-making ability. This paper introduces an evolution mechanism based on individual difference, and proposes a novel improved PSO algorithm based on individual difference evolution (IDE-PSO). This algorithm allocates a competition coefficient called the emotional status to each particle for quantifying individual differences, separates the entire swarm into three subgroups, and selects the specific evolutionary method for each particle according to its emotional status and current fitness. The value of the coefficient is adjusted dynamically according to the evolutionary performance of each particle. A modified restarting strategy is employed to regenerate corresponding particles and enhance the diversity of the population. For a series of benchmark functions, simulation results show the effectiveness of the proposed IDE-PSO, which outperforms many state-of-the-art evolutionary algorithms in terms of convergence, robustness, and scalability. |
| Author | Wang, Cheng Luo, Wei Cai, Yi-Qiao Guo, Wang-Ping Gou, Jin Lei, Yu-Xiang |
| Author_xml | – sequence: 1 givenname: Jin surname: Gou fullname: Gou, Jin email: goujin@gmail.com – sequence: 2 givenname: Yu-Xiang orcidid: 0000-0002-3784-8983 surname: Lei fullname: Lei, Yu-Xiang – sequence: 3 givenname: Wang-Ping surname: Guo fullname: Guo, Wang-Ping – sequence: 4 givenname: Cheng surname: Wang fullname: Wang, Cheng – sequence: 5 givenname: Yi-Qiao surname: Cai fullname: Cai, Yi-Qiao – sequence: 6 givenname: Wei surname: Luo fullname: Luo, Wei |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7DyDyT4kaa2xKaqeElIbGBtOX7AVElc2WkQfD0OZcWiq7kazbmaexdo1ofeIXRNSUkJrW92pU7BlIzQdUmqkrDVGZpTsWaFrAWdZb2qRVHJqr5Ai5R2JEOSiTlSG9yH0bUYun3MwuK9jgOY1uH0qWOHw36ADr71AKHHun0PEYaPDjc65du8gt7CCPagW2zBexddbxx2Y2gPE3KJzr1uk7v6m0v0dn_3un0snl8enrab58JUVA5FveK18VZ4x7XxfO05Ia7JG0okl16yhmvqBHXMsBxOcMlp4xtSWW3qihO-ROLoa2JIKTqvDAy_Tw9RQ6soUVNRaqemotRUlCKVyl4ZZf_QfYROx6_T0O0RcjnUCC6qZGCKbiE6Mygb4BT-A8bvhxE |
| CitedBy_id | crossref_primary_10_3390_eng6080172 crossref_primary_10_1016_j_swevo_2019_100573 crossref_primary_10_1016_j_engappai_2020_103771 crossref_primary_10_1016_j_ins_2018_12_030 crossref_primary_10_3390_info10030103 crossref_primary_10_1155_2021_5544133 crossref_primary_10_1177_14759217221076366 crossref_primary_10_3390_a12090190 crossref_primary_10_1038_s41598_024_63358_4 crossref_primary_10_1109_ACCESS_2018_2832074 crossref_primary_10_1109_ACCESS_2019_2916334 crossref_primary_10_3390_rs14122912 crossref_primary_10_3390_computation9060068 crossref_primary_10_3390_informatics6020021 crossref_primary_10_1109_ACCESS_2023_3278261 crossref_primary_10_1016_j_asoc_2018_09_022 crossref_primary_10_1155_2021_6686826 crossref_primary_10_1109_ACCESS_2023_3329749 crossref_primary_10_1016_j_swevo_2020_100700 crossref_primary_10_3390_s18051393 crossref_primary_10_1016_j_swevo_2025_101993 crossref_primary_10_20965_jaciii_2019_p0592 crossref_primary_10_1007_s13369_018_3383_z crossref_primary_10_1016_j_swevo_2018_01_011 crossref_primary_10_1007_s00158_020_02501_x crossref_primary_10_1016_j_nima_2018_09_156 crossref_primary_10_1177_0954407019862079 crossref_primary_10_3233_JCM_190003 crossref_primary_10_1007_s10712_021_09638_4 crossref_primary_10_1016_j_asoc_2023_110401 crossref_primary_10_3390_math9182230 crossref_primary_10_1016_j_matcom_2020_08_013 crossref_primary_10_3390_s24154791 crossref_primary_10_1007_s10489_018_1371_3 crossref_primary_10_1016_j_asoc_2021_107681 crossref_primary_10_1007_s13349_025_00915_z crossref_primary_10_1016_j_anucene_2019_04_057 crossref_primary_10_1177_10775463251372309 crossref_primary_10_1080_09540091_2021_2002266 crossref_primary_10_1016_j_tra_2020_09_005 crossref_primary_10_1007_s40192_023_00301_x crossref_primary_10_1108_IJSI_04_2024_0066 crossref_primary_10_1109_ACCESS_2019_2938063 crossref_primary_10_1016_j_swevo_2019_04_011 crossref_primary_10_21595_jve_2017_18755 crossref_primary_10_1109_ACCESS_2025_3560624 crossref_primary_10_1007_s00521_022_08179_0 crossref_primary_10_1016_j_eswa_2024_123958 crossref_primary_10_1109_ACCESS_2019_2900925 crossref_primary_10_1007_s11276_021_02764_2 crossref_primary_10_1016_j_eswa_2023_121417 crossref_primary_10_3390_s23031108 crossref_primary_10_1016_j_engappai_2023_107243 crossref_primary_10_1155_2021_8819333 crossref_primary_10_1016_j_swevo_2024_101533 crossref_primary_10_1016_j_eswa_2018_01_030 crossref_primary_10_1016_j_artmed_2020_101790 crossref_primary_10_2478_jaiscr_2025_0019 crossref_primary_10_3390_math9050519 crossref_primary_10_1016_j_asoc_2018_04_008 crossref_primary_10_1109_ACCESS_2022_3142859 crossref_primary_10_3390_ijgi10120817 crossref_primary_10_1111_1365_2478_13474 crossref_primary_10_1111_exsy_13002 crossref_primary_10_1016_j_swevo_2022_101207 crossref_primary_10_1186_s43093_025_00612_9 crossref_primary_10_3390_s23136014 crossref_primary_10_1007_s00500_024_09814_9 crossref_primary_10_1016_j_jclepro_2022_133418 crossref_primary_10_1016_j_knosys_2018_05_042 crossref_primary_10_1016_j_apm_2020_02_023 crossref_primary_10_1016_j_micpro_2020_103050 crossref_primary_10_1007_s42835_025_02423_y crossref_primary_10_2478_amns_2024_3627 crossref_primary_10_1007_s10586_024_04879_5 crossref_primary_10_3390_a14020029 |
| Cites_doi | 10.1016/j.eswa.2013.09.012 10.1007/s10596-014-9422-2 10.1016/j.asoc.2013.05.003 10.1016/j.ins.2012.05.017 10.1016/j.asoc.2014.03.004 10.1016/j.ins.2014.05.006 10.1093/comjnl/7.4.308 10.1016/S1364-6613(03)00055-X 10.1016/j.chemolab.2014.01.003 10.1016/j.apm.2011.08.006 10.1162/EVCO_a_00097 10.1007/s10489-013-0459-z 10.1016/j.ins.2014.02.143 10.1109/TSMCC.2011.2160941 10.1016/j.asoc.2014.01.034 10.1109/TEVC.2011.2173577 10.1016/j.eswa.2011.06.029 10.1016/j.eswa.2012.12.033 10.1007/s10732-014-9245-2 10.1016/j.ins.2014.09.053 10.1080/17439884.2014.919321 10.1166/sl.2013.2714 10.1016/j.eswa.2013.10.061 10.1016/j.ins.2012.04.028 10.1016/j.ins.2011.08.014 10.1109/TEVC.2010.2052054 10.1016/j.ins.2008.02.014 10.1016/j.engappai.2013.06.014 10.1166/sl.2012.2641 10.1016/j.cor.2013.11.019 10.1023/A:1008202821328 10.1109/TEVC.2004.826071 10.1016/j.eswa.2011.04.009 10.1109/TEVC.2003.814902 10.1109/TSMCB.2009.2015956 10.1016/j.neucom.2013.03.074 10.1016/j.asoc.2012.05.019 10.1016/j.neucom.2013.09.026 10.1109/4235.985692 10.1016/j.neucom.2013.03.075 10.1109/TEVC.2012.2232931 10.1016/j.eswa.2013.07.110 10.1016/j.engappai.2014.02.018 10.1109/TSMCC.2007.900654 10.1016/j.ins.2014.03.031 10.1016/j.cnsns.2012.07.017 10.1007/s00158-008-0238-3 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2017.04.025 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 481 |
| ExternalDocumentID | 10_1016_j_asoc_2017_04_025 S1568494617301977 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c419t-6536cfd8fe3acf37f300ebcfd10939f92b3a1e81e2c202583931bfb04dac64303 |
| ISICitedReferencesCount | 84 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405457200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 03:05:31 EST 2025 Tue Nov 18 22:39:58 EST 2025 Fri Feb 23 02:24:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Subgroup Emotional PSO Individual difference Particle swarm optimization Dynamic adjustment Psychology model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c419t-6536cfd8fe3acf37f300ebcfd10939f92b3a1e81e2c202583931bfb04dac64303 |
| ORCID | 0000-0002-3784-8983 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2017_04_025 crossref_primary_10_1016_j_asoc_2017_04_025 elsevier_sciencedirect_doi_10_1016_j_asoc_2017_04_025 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Nguyen, Li, Zhang, Truong (bib0095) 2014; 41 Melin, Olivas, Castillo, Valdez, Soria, Valdez (bib0300) 2013; 40 Shi, Eberhart (bib0120) 1998 Ding, Liu, Chowdhury, Zhang, Hu, Lei (bib0090) 2014; 137 Harmanani, Drouby, Ghosn (bib0390) 2009 Wang, Yang, Chen (bib0080) 2014; 274 Epitropakis, Plagianakos, Vrahatis (bib0205) 2012; 216 Wang (bib0330) 2000; 22 Lim, Isa (bib0020) 2014; 273 Kundu, Das, Mukherjee, Debchoudhury (bib0030) 2014; 129 Han, Liu (bib0075) 2014; 137 Thida, Eng, Monekosso, Remagnino (bib0060) 2013; 13 Hu, Wu, Weir (bib0155) 2013; 17 Kennedy, Eberhart (bib0010) 1995 Zhou, Gao, Liu, Mei, Jiang, Liu (bib0005) 2011; 38 Yang (bib0220) 2010 Li, Gao (bib0130) 2009 Wang, Zhao, Wang, Xia, Tu (bib0045) 2014; 40 Har, Smith, Krasnogor (bib0200) 2005; vol. 166 Zhang, Ma, Wei, Liang (bib0085) 2014; 41 Godoy, Zuben (bib0265) 2009 Ge, Rubo (bib0360) 2005; vol. 3612 Liu, Zhou (bib0050) 2014; 132 Ghosh, Das, Roy, Islam, Suganthan (bib0180) 2012; 182 Beheshti, Shamsuddin (bib0275) 2013; 5 Wang, Zhao, Wang, Xia, Tu (bib0015) 2014; 40 Alfi, Fateh (bib0140) 2011; 38 Storn, Price (bib0210) 1997; 11 Wang, Wang, Gu, Zheng (bib0290) 2009; vol. 5755 Robati, Barani, Pour, Fadaee, Anaraki (bib0035) 2012; 36 Dehaene (bib0365) 2003; 7 Zhang, Jiang, Zhang, Geng, Wang, Sang (bib0165) 2014; 18 Haber, Alique (bib0375) 2007; 37 Pulido, Melin, Castillo (bib0025) 2014; 280 Kennedy, Mendes (bib0255) 2002; vol. 2 Eberhart, Shi (bib0125) 2001 Xi, Sun, Xu (bib0240) 2008; 205 Nelder, Mead (bib0245) 1965; 7 Wang (bib0335) 2007 Wu, Cui, Liu (bib0355) 2011 Wang, Liu, Zhao, Chen (bib0280) 2014; 32 Tanweer, Suresh, Sundararajan (bib0410) 2015; 294 Saha, Kar, Mandal, Ghoshal (bib0100) 2013 Zhan, Zhang, Li, Chung (bib0110) 2009; 39 Hu, Eberhart (bib0260) 2002; vol. 2 Huang, Huang, Chang, Yeh, Tsai (bib0185) 2013; 13 Kennedy (bib0250) 1999; vol. 3 Ding, Jiang, Li, Tang (bib0285) 2014; 18 Moscato (bib0195) 1989 Cui, Fan, Shi (bib0350) 2013; 11 Beheshti, Shamsuddin, Hasan (bib0065) 2013; 219 Zhang, Luo, Wang (bib0420) 2008; 178 Li, Wang (bib0145) 2014 Fierro, Castillo, Valdez (bib0315) 2013 Zhao, Tang, Wang, Jonrinaldi (bib0070) 2014; 45 Xin, Chen, Zhang, Fang, Peng (bib0190) 2012; 42 Zhan, Zhang, Li, Shi (bib0405) 2011; 15 Allmendinger, Knowles (bib0380) 2012; 21 Gandomi, Yun, Yang, Talatahari (bib0215) 2013; 18 Davoodi, Hagh, Zadeh (bib0230) 2014; 21 Li, Cheng, Chen (bib0160) 2014 Liang, Qu, Suganthan, Hernández-Díaz (bib0395) 2013 Yang, Deb, Fong (bib0225) 2011; vol. 136 Majercik (bib0270) 2014 Zhang, Zhang, Xin (bib0370) 2007 Chen, Zhang, Lin, Chen, Zhan, Chung, Li, Shi (bib0105) 2013; 17 Ray, Liew (bib0430) 2003; 7 Bonyadi, Michalewicz, Li (bib0305) 2014; 20 Thangaraj, Pant, Abraham, Bouvry (bib0175) 2011; 217 Kennedy (bib0400) 2003 Wang, Cai, Zhou, Fan (bib0425) 2009; 37 Lim, Isa (bib0040) 2013; 26 Sun, Feng, Xu (bib0235) 2004; vol. 1 Howard-Jones, Ott, van Leeuwen, De Smedt (bib0340) 2015; 40 Li, Cui, Shi (bib0345) 2012; 10 Shi, Eberhart (bib0320) 1999; vol. 3 Eberhart, Shi (bib0115) 2000 LeDoux, Hirst (bib0325) 1986 Alcalá-Fdez, Fernández, Luengo, Derrac, García (bib0415) 2011; 17 Ratnaweera, Halgamuge, Watson (bib0170) 2004; 8 Clerc, Kennedy (bib0310) 2002; 6 Gao, Duan (bib0150) 2007; vol. 2 Shi, Eberhart (bib0135) 2001 Wu, Cui, Liu (bib0295) 2011 Nasir, Das, Maity, Sengupta, Halder, Suganthan (bib0055) 2012; 209 Precup, David, Petriu, Preitl, Radac (bib0385) 2014; 41 Saha (10.1016/j.asoc.2017.04.025_bib0100) 2013 Ghosh (10.1016/j.asoc.2017.04.025_bib0180) 2012; 182 Hu (10.1016/j.asoc.2017.04.025_bib0155) 2013; 17 Fierro (10.1016/j.asoc.2017.04.025_bib0315) 2013 Dehaene (10.1016/j.asoc.2017.04.025_bib0365) 2003; 7 Pulido (10.1016/j.asoc.2017.04.025_bib0025) 2014; 280 Zhang (10.1016/j.asoc.2017.04.025_bib0420) 2008; 178 Zhao (10.1016/j.asoc.2017.04.025_bib0070) 2014; 45 Wang (10.1016/j.asoc.2017.04.025_bib0080) 2014; 274 Hu (10.1016/j.asoc.2017.04.025_bib0260) 2002; vol. 2 Ding (10.1016/j.asoc.2017.04.025_bib0090) 2014; 137 Xin (10.1016/j.asoc.2017.04.025_bib0190) 2012; 42 Precup (10.1016/j.asoc.2017.04.025_bib0385) 2014; 41 Lim (10.1016/j.asoc.2017.04.025_bib0040) 2013; 26 Kennedy (10.1016/j.asoc.2017.04.025_bib0010) 1995 Li (10.1016/j.asoc.2017.04.025_bib0145) 2014 Harmanani (10.1016/j.asoc.2017.04.025_bib0390) 2009 Shi (10.1016/j.asoc.2017.04.025_bib0135) 2001 Wang (10.1016/j.asoc.2017.04.025_bib0330) 2000; 22 Kennedy (10.1016/j.asoc.2017.04.025_bib0255) 2002; vol. 2 Sun (10.1016/j.asoc.2017.04.025_bib0235) 2004; vol. 1 Zhan (10.1016/j.asoc.2017.04.025_bib0405) 2011; 15 Storn (10.1016/j.asoc.2017.04.025_bib0210) 1997; 11 Godoy (10.1016/j.asoc.2017.04.025_bib0265) 2009 Gao (10.1016/j.asoc.2017.04.025_bib0150) 2007; vol. 2 Alfi (10.1016/j.asoc.2017.04.025_bib0140) 2011; 38 Wang (10.1016/j.asoc.2017.04.025_bib0290) 2009; vol. 5755 Gandomi (10.1016/j.asoc.2017.04.025_bib0215) 2013; 18 Zhang (10.1016/j.asoc.2017.04.025_bib0165) 2014; 18 Xi (10.1016/j.asoc.2017.04.025_bib0240) 2008; 205 Zhang (10.1016/j.asoc.2017.04.025_bib0085) 2014; 41 Davoodi (10.1016/j.asoc.2017.04.025_bib0230) 2014; 21 Allmendinger (10.1016/j.asoc.2017.04.025_bib0380) 2012; 21 Bonyadi (10.1016/j.asoc.2017.04.025_bib0305) 2014; 20 Shi (10.1016/j.asoc.2017.04.025_bib0120) 1998 Majercik (10.1016/j.asoc.2017.04.025_bib0270) 2014 Clerc (10.1016/j.asoc.2017.04.025_bib0310) 2002; 6 Tanweer (10.1016/j.asoc.2017.04.025_bib0410) 2015; 294 Li (10.1016/j.asoc.2017.04.025_bib0345) 2012; 10 Thangaraj (10.1016/j.asoc.2017.04.025_bib0175) 2011; 217 Huang (10.1016/j.asoc.2017.04.025_bib0185) 2013; 13 Wu (10.1016/j.asoc.2017.04.025_bib0295) 2011 Shi (10.1016/j.asoc.2017.04.025_bib0320) 1999; vol. 3 Liang (10.1016/j.asoc.2017.04.025_bib0395) 2013 Han (10.1016/j.asoc.2017.04.025_bib0075) 2014; 137 Beheshti (10.1016/j.asoc.2017.04.025_bib0275) 2013; 5 Li (10.1016/j.asoc.2017.04.025_bib0130) 2009 Wang (10.1016/j.asoc.2017.04.025_bib0015) 2014; 40 Wang (10.1016/j.asoc.2017.04.025_bib0425) 2009; 37 Har (10.1016/j.asoc.2017.04.025_bib0200) 2005; vol. 166 Alcalá-Fdez (10.1016/j.asoc.2017.04.025_bib0415) 2011; 17 LeDoux (10.1016/j.asoc.2017.04.025_bib0325) 1986 Chen (10.1016/j.asoc.2017.04.025_bib0105) 2013; 17 Haber (10.1016/j.asoc.2017.04.025_bib0375) 2007; 37 Robati (10.1016/j.asoc.2017.04.025_bib0035) 2012; 36 Melin (10.1016/j.asoc.2017.04.025_bib0300) 2013; 40 Cui (10.1016/j.asoc.2017.04.025_bib0350) 2013; 11 Wang (10.1016/j.asoc.2017.04.025_bib0280) 2014; 32 Yang (10.1016/j.asoc.2017.04.025_bib0225) 2011; vol. 136 Ding (10.1016/j.asoc.2017.04.025_bib0285) 2014; 18 Lim (10.1016/j.asoc.2017.04.025_bib0020) 2014; 273 Ratnaweera (10.1016/j.asoc.2017.04.025_bib0170) 2004; 8 Howard-Jones (10.1016/j.asoc.2017.04.025_bib0340) 2015; 40 Eberhart (10.1016/j.asoc.2017.04.025_bib0125) 2001 Kundu (10.1016/j.asoc.2017.04.025_bib0030) 2014; 129 Eberhart (10.1016/j.asoc.2017.04.025_bib0115) 2000 Kennedy (10.1016/j.asoc.2017.04.025_bib0250) 1999; vol. 3 Ge (10.1016/j.asoc.2017.04.025_bib0360) 2005; vol. 3612 Zhang (10.1016/j.asoc.2017.04.025_bib0370) 2007 Kennedy (10.1016/j.asoc.2017.04.025_bib0400) 2003 Epitropakis (10.1016/j.asoc.2017.04.025_bib0205) 2012; 216 Li (10.1016/j.asoc.2017.04.025_bib0160) 2014 Wang (10.1016/j.asoc.2017.04.025_bib0045) 2014; 40 Zhan (10.1016/j.asoc.2017.04.025_bib0110) 2009; 39 Zhou (10.1016/j.asoc.2017.04.025_bib0005) 2011; 38 Thida (10.1016/j.asoc.2017.04.025_bib0060) 2013; 13 Beheshti (10.1016/j.asoc.2017.04.025_bib0065) 2013; 219 Nasir (10.1016/j.asoc.2017.04.025_bib0055) 2012; 209 Moscato (10.1016/j.asoc.2017.04.025_bib0195) 1989 Yang (10.1016/j.asoc.2017.04.025_bib0220) 2010 Nelder (10.1016/j.asoc.2017.04.025_bib0245) 1965; 7 Ray (10.1016/j.asoc.2017.04.025_bib0430) 2003; 7 Liu (10.1016/j.asoc.2017.04.025_bib0050) 2014; 132 Nguyen (10.1016/j.asoc.2017.04.025_bib0095) 2014; 41 Wang (10.1016/j.asoc.2017.04.025_bib0335) 2007 Wu (10.1016/j.asoc.2017.04.025_bib0355) 2011 |
| References_xml | – year: 2013 ident: bib0395 article-title: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization, Tech. rep. – volume: 209 start-page: 16 year: 2012 end-page: 36 ident: bib0055 article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization publication-title: Inf. Sci. – volume: 18 start-page: 747 year: 2014 end-page: 762 ident: bib0285 article-title: Optimization of well placement by combination of a modified particle swarm optimization algorithm and quality map method publication-title: Comput. Geosci. – volume: 7 start-page: 145 year: 2003 end-page: 147 ident: bib0365 article-title: The neural basis of the Weber–Fechner law: a logarithmic mental number line publication-title: Trends Cogn. Sci. – volume: vol. 166 year: 2005 ident: bib0200 article-title: Recent Advances in Memetic Algorithms publication-title: Studies in Fuzziness and Soft Computing – volume: 5 start-page: 1 year: 2013 end-page: 35 ident: bib0275 article-title: A review of population-based meta-heuristic algorithms publication-title: Int. J. Adv. Soft Comput. Appl. – start-page: 94 year: 2001 end-page: 100 ident: bib0125 article-title: Tracking and optimizing dynamic systems with particle swarms publication-title: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1 – volume: 40 start-page: 131 year: 2015 end-page: 151 ident: bib0340 article-title: The potential relevance of cognitive neuroscience for the development and use of technology-enhanced learning publication-title: Learn. Media Technol. – volume: 18 start-page: 167 year: 2014 end-page: 177 ident: bib0165 article-title: An adaptive particle swarm optimization algorithm for reservoir operation optimization publication-title: Appl. Soft Comput. – start-page: 84 year: 2000 end-page: 88 ident: bib0115 article-title: Comparing inertia weights and constriction factors in particle swarm optimization publication-title: Proceedings of the 2000 Congress on Evolutionary Computation, 2000, vol. 1 – volume: vol. 2 start-page: 342 year: 2007 end-page: 350 ident: bib0150 article-title: An adaptive particle swarm optimization algorithm with new random inertia weight publication-title: Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques – volume: vol. 3612 start-page: 553 year: 2005 end-page: 561 ident: bib0360 article-title: An emotional particle swarm optimization algorithm publication-title: Advances in Natural Computation – volume: 273 start-page: 49 year: 2014 end-page: 72 ident: bib0020 article-title: An adaptive two-layer particle swarm optimization with elitist learning strategy publication-title: Inf. Sci. – start-page: 208 year: 2007 end-page: 217 ident: bib0335 article-title: Artificial psychology publication-title: Human Interface and the Management of Information. Methods, Techniques and Tools in Information Design – volume: 17 start-page: 705 year: 2013 end-page: 720 ident: bib0155 article-title: An adaptive particle swarm optimization with multiple adaptive methods publication-title: IEEE Trans. Evol. Comput. – volume: 182 start-page: 199 year: 2012 end-page: 219 ident: bib0180 article-title: A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization publication-title: Inf. Sci. – volume: 41 start-page: 2134 year: 2014 end-page: 2143 ident: bib0095 article-title: A hybrid algorithm based on particle swarm and chemical reaction optimization publication-title: Expert Syst. Appl. – volume: 294 start-page: 182 year: 2015 end-page: 202 ident: bib0410 article-title: Self regulating particle swarm optimization algorithm publication-title: Inf. Sci. – volume: 22 start-page: 478 year: 2000 end-page: 481 ident: bib0330 article-title: Artificial psychology – a most accessible science research to human brain publication-title: J. Univ. Sci. Technol. Beijing – volume: 7 start-page: 386 year: 2003 end-page: 396 ident: bib0430 article-title: Society and civilization: an optimization algorithm based on the simulation of social behavior publication-title: IEEE Trans. Evol. Comput. – volume: 217 start-page: 5208 year: 2011 end-page: 5226 ident: bib0175 article-title: Particle swarm optimization: hybridization perspectives and experimental illustrations publication-title: Appl. Math. Comput. – start-page: 66 year: 2009 end-page: 69 ident: bib0130 article-title: Particle swarm optimization algorithm with exponent decreasing inertia weight and stochastic mutation publication-title: Second International Conference on Information and Computing Science, 2009. ICIC’09, vol. 1 – volume: 8 start-page: 240 year: 2004 end-page: 255 ident: bib0170 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. – start-page: 270 year: 2014 end-page: 277 ident: bib0270 article-title: Using fluid neural networks to create dynamic neighborhood topologies in particle swarm optimization publication-title: International Conference on Swarm Intelligence – volume: 137 start-page: 234 year: 2014 end-page: 240 ident: bib0075 article-title: A diversity-guided hybrid particle swarm optimization based on gradient search publication-title: Neurocomputing – volume: 20 start-page: 417 year: 2014 end-page: 452 ident: bib0305 article-title: An analysis of the velocity updating rule of the particle swarm optimization algorithm publication-title: J. Heuristics – volume: 280 start-page: 188 year: 2014 end-page: 204 ident: bib0025 article-title: Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange publication-title: Inf. Sci. – volume: 38 start-page: 12312 year: 2011 end-page: 12317 ident: bib0140 article-title: Intelligent identification and control using improved fuzzy particle swarm optimization publication-title: Expert Syst. Appl. – volume: 32 start-page: 63 year: 2014 end-page: 75 ident: bib0280 article-title: A hybrid topology scale-free Gaussian-dynamic particle swarm optimization algorithm applied to real power loss minimization publication-title: Eng. Appl. Artif. Intell. – volume: 129 start-page: 315 year: 2014 end-page: 333 ident: bib0030 article-title: An improved particle swarm optimizer with difference mean based perturbation publication-title: Neurocomputing – volume: 219 start-page: 5817 year: 2013 end-page: 5836 ident: bib0065 article-title: MPSO: median-oriented particle swarm optimization publication-title: Appl. Math. Comput. – start-page: 208 year: 2014 end-page: 212 ident: bib0145 article-title: Fuzzy dynamic turning for particle swarm optimization with weighted particle publication-title: 11th IEEE International Conference on Control Automation (ICCA) – start-page: 80 year: 2003 end-page: 87 ident: bib0400 article-title: Bare bones particle swarms publication-title: Proceedings of the Swarm Intelligence Symposium, 2003. SIS’03 – volume: 45 start-page: 38 year: 2014 end-page: 50 ident: bib0070 article-title: An improved particle swarm optimization with decline disturbance index (DDPSO) for multi-objective job-shop scheduling problem publication-title: Comput. Oper. Res. – volume: 13 start-page: 3864 year: 2013 end-page: 3872 ident: bib0185 article-title: Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering publication-title: Appl. Soft Comput. – volume: 274 start-page: 70 year: 2014 end-page: 94 ident: bib0080 article-title: Improving particle swarm optimization using multi-layer searching strategy publication-title: Inf. Sci. – volume: 17 start-page: 241 year: 2013 end-page: 258 ident: bib0105 article-title: Particle swarm optimization with an aging leader and challengers publication-title: IEEE Trans. Evol. Comput. – volume: vol. 1 start-page: 325 year: 2004 end-page: 331 ident: bib0235 article-title: Particle swarm optimization with particles having quantum behavior publication-title: Congress on Evolutionary Computation, 2004. CEC2004 – start-page: 363 year: 2011 end-page: 370 ident: bib0355 article-title: A hybrid social emotional optimization algorithm with metropolis rule publication-title: Proceedings of 2011 International Conference on Modelling, Identification and Control (ICMIC) – volume: 40 start-page: 322 year: 2014 end-page: 342 ident: bib0045 article-title: Cooperative velocity updating model based particle swarm optimization publication-title: Appl. Intell. – year: 2010 ident: bib0220 article-title: Nature-Inspired Metaheuristic Algorithms – year: 1986 ident: bib0325 article-title: Mind and Brain: Dialogues in Cognitive Neuroscience – start-page: 1310 year: 2014 end-page: 1315 ident: bib0160 article-title: Chaotic particle swarm optimization algorithm based on adaptive inertia weight publication-title: The 26th Chinese Control and Decision Conference (2014 CCDC) – start-page: 19 year: 2013 end-page: 23 ident: bib0100 article-title: Adaptive particle swarm optimization for low pass finite impulse response filter design publication-title: 2013 International Conference on Communications and Signal Processing (ICCSP) – volume: 178 start-page: 3043 year: 2008 end-page: 3074 ident: bib0420 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Inf. Sci. – volume: 41 start-page: 3576 year: 2014 end-page: 3584 ident: bib0085 article-title: A parameter selection strategy for particle swarm optimization based on particle positions publication-title: Expert Syst. Appl. – volume: vol. 2 start-page: 1671 year: 2002 end-page: 1676 ident: bib0255 article-title: Population structure and particle swarm performance publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC’02 – volume: 39 start-page: 1362 year: 2009 end-page: 1381 ident: bib0110 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – volume: 10 start-page: 1676 year: 2012 end-page: 1681 ident: bib0345 article-title: Newman and watts small world social emotional optimization algorithm with WSN publication-title: Sensor Lett. – volume: 216 start-page: 50 year: 2012 end-page: 92 ident: bib0205 article-title: Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach publication-title: Inf. Sci. – volume: 15 start-page: 832 year: 2011 end-page: 847 ident: bib0405 article-title: Orthogonal learning particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – volume: 36 start-page: 2169 year: 2012 end-page: 2177 ident: bib0035 article-title: Balanced fuzzy particle swarm optimization publication-title: Appl. Math. Model. – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib0310 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 40 start-page: 3196 year: 2013 end-page: 3206 ident: bib0300 article-title: Optimal design of fuzzy classification systems using {PSO} with dynamic parameter adaptation through fuzzy logic publication-title: Expert Syst. Appl. – volume: vol. 5755 start-page: 766 year: 2009 end-page: 775 ident: bib0290 article-title: Emotional particle swarm optimization publication-title: Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence – volume: 132 start-page: 82 year: 2014 end-page: 90 ident: bib0050 article-title: An improved QPSO algorithm and its application in the high-dimensional complex problems publication-title: Chemom. Intell. Lab. Syst. – volume: 11 start-page: 259 year: 2013 end-page: 263 ident: bib0350 article-title: Social emotional optimization algorithm with Gaussian distribution for optimal coverage problem publication-title: Sensor Lett. – volume: 13 start-page: 3106 year: 2013 end-page: 3117 ident: bib0060 article-title: A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets publication-title: Appl. Soft Comput. – year: 1989 ident: bib0195 article-title: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms – volume: 41 start-page: 1168 year: 2014 end-page: 1175 ident: bib0385 article-title: Novel adaptive charged system search algorithm for optimal tuning of fuzzy controllers publication-title: Expert Syst. Appl. – volume: vol. 3 start-page: 1945 year: 1999 end-page: 1950 ident: bib0320 article-title: Empirical study of particle swarm optimization publication-title: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC’99 – volume: 26 start-page: 2327 year: 2013 end-page: 2348 ident: bib0040 article-title: Two-layer particle swarm optimization with intelligent division of labor publication-title: Eng. Appl. Artif. Intell. – start-page: 720 year: 2009 end-page: 727 ident: bib0265 article-title: A complex neighborhood based particle swarm optimization publication-title: IEEE Congress on Evolutionary Computation, 2009. CEC’09 – volume: 42 start-page: 744 year: 2012 end-page: 767 ident: bib0190 article-title: Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy publication-title: IEEE Trans. Syst. Man Cybern. C – volume: vol. 3 start-page: 1391 year: 1999 end-page: 1938 ident: bib0250 article-title: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance publication-title: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99 – start-page: 405 year: 2011 end-page: 411 ident: bib0295 article-title: Using hybrid social emotional optimization algorithm with metropolis rule to solve nonlinear equations publication-title: 2011 10th IEEE International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) – volume: 40 start-page: 322 year: 2014 end-page: 342 ident: bib0015 article-title: Cooperative velocity updating model based particle swarm optimization publication-title: Appl. Intell. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0210 article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces publication-title: J. Glob. Optim. – start-page: 51 year: 2013 end-page: 56 ident: bib0315 article-title: Optimization of fuzzy control systems with different variants of particle swarm optimization publication-title: 2013 IEEE Workshop on Hybrid Intelligent Models and Applications (HIMA) – volume: 21 start-page: 171 year: 2014 end-page: 179 ident: bib0230 article-title: A hybrid improved quantum-behaved particle swarm optimization-simplex method (IQPSOS) to solve power system load flow problems publication-title: Appl. Soft Comput. – volume: 21 start-page: 497 year: 2012 end-page: 531 ident: bib0380 article-title: On handling ephemeral resource constraints in evolutionary search publication-title: Evol. Comput. – volume: 17 start-page: 255 year: 2011 end-page: 287 ident: bib0415 publication-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework – volume: 37 start-page: 395 year: 2009 end-page: 413 ident: bib0425 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Struct. Multidiscip. Optim. – start-page: 1 year: 2009 end-page: 8 ident: bib0390 article-title: A parallel genetic algorithm for the open-shop scheduling problem using deterministic and random moves publication-title: Spring Simulation Multiconference, Springsim, 2009 – volume: 137 start-page: 261 year: 2014 end-page: 267 ident: bib0090 article-title: A particle swarm optimization using local stochastic search and enhancing diversity for continuous optimization publication-title: Neurocomputing – start-page: 69 year: 1998 end-page: 73 ident: bib0120 article-title: A modified particle swarm optimizer publication-title: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence – volume: 18 start-page: 327 year: 2013 end-page: 340 ident: bib0215 article-title: Chaos-enhanced accelerated particle swarm optimization publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: vol. 136 start-page: 53 year: 2011 end-page: 66 ident: bib0225 article-title: Accelerated particle swarm optimization and support vector machine for business optimization and applications publication-title: Networked Digital Technologies – start-page: 2342 year: 2007 end-page: 2346 ident: bib0370 article-title: An improved particle swarm optimization algorithm with sentient mode publication-title: International Conference on Mechatronics and Automation, 2007. ICMA 2007 – start-page: 101 year: 2001 end-page: 106 ident: bib0135 article-title: Fuzzy adaptive particle swarm optimization publication-title: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1 – volume: 205 start-page: 751 year: 2008 end-page: 759 ident: bib0240 article-title: An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position publication-title: Appl. Math. Comput. – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: bib0245 article-title: A simplex method for function minimization publication-title: Comput. J. – start-page: 1942 year: 1995 end-page: 1948 ident: bib0010 article-title: Particle swarm optimization publication-title: IEEE International Conference on Neural Networks, 1995. Proceedings, vol. 4 – volume: 38 start-page: 15356 year: 2011 end-page: 15364 ident: bib0005 article-title: Randomization in particle swarm optimization for global search ability publication-title: Expert Syst. Appl. – volume: vol. 2 start-page: 1677 year: 2002 end-page: 1681 ident: bib0260 article-title: Multiobjective optimization using dynamic neighborhood particle swarm optimization publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC’02 – volume: 37 start-page: 941 year: 2007 end-page: 950 ident: bib0375 article-title: Fuzzy logic-based torque control system for milling process optimization publication-title: IEEE Trans. Syst. Man Cybern. C – volume: 41 start-page: 2134 issue: 5 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0095 article-title: A hybrid algorithm based on particle swarm and chemical reaction optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.09.012 – volume: 18 start-page: 747 issue: 5 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0285 article-title: Optimization of well placement by combination of a modified particle swarm optimization algorithm and quality map method publication-title: Comput. Geosci. doi: 10.1007/s10596-014-9422-2 – volume: 13 start-page: 3864 issue: 9 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0185 article-title: Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.05.003 – volume: 216 start-page: 50 year: 2012 ident: 10.1016/j.asoc.2017.04.025_bib0205 article-title: Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.05.017 – volume: 21 start-page: 171 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0230 article-title: A hybrid improved quantum-behaved particle swarm optimization-simplex method (IQPSOS) to solve power system load flow problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.03.004 – year: 2010 ident: 10.1016/j.asoc.2017.04.025_bib0220 – start-page: 2342 year: 2007 ident: 10.1016/j.asoc.2017.04.025_bib0370 article-title: An improved particle swarm optimization algorithm with sentient mode – volume: vol. 2 start-page: 1677 year: 2002 ident: 10.1016/j.asoc.2017.04.025_bib0260 article-title: Multiobjective optimization using dynamic neighborhood particle swarm optimization – year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0395 – volume: 280 start-page: 188 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0025 article-title: Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.05.006 – volume: 217 start-page: 5208 issue: 12 year: 2011 ident: 10.1016/j.asoc.2017.04.025_bib0175 article-title: Particle swarm optimization: hybridization perspectives and experimental illustrations publication-title: Appl. Math. Comput. – volume: 7 start-page: 308 issue: 4 year: 1965 ident: 10.1016/j.asoc.2017.04.025_bib0245 article-title: A simplex method for function minimization publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 7 start-page: 145 issue: 4 year: 2003 ident: 10.1016/j.asoc.2017.04.025_bib0365 article-title: The neural basis of the Weber–Fechner law: a logarithmic mental number line publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(03)00055-X – volume: 132 start-page: 82 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0050 article-title: An improved QPSO algorithm and its application in the high-dimensional complex problems publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.01.003 – start-page: 19 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0100 article-title: Adaptive particle swarm optimization for low pass finite impulse response filter design – start-page: 405 year: 2011 ident: 10.1016/j.asoc.2017.04.025_bib0295 article-title: Using hybrid social emotional optimization algorithm with metropolis rule to solve nonlinear equations – start-page: 66 year: 2009 ident: 10.1016/j.asoc.2017.04.025_bib0130 article-title: Particle swarm optimization algorithm with exponent decreasing inertia weight and stochastic mutation – volume: vol. 166 year: 2005 ident: 10.1016/j.asoc.2017.04.025_bib0200 article-title: Recent Advances in Memetic Algorithms – volume: 36 start-page: 2169 issue: 5 year: 2012 ident: 10.1016/j.asoc.2017.04.025_bib0035 article-title: Balanced fuzzy particle swarm optimization publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.08.006 – start-page: 69 year: 1998 ident: 10.1016/j.asoc.2017.04.025_bib0120 article-title: A modified particle swarm optimizer – volume: 5 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0275 article-title: A review of population-based meta-heuristic algorithms publication-title: Int. J. Adv. Soft Comput. Appl. – volume: 21 start-page: 497 issue: 3 year: 2012 ident: 10.1016/j.asoc.2017.04.025_bib0380 article-title: On handling ephemeral resource constraints in evolutionary search publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00097 – volume: 40 start-page: 322 issue: 2 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0045 article-title: Cooperative velocity updating model based particle swarm optimization publication-title: Appl. Intell. doi: 10.1007/s10489-013-0459-z – volume: 274 start-page: 70 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0080 article-title: Improving particle swarm optimization using multi-layer searching strategy publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.143 – volume: 42 start-page: 744 issue: 5 year: 2012 ident: 10.1016/j.asoc.2017.04.025_bib0190 article-title: Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2011.2160941 – volume: 18 start-page: 167 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0165 article-title: An adaptive particle swarm optimization algorithm for reservoir operation optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.01.034 – volume: vol. 136 start-page: 53 year: 2011 ident: 10.1016/j.asoc.2017.04.025_bib0225 article-title: Accelerated particle swarm optimization and support vector machine for business optimization and applications – volume: 17 start-page: 241 issue: 2 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0105 article-title: Particle swarm optimization with an aging leader and challengers publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2011.2173577 – volume: 38 start-page: 15356 issue: 12 year: 2011 ident: 10.1016/j.asoc.2017.04.025_bib0005 article-title: Randomization in particle swarm optimization for global search ability publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.06.029 – volume: 205 start-page: 751 issue: 2 year: 2008 ident: 10.1016/j.asoc.2017.04.025_bib0240 article-title: An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position publication-title: Appl. Math. Comput. – start-page: 101 year: 2001 ident: 10.1016/j.asoc.2017.04.025_bib0135 article-title: Fuzzy adaptive particle swarm optimization – volume: 40 start-page: 3196 issue: 8 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0300 article-title: Optimal design of fuzzy classification systems using {PSO} with dynamic parameter adaptation through fuzzy logic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.12.033 – volume: 20 start-page: 417 issue: 4 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0305 article-title: An analysis of the velocity updating rule of the particle swarm optimization algorithm publication-title: J. Heuristics doi: 10.1007/s10732-014-9245-2 – volume: 294 start-page: 182 year: 2015 ident: 10.1016/j.asoc.2017.04.025_bib0410 article-title: Self regulating particle swarm optimization algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.09.053 – volume: 219 start-page: 5817 issue: 11 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0065 article-title: MPSO: median-oriented particle swarm optimization publication-title: Appl. Math. Comput. – volume: 40 start-page: 131 issue: 2 year: 2015 ident: 10.1016/j.asoc.2017.04.025_bib0340 article-title: The potential relevance of cognitive neuroscience for the development and use of technology-enhanced learning publication-title: Learn. Media Technol. doi: 10.1080/17439884.2014.919321 – volume: 11 start-page: 259 issue: 2 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0350 article-title: Social emotional optimization algorithm with Gaussian distribution for optimal coverage problem publication-title: Sensor Lett. doi: 10.1166/sl.2013.2714 – volume: 40 start-page: 322 issue: 2 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0015 article-title: Cooperative velocity updating model based particle swarm optimization publication-title: Appl. Intell. doi: 10.1007/s10489-013-0459-z – volume: 41 start-page: 3576 issue: 7 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0085 article-title: A parameter selection strategy for particle swarm optimization based on particle positions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.10.061 – volume: 209 start-page: 16 year: 2012 ident: 10.1016/j.asoc.2017.04.025_bib0055 article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.04.028 – volume: vol. 3612 start-page: 553 year: 2005 ident: 10.1016/j.asoc.2017.04.025_bib0360 article-title: An emotional particle swarm optimization algorithm – volume: 182 start-page: 199 issue: 1 year: 2012 ident: 10.1016/j.asoc.2017.04.025_bib0180 article-title: A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.08.014 – volume: 15 start-page: 832 issue: 6 year: 2011 ident: 10.1016/j.asoc.2017.04.025_bib0405 article-title: Orthogonal learning particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2052054 – volume: 178 start-page: 3043 issue: 15 year: 2008 ident: 10.1016/j.asoc.2017.04.025_bib0420 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.02.014 – volume: 26 start-page: 2327 issue: 10 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0040 article-title: Two-layer particle swarm optimization with intelligent division of labor publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.06.014 – volume: 10 start-page: 1676 issue: 8 year: 2012 ident: 10.1016/j.asoc.2017.04.025_bib0345 article-title: Newman and watts small world social emotional optimization algorithm with WSN publication-title: Sensor Lett. doi: 10.1166/sl.2012.2641 – start-page: 80 year: 2003 ident: 10.1016/j.asoc.2017.04.025_bib0400 article-title: Bare bones particle swarms – volume: 45 start-page: 38 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0070 article-title: An improved particle swarm optimization with decline disturbance index (DDPSO) for multi-objective job-shop scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.11.019 – volume: vol. 2 start-page: 342 year: 2007 ident: 10.1016/j.asoc.2017.04.025_bib0150 article-title: An adaptive particle swarm optimization algorithm with new random inertia weight – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.asoc.2017.04.025_bib0210 article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – start-page: 363 year: 2011 ident: 10.1016/j.asoc.2017.04.025_bib0355 article-title: A hybrid social emotional optimization algorithm with metropolis rule – year: 1989 ident: 10.1016/j.asoc.2017.04.025_bib0195 – volume: vol. 5755 start-page: 766 year: 2009 ident: 10.1016/j.asoc.2017.04.025_bib0290 article-title: Emotional particle swarm optimization – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2017.04.025_bib0010 article-title: Particle swarm optimization – volume: vol. 3 start-page: 1391 year: 1999 ident: 10.1016/j.asoc.2017.04.025_bib0250 article-title: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance – start-page: 84 year: 2000 ident: 10.1016/j.asoc.2017.04.025_bib0115 article-title: Comparing inertia weights and constriction factors in particle swarm optimization – start-page: 270 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0270 article-title: Using fluid neural networks to create dynamic neighborhood topologies in particle swarm optimization – volume: 8 start-page: 240 issue: 3 year: 2004 ident: 10.1016/j.asoc.2017.04.025_bib0170 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826071 – volume: 38 start-page: 12312 issue: 10 year: 2011 ident: 10.1016/j.asoc.2017.04.025_bib0140 article-title: Intelligent identification and control using improved fuzzy particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.009 – volume: 7 start-page: 386 issue: 4 year: 2003 ident: 10.1016/j.asoc.2017.04.025_bib0430 article-title: Society and civilization: an optimization algorithm based on the simulation of social behavior publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.814902 – volume: 39 start-page: 1362 issue: 6 year: 2009 ident: 10.1016/j.asoc.2017.04.025_bib0110 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. doi: 10.1109/TSMCB.2009.2015956 – volume: 137 start-page: 234 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0075 article-title: A diversity-guided hybrid particle swarm optimization based on gradient search publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.074 – start-page: 1310 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0160 article-title: Chaotic particle swarm optimization algorithm based on adaptive inertia weight – volume: 13 start-page: 3106 issue: 6 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0060 article-title: A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.05.019 – volume: vol. 1 start-page: 325 year: 2004 ident: 10.1016/j.asoc.2017.04.025_bib0235 article-title: Particle swarm optimization with particles having quantum behavior – volume: vol. 2 start-page: 1671 year: 2002 ident: 10.1016/j.asoc.2017.04.025_bib0255 article-title: Population structure and particle swarm performance – volume: 22 start-page: 478 issue: 5 year: 2000 ident: 10.1016/j.asoc.2017.04.025_bib0330 article-title: Artificial psychology – a most accessible science research to human brain publication-title: J. Univ. Sci. Technol. Beijing – volume: 129 start-page: 315 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0030 article-title: An improved particle swarm optimizer with difference mean based perturbation publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.026 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.asoc.2017.04.025_bib0310 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 137 start-page: 261 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0090 article-title: A particle swarm optimization using local stochastic search and enhancing diversity for continuous optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.075 – volume: 17 start-page: 705 issue: 5 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0155 article-title: An adaptive particle swarm optimization with multiple adaptive methods publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2232931 – start-page: 720 year: 2009 ident: 10.1016/j.asoc.2017.04.025_bib0265 article-title: A complex neighborhood based particle swarm optimization – start-page: 94 year: 2001 ident: 10.1016/j.asoc.2017.04.025_bib0125 article-title: Tracking and optimizing dynamic systems with particle swarms – start-page: 208 year: 2007 ident: 10.1016/j.asoc.2017.04.025_bib0335 article-title: Artificial psychology – volume: 41 start-page: 1168 issue: 4 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0385 article-title: Novel adaptive charged system search algorithm for optimal tuning of fuzzy controllers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.07.110 – volume: 32 start-page: 63 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0280 article-title: A hybrid topology scale-free Gaussian-dynamic particle swarm optimization algorithm applied to real power loss minimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.02.018 – year: 1986 ident: 10.1016/j.asoc.2017.04.025_bib0325 – start-page: 1 year: 2009 ident: 10.1016/j.asoc.2017.04.025_bib0390 article-title: A parallel genetic algorithm for the open-shop scheduling problem using deterministic and random moves – start-page: 208 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0145 article-title: Fuzzy dynamic turning for particle swarm optimization with weighted particle – volume: 17 start-page: 255 year: 2011 ident: 10.1016/j.asoc.2017.04.025_bib0415 publication-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework – volume: 37 start-page: 941 issue: 5 year: 2007 ident: 10.1016/j.asoc.2017.04.025_bib0375 article-title: Fuzzy logic-based torque control system for milling process optimization publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2007.900654 – volume: 273 start-page: 49 year: 2014 ident: 10.1016/j.asoc.2017.04.025_bib0020 article-title: An adaptive two-layer particle swarm optimization with elitist learning strategy publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.03.031 – volume: vol. 3 start-page: 1945 year: 1999 ident: 10.1016/j.asoc.2017.04.025_bib0320 article-title: Empirical study of particle swarm optimization – start-page: 51 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0315 article-title: Optimization of fuzzy control systems with different variants of particle swarm optimization – volume: 18 start-page: 327 issue: 2 year: 2013 ident: 10.1016/j.asoc.2017.04.025_bib0215 article-title: Chaos-enhanced accelerated particle swarm optimization publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.07.017 – volume: 37 start-page: 395 issue: 4 year: 2009 ident: 10.1016/j.asoc.2017.04.025_bib0425 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-008-0238-3 |
| SSID | ssj0016928 |
| Score | 2.477219 |
| Snippet | [Display omitted]
•This paper uses a novel evolution strategy based on individual difference to improve the performance of particle swarm optimization, hence... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 468 |
| SubjectTerms | Dynamic adjustment Emotional PSO Individual difference Particle swarm optimization Psychology model Subgroup |
| Title | A novel improved particle swarm optimization algorithm based on individual difference evolution |
| URI | https://dx.doi.org/10.1016/j.asoc.2017.04.025 |
| Volume | 57 |
| WOSCitedRecordID | wos000405457200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEOXNn0hSdOCQzeBhSTKEjkaQYo0Q5AhRdxJkCiycWDLhiy5WfLfe6RIWk3boBm6CMKZOj3u093pfA-EPsaV0HUHKckYVSSJy4ro8kdCOSuVgF9Uqsywiez8nE2n_GI0unO1MJt5Vtfs9pav_quogQbC1qWzjxC3ZwoE2AehwxbEDtt_EvwkqJcbOdf1jw3sVMHKLgrWP4pmESxBSSxs9WVQzL8vm1l7vQi0OasCk_joS7Tc9BR49-XGXvTQm3Uu7Bp0uUlO71pnCU3L_c5gZDbI-jG5A986MgVUbhd2Jl57BSRyMWBwZWPZx9fSEm14AkyeS47zGjVlJOE2zmhVbt-T2urMpJ-rY81v0k9w-U2z90GGm08FgFZn5GWmQ21fNP1rG-175s0nHbp8tptc88g1jzxMcuDxBO3G2ZiDUtydfDmZnvm_oVJuhvP6e7BVV32C4P0r-bNnM_BWLvfQc_uZgSe95F-ikaxfoRduhAe2Gv01yifYoAU7tGCHFmzQgodowR4t2KAFA2mLFrxFC_ZoeYO-fj65PD4lduYGEUnEW5KOaSpUxZSkhVA0UzQMZQkU3XaMKx6XtIgki2QsYrhncK9pVKoyTKpCgHMb0rdop17Wch_hcZzGokwrxcBNLzPB4WOkEkVW6CZrlIkDFLnnlQvbkF7PRZnnf5fUAQr8Mau-HcuDq8dODLl1KHtHMQdUPXDc4aPO8g492wL_CO20TSffo6di087WzQcLqZ8QQppy |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+improved+particle+swarm+optimization+algorithm+based+on+individual+difference+evolution&rft.jtitle=Applied+soft+computing&rft.au=Gou%2C+Jin&rft.au=Lei%2C+Yu-Xiang&rft.au=Guo%2C+Wang-Ping&rft.au=Wang%2C+Cheng&rft.date=2017-08-01&rft.issn=1568-4946&rft.volume=57&rft.spage=468&rft.epage=481&rft_id=info:doi/10.1016%2Fj.asoc.2017.04.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2017_04_025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |