Interpretable tourism demand forecasting with temporal fusion transformers amid COVID-19

An innovative ADE-TFT interpretable tourism demand forecasting model was proposed to address the issue of the insufficient interpretability of existing tourism demand forecasting. This model effectively optimizes the parameters of the Temporal Fusion Transformer (TFT) using an adaptive differential...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 53; no. 11; pp. 14493 - 14514
Main Authors: Wu, Binrong, Wang, Lin, Zeng, Yu-Rong
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2023
Springer Nature B.V
Subjects:
ISSN:0924-669X, 1573-7497, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An innovative ADE-TFT interpretable tourism demand forecasting model was proposed to address the issue of the insufficient interpretability of existing tourism demand forecasting. This model effectively optimizes the parameters of the Temporal Fusion Transformer (TFT) using an adaptive differential evolution algorithm (ADE). TFT is a brand-new attention-based deep learning model that excels in prediction research by fusing high-performance prediction with time-dynamic interpretable analysis. The TFT model can produce explicable predictions of tourism demand, including attention analysis of time steps and the ranking of input factors’ relevance. While doing so, this study adds something unique to the literature on tourism by using historical tourism volume, monthly new confirmed cases of travel destinations, and big data from travel forums and search engines to increase the precision of forecasting tourist volume during the COVID-19 pandemic. The mood of travelers and the many subjects they spoke about throughout off-season and peak travel periods were examined using a convolutional neural network model. In addition, a novel technique for choosing keywords from Google Trends was suggested. In other words, the Latent Dirichlet Allocation topic model was used to categorize the major travel-related subjects of forum postings, after which the most relevant search terms for each topic were determined. According to the findings, it is possible to estimate tourism demand during the COVID-19 pandemic by combining quantitative and emotion-based characteristics.
AbstractList An innovative ADE-TFT interpretable tourism demand forecasting model was proposed to address the issue of the insufficient interpretability of existing tourism demand forecasting. This model effectively optimizes the parameters of the Temporal Fusion Transformer (TFT) using an adaptive differential evolution algorithm (ADE). TFT is a brand-new attention-based deep learning model that excels in prediction research by fusing high-performance prediction with time-dynamic interpretable analysis. The TFT model can produce explicable predictions of tourism demand, including attention analysis of time steps and the ranking of input factors' relevance. While doing so, this study adds something unique to the literature on tourism by using historical tourism volume, monthly new confirmed cases of travel destinations, and big data from travel forums and search engines to increase the precision of forecasting tourist volume during the COVID-19 pandemic. The mood of travelers and the many subjects they spoke about throughout off-season and peak travel periods were examined using a convolutional neural network model. In addition, a novel technique for choosing keywords from Google Trends was suggested. In other words, the Latent Dirichlet Allocation topic model was used to categorize the major travel-related subjects of forum postings, after which the most relevant search terms for each topic were determined. According to the findings, it is possible to estimate tourism demand during the COVID-19 pandemic by combining quantitative and emotion-based characteristics.
An innovative ADE-TFT interpretable tourism demand forecasting model was proposed to address the issue of the insufficient interpretability of existing tourism demand forecasting. This model effectively optimizes the parameters of the Temporal Fusion Transformer (TFT) using an adaptive differential evolution algorithm (ADE). TFT is a brand-new attention-based deep learning model that excels in prediction research by fusing high-performance prediction with time-dynamic interpretable analysis. The TFT model can produce explicable predictions of tourism demand, including attention analysis of time steps and the ranking of input factors' relevance. While doing so, this study adds something unique to the literature on tourism by using historical tourism volume, monthly new confirmed cases of travel destinations, and big data from travel forums and search engines to increase the precision of forecasting tourist volume during the COVID-19 pandemic. The mood of travelers and the many subjects they spoke about throughout off-season and peak travel periods were examined using a convolutional neural network model. In addition, a novel technique for choosing keywords from Google Trends was suggested. In other words, the Latent Dirichlet Allocation topic model was used to categorize the major travel-related subjects of forum postings, after which the most relevant search terms for each topic were determined. According to the findings, it is possible to estimate tourism demand during the COVID-19 pandemic by combining quantitative and emotion-based characteristics.An innovative ADE-TFT interpretable tourism demand forecasting model was proposed to address the issue of the insufficient interpretability of existing tourism demand forecasting. This model effectively optimizes the parameters of the Temporal Fusion Transformer (TFT) using an adaptive differential evolution algorithm (ADE). TFT is a brand-new attention-based deep learning model that excels in prediction research by fusing high-performance prediction with time-dynamic interpretable analysis. The TFT model can produce explicable predictions of tourism demand, including attention analysis of time steps and the ranking of input factors' relevance. While doing so, this study adds something unique to the literature on tourism by using historical tourism volume, monthly new confirmed cases of travel destinations, and big data from travel forums and search engines to increase the precision of forecasting tourist volume during the COVID-19 pandemic. The mood of travelers and the many subjects they spoke about throughout off-season and peak travel periods were examined using a convolutional neural network model. In addition, a novel technique for choosing keywords from Google Trends was suggested. In other words, the Latent Dirichlet Allocation topic model was used to categorize the major travel-related subjects of forum postings, after which the most relevant search terms for each topic were determined. According to the findings, it is possible to estimate tourism demand during the COVID-19 pandemic by combining quantitative and emotion-based characteristics.
Author Zeng, Yu-Rong
Wu, Binrong
Wang, Lin
Author_xml – sequence: 1
  givenname: Binrong
  surname: Wu
  fullname: Wu, Binrong
  organization: School of Management, Huazhong University of Science and Technology
– sequence: 2
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
  organization: School of Management, Huazhong University of Science and Technology
– sequence: 3
  givenname: Yu-Rong
  orcidid: 0000-0002-7627-0766
  surname: Zeng
  fullname: Zeng, Yu-Rong
  email: zyrhbue@gmail.com, zyr@hbue.edu.cn
  organization: Hubei University of Economics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36320610$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1rHDEQhoWxsc9O_kCKIEiTRslIWn2V4fJ1YHDjBHdCuys5Mrvai6TF5N9HztkEXLia5nmGmfc9R8dpSR6hNxQ-UAD1sVDotCHAGIGOiY7AEdpQoThRnVHHaAOGdURKc3OGzku5AwDOgZ6iMy45A0lhg252qfq8z766fvK4LmuOZcajn10acViyH1ypMd3i-1h_4ern_ZLdhMNa4pJwzS6VRs0-F-zmOOLt1c_dZ0LNK3QS3FT868d5gX58_XK9_U4ur77ttp8uydBRU4lkagi6l3oMDAQ3vTSuVxxY8IqzbjAAQgQpAhUdB8XH0ehRUCc0MKcGyi_Q-8PefV5-r75UO8cy-GlyyS9rsUxx2jGltWzou2foXXs3tess04xSJVpWjXr7SK397Ee7z3F2-Y99yqwB-gAMeSkl-2CHWF1tcbQ04mQp2Id67KEe2-qx_-qxDyp7pj5tf1HiB6k0ON36_P_sF6y_idWgCg
CitedBy_id crossref_primary_10_3390_en17133061
crossref_primary_10_1371_journal_pone_0306726
crossref_primary_10_1007_s11424_024_2307_0
crossref_primary_10_1007_s00521_024_10437_2
crossref_primary_10_1177_10963480231223151
crossref_primary_10_1002_for_3099
crossref_primary_10_1002_widm_1549
crossref_primary_10_35234_fumbd_1692094
crossref_primary_10_1007_s41060_025_00781_4
crossref_primary_10_1007_s10489_025_06715_8
crossref_primary_10_1016_j_heliyon_2024_e30756
crossref_primary_10_3390_tourhosp6030133
crossref_primary_10_1016_j_ipm_2025_104161
crossref_primary_10_1016_j_neunet_2025_107735
crossref_primary_10_14267_VEZTUD_2024_07_08_08
crossref_primary_10_1038_s41598_025_15396_9
crossref_primary_10_1016_j_compeleceng_2024_109220
crossref_primary_10_3390_su16188227
crossref_primary_10_1016_j_sasc_2024_200168
crossref_primary_10_1016_j_eswa_2024_125464
crossref_primary_10_1016_j_eswa_2024_126245
Cites_doi 10.1016/j.annals.2021.103255
10.1016/j.annals.2020.102923
10.1002/for.1213
10.1016/j.ijinfomgt.2014.10.007
10.1016/j.tourman.2014.07.014
10.1002/for.2644
10.1016/j.ipm.2018.06.005
10.1016/j.dss.2016.06.010
10.1016/j.annals.2020.102925
10.1016/j.annals.2020.102912
10.1007/s10489-020-01973-0
10.1016/j.knosys.2016.07.023
10.1016/j.tourman.2020.104245
10.1080/13683500.2014.990422
10.1016/j.dss.2018.06.012
10.1016/S0261-5177(01)00098-X
10.1016/j.tourman.2018.03.006
10.1016/j.chaos.2020.110242
10.1016/j.tourman.2021.104320
10.1016/j.annals.2016.10.007
10.1016/j.elerap.2015.01.001
10.1016/j.knosys.2021.107161
10.1007/s10489-021-02410-6
10.1016/j.ins.2020.02.026
10.1016/j.ijforecast.2019.03.029
10.1016/j.tourman.2017.10.014
10.1016/j.tourman.2014.11.004
10.1111/exsy.12648
10.25300/MISQ/2016/40.4.07
10.1016/j.annals.2021.103149
10.1002/for.2760
10.1007/s10489-022-03342-5
10.1016/j.asoc.2014.10.022
10.1016/j.tourman.2018.09.010
10.1177/1354816619872592
10.5367/te.2015.0507
10.1007/s11229-021-03233-1
10.1504/IJCAT.2021.120456
10.1016/j.tourman.2014.07.019
10.1016/j.ijforecast.2021.03.012
10.1016/j.tourman.2016.04.008
10.1007/s10489-020-01814-0
10.1016/j.annals.2019.01.014
10.1016/j.tourman.2016.07.005
10.1080/13683500.2020.1849049
10.1002/for.2584
10.1016/j.ins.2021.04.029
10.1016/j.dss.2019.113075
10.1016/j.measurement.2020.108468
10.1016/j.ijforecast.2019.04.014
10.1007/s10489-021-02577-y
10.1016/j.ipm.2021.102816
10.1016/j.dss.2018.01.002
10.1177/0047287518759226
10.1177/0047287518824158
10.1016/j.dsm.2021.05.001
10.1016/j.annals.2018.12.001
10.1177/0047287516669050
10.1016/j.energy.2022.123990
10.1177/1354816618812588
10.18111/wtobarometereng.2021.19.1.4
10.1016/j.ijforecast.2020.11.006
10.1016/j.patrec.2021.08.018
10.1016/j.energy.2021.120403
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
DOI 10.1007/s10489-022-04254-0
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 14514
ExternalDocumentID 36320610
10_1007_s10489_022_04254_0
Genre Journal Article
GrantInformation_xml – fundername: Humanities and Social Sciences Foundation of the Chinese Ministry of Education
  grantid: No.22YJA630003
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
NPM
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c419t-627cf8b68df20539b69ab7302fe7324c90055f65f1543073dd98d51a5802a7c13
IEDL.DBID K7-
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000874431700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
1573-7497
IngestDate Fri Sep 05 14:43:39 EDT 2025
Wed Nov 05 14:51:37 EST 2025
Wed Feb 19 02:08:36 EST 2025
Tue Nov 18 21:05:41 EST 2025
Sat Nov 29 05:33:34 EST 2025
Fri Feb 21 02:43:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Deep learning
Text mining
COVID-19
Interpretable tourism demand forecasting
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-627cf8b68df20539b69ab7302fe7324c90055f65f1543073dd98d51a5802a7c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7627-0766
OpenAccessLink http://dx.doi.org/10.1007/s10489-022-04254-0
PMID 36320610
PQID 2821175669
PQPubID 326365
PageCount 22
ParticipantIDs proquest_miscellaneous_2731427886
proquest_journals_2821175669
pubmed_primary_36320610
crossref_citationtrail_10_1007_s10489_022_04254_0
crossref_primary_10_1007_s10489_022_04254_0
springer_journals_10_1007_s10489_022_04254_0
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Netherlands
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationTitleAlternate Appl Intell (Dordr)
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chen, Chen, Hou (CR14) 2021; 226
Xiao, Qian, Qin (CR38) 2021; 570
Dergiades, Mavragani, Pan (CR42) 2018; 66
Eslami, Ghasemaghaei, Hassanein (CR17) 2018; 113
CR32
Bi, Liu, Li (CR27) 2020; 83
Gandomi, Haider (CR19) 2015; 35
Mahanty, Kumar, Mishra (CR4) 2022; 39
Chen, Liang, Hong, Gu (CR34) 2015; 26
CR3
CR6
Li, Law, Xie, Wang (CR22) 2021; 83
CR8
Wu, Wang, Lv, Zeng (CR51) 2021; 168
Kaya, Yılmaz, Yaslan (CR20) 2022; 59
Casanueva, Gallego, García-Sánchez (CR41) 2016; 19
Tsang, Benoit (CR23) 2020; 39
CR45
Castillo, Melin (CR7) 2020; 140
Zhang, Song, Wen, Liu (CR1) 2021; 87
Gunter, Önder (CR44) 2016; 61
Brynjolfsson, Geva (CR48) 2016; 40
Li, Shang, Wang, Ma (CR49) 2015; 14
Niu, Xu, Wang (CR61) 2020; 50
Sterkenburg, Grünwald (CR36) 2021; 199
Rivera (CR43) 2016; 57
Kulshrestha, Krishnaswamy, Sharma (CR60) 2020; 83
De Caigny, Coussement, De Bock, Lessmann (CR15) 2020; 36
Lim, Arık, Loeff, Pfister (CR54) 2021; 37
Siering, Deokar, Janze (CR39) 2018; 107
Bi, Liu, Fan, Zhang (CR58) 2019; 70
Tsui, Balli (CR59) 2017; 23
Bi, Li, Fan (CR35) 2021; 90
Nicholas (CR30) 2021; 40
CR13
Yang, Pan, Evans, Lv (CR47) 2015; 46
CR11
Farhadloo, Patterson, Rolland (CR18) 2016; 90
Huang, Xie, Rao (CR52) 2020; 520
Lim, McAleer (CR31) 2002; 23
Li, Chen, Wang, Ming (CR46) 2018; 68
Chauhan, Sirswal, Gupta (CR5) 2021; 66
Song, Shin (CR21) 2019; 38
Bangwayo-Skeete, Skeete (CR12) 2015; 46
Wu, Hong, Cao (CR16) 2022; 52
Hu, Song (CR37) 2020; 26
Agarwal, Ramampiaro, Langseth, Ruocco (CR53) 2018; 54
Li, Hu, Li (CR10) 2020; 83
Akın (CR57) 2015; 48
Li, Pan, Law, Huang (CR28) 2017; 59
Windsor, Cao (CR62) 2022
Makridakis, Spiliotis, Assimakopoulos (CR24) 2020; 36
CR26
CR25
Law, Li, Fong, Han (CR33) 2019; 75
Li, Wang, Liu (CR56) 2022; 52
Lijuan, Guohua (CR29) 2016; 110
Cai, Wu, Fu, Zeng (CR55) 2021; 51
CR65
CR64
CR63
Fronzetti Colladon, Guardabascio, Innarella (CR40) 2019; 123
Hu, Teichert, Deng (CR2) 2021; 85
Wickramasinghe, Ratnasiri (CR9) 2021; 24
Vosen, Schmidt (CR50) 2011; 30
S Li (4254_CR46) 2018; 68
A Fronzetti Colladon (4254_CR40) 2019; 123
M Huang (4254_CR52) 2020; 520
WHK Tsui (4254_CR59) 2017; 23
M Farhadloo (4254_CR18) 2016; 90
R Rivera (4254_CR43) 2016; 57
H Niu (4254_CR61) 2020; 50
M Song (4254_CR21) 2019; 38
E Chauhan (4254_CR5) 2021; 66
4254_CR11
R Chen (4254_CR34) 2015; 26
4254_CR13
J Wu (4254_CR16) 2022; 52
A Nicholas (4254_CR30) 2021; 40
K Xiao (4254_CR38) 2021; 570
O Castillo (4254_CR7) 2020; 140
X Yang (4254_CR47) 2015; 46
Y Cai (4254_CR55) 2021; 51
C Mahanty (4254_CR4) 2022; 39
A De Caigny (4254_CR15) 2020; 36
4254_CR8
M Siering (4254_CR39) 2018; 107
SP Eslami (4254_CR17) 2018; 113
4254_CR6
4254_CR3
U Gunter (4254_CR44) 2016; 61
K Wickramasinghe (4254_CR9) 2021; 24
B Wu (4254_CR51) 2021; 168
B Agarwal (4254_CR53) 2018; 54
M Hu (4254_CR37) 2020; 26
J-W Bi (4254_CR27) 2020; 83
4254_CR45
B Lim (4254_CR54) 2021; 37
J-W Bi (4254_CR58) 2019; 70
S Vosen (4254_CR50) 2011; 30
A Gandomi (4254_CR19) 2015; 35
J-W Bi (4254_CR35) 2021; 90
H Zhang (4254_CR1) 2021; 87
E Windsor (4254_CR62) 2022
R Law (4254_CR33) 2019; 75
C Casanueva (4254_CR41) 2016; 19
T Dergiades (4254_CR42) 2018; 66
X Li (4254_CR22) 2021; 83
K Kaya (4254_CR20) 2022; 59
W Lijuan (4254_CR29) 2016; 110
4254_CR32
E Brynjolfsson (4254_CR48) 2016; 40
X Li (4254_CR49) 2015; 14
M Akın (4254_CR57) 2015; 48
Y Chen (4254_CR14) 2021; 226
C Lim (4254_CR31) 2002; 23
WK Tsang (4254_CR23) 2020; 39
H Li (4254_CR10) 2020; 83
X Li (4254_CR28) 2017; 59
Y Li (4254_CR56) 2022; 52
4254_CR64
4254_CR63
4254_CR65
F Hu (4254_CR2) 2021; 85
4254_CR26
4254_CR25
A Kulshrestha (4254_CR60) 2020; 83
S Makridakis (4254_CR24) 2020; 36
PF Bangwayo-Skeete (4254_CR12) 2015; 46
TF Sterkenburg (4254_CR36) 2021; 199
References_xml – ident: CR45
– volume: 90
  start-page: 103255
  year: 2021
  ident: CR35
  article-title: Tourism demand forecasting with time series imaging: a deep learning model
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2021.103255
– volume: 83
  start-page: 102923
  year: 2020
  ident: CR27
  article-title: Daily tourism volume forecasting for tourist attractions
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2020.102923
– volume: 30
  start-page: 565
  year: 2011
  end-page: 578
  ident: CR50
  article-title: Forecasting private consumption: survey-based indicators vs. Google trends
  publication-title: J Forecast
  doi: 10.1002/for.1213
– volume: 35
  start-page: 137
  year: 2015
  end-page: 144
  ident: CR19
  article-title: Beyond the hype: Big data concepts, methods, and analytics
  publication-title: Int J Inf Manag
  doi: 10.1016/j.ijinfomgt.2014.10.007
– volume: 46
  start-page: 454
  year: 2015
  end-page: 464
  ident: CR12
  article-title: Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2014.07.014
– volume: 39
  start-page: 551
  year: 2020
  end-page: 568
  ident: CR23
  article-title: Gaussian processes for daily demand prediction in tourism planning
  publication-title: J Forecast
  doi: 10.1002/for.2644
– volume: 54
  start-page: 922
  year: 2018
  end-page: 937
  ident: CR53
  article-title: A deep network model for paraphrase detection in short text messages
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2018.06.005
– volume: 90
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR18
  article-title: Modeling customer satisfaction from unstructured data using a Bayesian approach
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2016.06.010
– volume: 83
  start-page: 102925
  year: 2020
  ident: CR60
  article-title: Bayesian BILSTM approach for tourism demand forecasting
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2020.102925
– volume: 83
  start-page: 102912
  year: 2020
  ident: CR10
  article-title: Forecasting tourism demand with multisource big data
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2020.102912
– volume: 51
  start-page: 5873
  year: 2021
  end-page: 5897
  ident: CR55
  article-title: Self-regulated differential evolution for real parameter optimization
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01973-0
– ident: CR8
– ident: CR25
– volume: 110
  start-page: 157
  year: 2016
  end-page: 166
  ident: CR29
  article-title: Seasonal SVR with FOA algorithm for single-step and multi-step ahead forecasting in monthly inbound tourist flow
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.07.023
– volume: 83
  start-page: 104245
  year: 2021
  ident: CR22
  article-title: Review of tourism forecasting research with internet data
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2020.104245
– volume: 19
  start-page: 1190
  year: 2016
  end-page: 1209
  ident: CR41
  article-title: Social network analysis in tourism
  publication-title: Curr Issues Tourism
  doi: 10.1080/13683500.2014.990422
– volume: 113
  start-page: 32
  year: 2018
  end-page: 42
  ident: CR17
  article-title: Which online reviews do consumers find most helpful? A multi-method investigation
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2018.06.012
– volume: 23
  start-page: 389
  year: 2002
  end-page: 396
  ident: CR31
  article-title: Time series forecasts of international travel demand for Australia
  publication-title: Tour Manag
  doi: 10.1016/S0261-5177(01)00098-X
– volume: 68
  start-page: 116
  year: 2018
  end-page: 126
  ident: CR46
  article-title: Effective tourist volume forecasting supported by PCA and improved BPNN using Baidu index
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2018.03.006
– volume: 140
  start-page: 110242
  year: 2020
  ident: CR7
  article-title: Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110242
– ident: CR11
– volume: 85
  start-page: 104320
  year: 2021
  ident: CR2
  article-title: Dealing with pandemics: An investigation of the effects of COVID-19 on customers’ evaluations of hospitality services
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2021.104320
– volume: 61
  start-page: 199
  year: 2016
  end-page: 212
  ident: CR44
  article-title: Forecasting city arrivals with Google Analytics
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2016.10.007
– ident: CR32
– volume: 14
  start-page: 112
  year: 2015
  end-page: 125
  ident: CR49
  article-title: A MIDAS modelling framework for Chinese inflation index forecast incorporating Google search data
  publication-title: Electron Commer Res Appl
  doi: 10.1016/j.elerap.2015.01.001
– volume: 226
  start-page: 107161
  year: 2021
  ident: CR14
  article-title: Research on users’ participation mechanisms in virtual tourism communities by Bayesian network
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107161
– ident: CR64
– ident: CR26
– volume: 52
  start-page: 1306
  year: 2022
  end-page: 1324
  ident: CR16
  article-title: A group consensus-based travel destination evaluation method with online reviews
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02410-6
– volume: 520
  start-page: 389
  year: 2020
  end-page: 399
  ident: CR52
  article-title: Sentiment strength detection with a context-dependent lexicon-based convolutional neural network
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.02.026
– volume: 36
  start-page: 1563
  year: 2020
  end-page: 1578
  ident: CR15
  article-title: Incorporating textual information in customer churn prediction models based on a convolutional neural network
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2019.03.029
– volume: 66
  start-page: 108
  year: 2018
  end-page: 120
  ident: CR42
  article-title: Google Trends and tourists’ arrivals: Emerging biases and proposed corrections
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2017.10.014
– volume: 48
  start-page: 64
  year: 2015
  end-page: 72
  ident: CR57
  article-title: A novel approach to model selection in tourism demand modeling
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2014.11.004
– volume: 39
  start-page: e12648
  year: 2022
  ident: CR4
  article-title: Prediction of COVID-19 active cases using exponential and non-linear growth models
  publication-title: Expert Syst
  doi: 10.1111/exsy.12648
– volume: 40
  start-page: 941
  year: 2016
  end-page: 961
  ident: CR48
  article-title: Crowd-Squared: Amplifying the Predictive Power of Search Trend Data
  publication-title: MISQ
  doi: 10.25300/MISQ/2016/40.4.07
– volume: 87
  start-page: 103149
  year: 2021
  ident: CR1
  article-title: Forecasting tourism recovery amid COVID-19
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2021.103149
– volume: 40
  start-page: 963
  year: 2021
  end-page: 976
  ident: CR30
  article-title: Forecasting US overseas travelling with univariate and multivariate models
  publication-title: J Forecast
  doi: 10.1002/for.2760
– year: 2022
  ident: CR62
  article-title: Improving exchange rate forecasting via a new deep multimodal fusion model
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03342-5
– volume: 26
  start-page: 435
  year: 2015
  end-page: 443
  ident: CR34
  article-title: Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.10.022
– volume: 70
  start-page: 460
  year: 2019
  end-page: 478
  ident: CR58
  article-title: Wisdom of crowds: Conducting importance-performance analysis (IPA) through online reviews
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2018.09.010
– volume: 26
  start-page: 1248
  year: 2020
  end-page: 1265
  ident: CR37
  article-title: Data source combination for tourism demand forecasting
  publication-title: Tour Econ
  doi: 10.1177/1354816619872592
– volume: 23
  start-page: 403
  year: 2017
  end-page: 428
  ident: CR59
  article-title: International arrivals forecasting for Australian airports and the impact of tourism marketing expenditure
  publication-title: Tour Econ
  doi: 10.5367/te.2015.0507
– ident: CR6
– volume: 199
  start-page: 9979
  year: 2021
  end-page: 10015
  ident: CR36
  article-title: The no-free-lunch theorems of supervised learning
  publication-title: Synthese
  doi: 10.1007/s11229-021-03233-1
– ident: CR63
– volume: 66
  start-page: 309
  year: 2021
  end-page: 333
  ident: CR5
  article-title: Analysis of COVID-19 pandemic and forecasting using machine learning models
  publication-title: Int J Comput Appl Technol
  doi: 10.1504/IJCAT.2021.120456
– volume: 46
  start-page: 386
  year: 2015
  end-page: 397
  ident: CR47
  article-title: Forecasting Chinese tourist volume with search engine data
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2014.07.019
– volume: 37
  start-page: 1748
  year: 2021
  end-page: 1764
  ident: CR54
  article-title: Temporal Fusion Transformers for interpretable multi-horizon time series forecasting
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2021.03.012
– volume: 57
  start-page: 12
  year: 2016
  end-page: 20
  ident: CR43
  article-title: A dynamic linear model to forecast hotel registrations in Puerto Rico using Google Trends data
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2016.04.008
– volume: 50
  start-page: 4296
  year: 2020
  end-page: 4309
  ident: CR61
  article-title: A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01814-0
– volume: 75
  start-page: 410
  year: 2019
  end-page: 423
  ident: CR33
  article-title: Tourism demand forecasting: a deep learning approach
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2019.01.014
– ident: CR65
– volume: 59
  start-page: 57
  year: 2017
  end-page: 66
  ident: CR28
  article-title: Forecasting tourism demand with composite search index
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2016.07.005
– volume: 24
  start-page: 2740
  year: 2021
  end-page: 2754
  ident: CR9
  article-title: The role of disaggregated search data in improving tourism forecasts: Evidence from Sri Lanka
  publication-title: Curr Issues Tourism
  doi: 10.1080/13683500.2020.1849049
– ident: CR3
– volume: 38
  start-page: 504
  year: 2019
  end-page: 518
  ident: CR21
  article-title: Forecasting economic indicators using a consumer sentiment index: Survey-based versus text‐based data
  publication-title: J Forecast
  doi: 10.1002/for.2584
– volume: 570
  start-page: 262
  year: 2021
  end-page: 277
  ident: CR38
  article-title: A graphical decomposition and similarity measurement approach for topic detection from online news
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.04.029
– ident: CR13
– volume: 123
  start-page: 113075
  year: 2019
  ident: CR40
  article-title: Using social network and semantic analysis to analyze online travel forums and forecast tourism demand
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2019.113075
– volume: 168
  start-page: 108468
  year: 2021
  ident: CR51
  article-title: Effective crude oil price forecasting using new text-based and big-data-driven model
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108468
– volume: 36
  start-page: 54
  year: 2020
  end-page: 74
  ident: CR24
  article-title: The M4 Competition: 100,000 time series and 61 forecasting methods
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2019.04.014
– volume: 52
  start-page: 3418
  year: 2022
  end-page: 3444
  ident: CR56
  article-title: A backtracking differential evolution with multi-mutation strategies autonomy and collaboration
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02577-y
– volume: 59
  start-page: 102816
  year: 2022
  ident: CR20
  article-title: Demand forecasting model using hotel clustering findings for hospitality industry
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2021.102816
– volume: 107
  start-page: 52
  year: 2018
  end-page: 63
  ident: CR39
  article-title: Disentangling consumer recommendations: Explaining and predicting airline recommendations based on online reviews
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2018.01.002
– volume: 52
  start-page: 1306
  year: 2022
  ident: 4254_CR16
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02410-6
– ident: 4254_CR26
  doi: 10.1177/0047287518759226
– ident: 4254_CR45
  doi: 10.1177/0047287518824158
– ident: 4254_CR64
  doi: 10.1016/j.dsm.2021.05.001
– ident: 4254_CR25
  doi: 10.1016/j.annals.2018.12.001
– volume: 24
  start-page: 2740
  year: 2021
  ident: 4254_CR9
  publication-title: Curr Issues Tourism
  doi: 10.1080/13683500.2020.1849049
– volume: 83
  start-page: 104245
  year: 2021
  ident: 4254_CR22
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2020.104245
– volume: 14
  start-page: 112
  year: 2015
  ident: 4254_CR49
  publication-title: Electron Commer Res Appl
  doi: 10.1016/j.elerap.2015.01.001
– ident: 4254_CR13
  doi: 10.1177/0047287516669050
– volume: 61
  start-page: 199
  year: 2016
  ident: 4254_CR44
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2016.10.007
– volume: 54
  start-page: 922
  year: 2018
  ident: 4254_CR53
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2018.06.005
– volume: 30
  start-page: 565
  year: 2011
  ident: 4254_CR50
  publication-title: J Forecast
  doi: 10.1002/for.1213
– volume: 83
  start-page: 102925
  year: 2020
  ident: 4254_CR60
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2020.102925
– volume: 123
  start-page: 113075
  year: 2019
  ident: 4254_CR40
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2019.113075
– ident: 4254_CR63
  doi: 10.1016/j.energy.2022.123990
– volume: 66
  start-page: 309
  year: 2021
  ident: 4254_CR5
  publication-title: Int J Comput Appl Technol
  doi: 10.1504/IJCAT.2021.120456
– volume: 90
  start-page: 1
  year: 2016
  ident: 4254_CR18
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2016.06.010
– volume: 38
  start-page: 504
  year: 2019
  ident: 4254_CR21
  publication-title: J Forecast
  doi: 10.1002/for.2584
– volume: 46
  start-page: 454
  year: 2015
  ident: 4254_CR12
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2014.07.014
– ident: 4254_CR32
  doi: 10.1177/1354816618812588
– volume: 19
  start-page: 1190
  year: 2016
  ident: 4254_CR41
  publication-title: Curr Issues Tourism
  doi: 10.1080/13683500.2014.990422
– volume: 520
  start-page: 389
  year: 2020
  ident: 4254_CR52
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.02.026
– volume: 168
  start-page: 108468
  year: 2021
  ident: 4254_CR51
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108468
– volume: 75
  start-page: 410
  year: 2019
  ident: 4254_CR33
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2019.01.014
– ident: 4254_CR8
  doi: 10.18111/wtobarometereng.2021.19.1.4
– volume: 46
  start-page: 386
  year: 2015
  ident: 4254_CR47
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2014.07.019
– ident: 4254_CR3
– volume: 51
  start-page: 5873
  year: 2021
  ident: 4254_CR55
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01973-0
– volume: 37
  start-page: 1748
  year: 2021
  ident: 4254_CR54
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2021.03.012
– volume: 66
  start-page: 108
  year: 2018
  ident: 4254_CR42
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2017.10.014
– volume: 107
  start-page: 52
  year: 2018
  ident: 4254_CR39
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2018.01.002
– volume: 70
  start-page: 460
  year: 2019
  ident: 4254_CR58
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2018.09.010
– volume: 83
  start-page: 102923
  year: 2020
  ident: 4254_CR27
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2020.102923
– volume: 59
  start-page: 57
  year: 2017
  ident: 4254_CR28
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2016.07.005
– volume: 39
  start-page: e12648
  year: 2022
  ident: 4254_CR4
  publication-title: Expert Syst
  doi: 10.1111/exsy.12648
– volume: 570
  start-page: 262
  year: 2021
  ident: 4254_CR38
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.04.029
– volume: 26
  start-page: 1248
  year: 2020
  ident: 4254_CR37
  publication-title: Tour Econ
  doi: 10.1177/1354816619872592
– volume: 48
  start-page: 64
  year: 2015
  ident: 4254_CR57
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2014.11.004
– volume: 23
  start-page: 389
  year: 2002
  ident: 4254_CR31
  publication-title: Tour Manag
  doi: 10.1016/S0261-5177(01)00098-X
– volume: 85
  start-page: 104320
  year: 2021
  ident: 4254_CR2
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2021.104320
– volume: 39
  start-page: 551
  year: 2020
  ident: 4254_CR23
  publication-title: J Forecast
  doi: 10.1002/for.2644
– volume: 59
  start-page: 102816
  year: 2022
  ident: 4254_CR20
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2021.102816
– volume: 52
  start-page: 3418
  year: 2022
  ident: 4254_CR56
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02577-y
– volume: 140
  start-page: 110242
  year: 2020
  ident: 4254_CR7
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110242
– ident: 4254_CR11
  doi: 10.1016/j.ijforecast.2020.11.006
– volume: 23
  start-page: 403
  year: 2017
  ident: 4254_CR59
  publication-title: Tour Econ
  doi: 10.5367/te.2015.0507
– volume: 83
  start-page: 102912
  year: 2020
  ident: 4254_CR10
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2020.102912
– year: 2022
  ident: 4254_CR62
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03342-5
– volume: 26
  start-page: 435
  year: 2015
  ident: 4254_CR34
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.10.022
– volume: 36
  start-page: 1563
  year: 2020
  ident: 4254_CR15
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2019.03.029
– volume: 50
  start-page: 4296
  year: 2020
  ident: 4254_CR61
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01814-0
– ident: 4254_CR6
  doi: 10.1016/j.patrec.2021.08.018
– volume: 35
  start-page: 137
  year: 2015
  ident: 4254_CR19
  publication-title: Int J Inf Manag
  doi: 10.1016/j.ijinfomgt.2014.10.007
– volume: 40
  start-page: 941
  year: 2016
  ident: 4254_CR48
  publication-title: MISQ
  doi: 10.25300/MISQ/2016/40.4.07
– volume: 87
  start-page: 103149
  year: 2021
  ident: 4254_CR1
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2021.103149
– volume: 57
  start-page: 12
  year: 2016
  ident: 4254_CR43
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2016.04.008
– volume: 226
  start-page: 107161
  year: 2021
  ident: 4254_CR14
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107161
– volume: 110
  start-page: 157
  year: 2016
  ident: 4254_CR29
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.07.023
– volume: 90
  start-page: 103255
  year: 2021
  ident: 4254_CR35
  publication-title: Ann Tour Res
  doi: 10.1016/j.annals.2021.103255
– volume: 68
  start-page: 116
  year: 2018
  ident: 4254_CR46
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2018.03.006
– volume: 36
  start-page: 54
  year: 2020
  ident: 4254_CR24
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2019.04.014
– volume: 40
  start-page: 963
  year: 2021
  ident: 4254_CR30
  publication-title: J Forecast
  doi: 10.1002/for.2760
– volume: 199
  start-page: 9979
  year: 2021
  ident: 4254_CR36
  publication-title: Synthese
  doi: 10.1007/s11229-021-03233-1
– volume: 113
  start-page: 32
  year: 2018
  ident: 4254_CR17
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2018.06.012
– ident: 4254_CR65
  doi: 10.1016/j.energy.2021.120403
SSID ssj0003301
Score 2.4586275
Snippet An innovative ADE-TFT interpretable tourism demand forecasting model was proposed to address the issue of the insufficient interpretability of existing tourism...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14493
SubjectTerms Adaptive algorithms
Artificial Intelligence
Artificial neural networks
Computer Science
Coronaviruses
COVID-19
Demand analysis
Dirichlet problem
Evolutionary algorithms
Evolutionary computation
Forecasting
Machine learning
Machines
Manufacturing
Mathematical models
Mechanical Engineering
Pandemics
Performance prediction
Processes
Search engines
Tourism
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7Q4MCF8aYwUJC4QaQ1bfM4osEEl4F4TLtVaZNIk7YObR2_H6ePDTRAgnPTJHLs5HPs-EPoQreTwDdWEskDQ0JrQ6Iiagi1FPBA4thqbEE2wXs9MRjIx-pR2KzOdq9DksVO_emxW-jSe8B5cooWEnDU1-G4E84cn577i_0XPPSCJw88C8KYHFRPZb7v4-txtIIxV-KjxbHTbf5vwttoq4KZ-LrUix20ZrJd1KwpHHBl0XtosEw6TEYG52VNQazNWGUaA6A1qZq5zGjsLmxxVchqhO3c3bLhvIa9ACKxGg817jz072-IL_fRa_f2pXNHKrIFkoa-zAmjPLUiYUJbCoYpEyZVAuZPreEAulLpqnVZFlnAXG5f0FoKHfkqEm2qeOoHB6iRTTJzhDDjLImksUUMT0RchToJqebMCG6DiHvIr2Uep1UlckeIMYqXNZSd6GIQXVyILm576HLxz1tZh-PX1q16KePKJmcxOJeuLimohIfOF5_BmlyIRGVmMoc2PPAd-YhgHjosVWAxXMACCugHOr-q13vZ-c9zOf5b8xO06Rjty2y0Fmrk07k5RRvpez6cTc8KTf8AYL70pA
  priority: 102
  providerName: Springer Nature
Title Interpretable tourism demand forecasting with temporal fusion transformers amid COVID-19
URI https://link.springer.com/article/10.1007/s10489-022-04254-0
https://www.ncbi.nlm.nih.gov/pubmed/36320610
https://www.proquest.com/docview/2821175669
https://www.proquest.com/docview/2731427886
Volume 53
WOSCitedRecordID wos000874431700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RlgMXyjcLZWUkbmCROIkdnxBsW4EQy6qFErhETmxLlbbZ0s329zOTOLuqqvbCZS6JHSszHj-Px_MA3tioSmLnNdcqcTz1PuUmE44LLxAPVMRW4zuyCTWd5kWhZyHgtgxplYNP7By1XdQUI3-PWwOqKiml_nD-lxNrFJ2uBgqNLdiJhYjJzr8qvvbEuFfvGPNwj8GxYREuzYSrcyklC-FWjMw25dHVheka2rx2UtotQIe7_zv0B3A_QE_2sbeVh3DHNY9gd6B1YGGWP4Zik4hYzR1r-zqDzLoz01iGINfVZknZ0oyCuCwUt5ozv6LIG2sHKIzAkpmzU8sm30--7PNYP4Gfhwc_Jp95IGDgdRrrlkuhap9XMrde4GTVldSmQpcgvFMIxGpNFby8zDziMPIV1urcZrHJ8kgYVcfJU9huFo17DkwqWWXa-e5cL8-USW2VCquky5VPMjWCePj7ZR2qkxNJxrzc1FUmjZWosbLTWBmN4O26zXlfm-PWt_cG7ZRhni7LjWpG8Hr9GGcYHZuYxi1W-I5KYiIkyeUInvXGsP5cIhOBiAg7fzdYx6bzm8fy4vaxvIR7xGrfZ6TtwXZ7sXKv4G592Z4uL8awpX79JlnkY9j5dDCdHY07u0f5LZqQVMcoZ9kflEfHJ_8Ay6QGAg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggSXlm-WFjASnMAisRM7PlQIbam6alk4FLS34MS2VGmbbbvZVvwpfiMz-dgVquitB85xHCd-M3n2jOcBvHFRIWMfDDdaep6EkHCbCs9FEMgHClKrCY3YhB6Ps8nEfFuD3_1ZGEqr7H1i46jdrKQ98g-4NKCqkkqZj6dnnFSjKLraS2i0sDjwvy5xyTbfGe3i_L4VYu_z0XCfd6oCvExiU3MldBmyQmUuCESgKZSxBeJcBK-RXZSGylIFlQYkF2QAzpnMpbFNs0hYXcYS-70Ft5MEzYFSBaPh0vNL2cgtR7im4TjQSXdIpzuql1ByEi79yEwSHv39I7zCbq9EZpsf3t7m__ap7sNGR63Zp9YWHsCarx7CZi9bwTov9ggmq0TLYupZ3dZRZM6f2MoxJPG-tHPKBme0Sc264l1TFha0s8jqnuojcWb25Nix4dcfo10em8fw_Ube7wmsV7PKPwOmtCpS40MTt8xSbRNXJMJp5TMdZKoHEPeznZdd9XUSAZnmq7rRhJAcEZI3CMmjAbxb3nPa1h65tvV2j4a880PzfAWFAbxeXkYPQmEhW_nZAttoGZPgSqYG8LQF3_JxUkmBjA87f9-jcdX5v8fy_PqxvIK7-0dfDvPD0fhgC-4J5I1t9t02rNfnC_8C7pQX9fH8_GVjXwx-3jRK_wDqgliJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAXyjcLBYwEJ7CaOIkdH1BVdVmxWrT0AGhvwYltqdI2W7pZEH-tv64zibMrVNFbD5yTOE78ZvzGHs8DeGOjMomd11yrxPHU-5SbTDguvEA-UJJajW_FJtR0ms9m-mgLzvuzMJRW2fvE1lHbRUVr5HsYGlBVSSn1ng9pEUfD0f7pT04KUrTT2stpdBCZuD-_MXxbfhgPcazfCjH6-PXwEw8KA7xKY91wKVTl81Lm1gtEoy6lNiViXninkGlUmkpUeZl5JBpkDNbq3GaxyfJIGFXFCbZ7A27iLJyRjU0UX88CSdJKL0cY33Ds9Cwc2AnH9lJKVMIwkEwm5dHfk-Ilpntpl7ad_EY7__Nvuwd3A-VmB52N3IctVz-AnV7OggXv9hBmmwTMcu5Y09VXZNadmNoyJPeuMkvKEme0eM1CUa858ytacWRNHwIgoWbm5Niywy_fx0Me60fw7Vq-7zFs14vaPQUmlSwz7Xy7n5lnyqS2TIVV0uXKJ5kaQNyPfFGFquwkDjIvNvWkCS0FoqVo0VJEA3i3fua0q0ly5d27PTKK4J-WxQYWA3i9voyehbaLTO0WK7xHJTEJseRyAE86IK5fl8hEIBPExt_3yNw0_u--PLu6L6_gNoKz-DyeTp7DHYF0skvK24Xt5mzlXsCt6ldzvDx72Zoagx_XDdILRQFhLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+tourism+demand+forecasting+with+temporal+fusion+transformers+amid+COVID-19&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Wu%2C+Binrong&rft.au=Wang%2C+Lin&rft.au=Zeng%2C+Yu-Rong&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=11&rft.spage=14493&rft.epage=14514&rft_id=info:doi/10.1007%2Fs10489-022-04254-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon