Past, Present, and Future of Face Recognition: A Review
Face recognition is one of the most active research fields of computer vision and pattern recognition, with many practical and commercial applications including identification, access control, forensics, and human-computer interactions. However, identifying a face in a crowd raises serious questions...
Uloženo v:
| Vydáno v: | Electronics (Basel) Ročník 9; číslo 8; s. 1188 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.08.2020
MDPI |
| Témata: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Face recognition is one of the most active research fields of computer vision and pattern recognition, with many practical and commercial applications including identification, access control, forensics, and human-computer interactions. However, identifying a face in a crowd raises serious questions about individual freedoms and poses ethical issues. Significant methods, algorithms, approaches, and databases have been proposed over recent years to study constrained and unconstrained face recognition. 2D approaches reached some degree of maturity and reported very high rates of recognition. This performance is achieved in controlled environments where the acquisition parameters are controlled, such as lighting, angle of view, and distance between the camera–subject. However, if the ambient conditions (e.g., lighting) or the facial appearance (e.g., pose or facial expression) change, this performance will degrade dramatically. 3D approaches were proposed as an alternative solution to the problems mentioned above. The advantage of 3D data lies in its invariance to pose and lighting conditions, which has enhanced recognition systems efficiency. 3D data, however, is somewhat sensitive to changes in facial expressions. This review presents the history of face recognition technology, the current state-of-the-art methodologies, and future directions. We specifically concentrate on the most recent databases, 2D and 3D face recognition methods. Besides, we pay particular attention to deep learning approach as it presents the actuality in this field. Open issues are examined and potential directions for research in facial recognition are proposed in order to provide the reader with a point of reference for topics that deserve consideration. |
|---|---|
| AbstractList | Face recognition is one of the most active research fields of computer vision and pattern recognition, with many practical and commercial applications including identification, access control, forensics, and human-computer interactions. However, identifying a face in a crowd raises serious questions about individual freedoms and poses ethical issues. Significant methods, algorithms, approaches, and databases have been proposed over recent years to study constrained and unconstrained face recognition. 2D approaches reached some degree of maturity and reported very high rates of recognition. This performance is achieved in controlled environments where the acquisition parameters are controlled, such as lighting, angle of view, and distance between the camera–subject. However, if the ambient conditions (e.g., lighting) or the facial appearance (e.g., pose or facial expression) change, this performance will degrade dramatically. 3D approaches were proposed as an alternative solution to the problems mentioned above. The advantage of 3D data lies in its invariance to pose and lighting conditions, which has enhanced recognition systems efficiency. 3D data, however, is somewhat sensitive to changes in facial expressions. This review presents the history of face recognition technology, the current state-of-the-art methodologies, and future directions. We specifically concentrate on the most recent databases, 2D and 3D face recognition methods. Besides, we pay particular attention to deep learning approach as it presents the actuality in this field. Open issues are examined and potential directions for research in facial recognition are proposed in order to provide the reader with a point of reference for topics that deserve consideration. Face recognition is one of the most active research fields of computer vision and pattern recognition, with many practical and commercial applications including identification, access control, forensics, and human-computer interactions. However, identifying a face in a crowd raises serious questions about individual freedoms and poses ethical issues. Significant methods, algorithms, approaches, and databases have been proposed over recent years to study constrained and unconstrained face recognition. 2D approaches reached some degree of maturity and reported very high rates of recognition. This performance is achieved in controlled environments where the acquisition parameters are controlled, such as lighting, angle of view, and distance between the camera\textendash subject. However, if the ambient conditions (e.g., lighting) or the facial appearance (e.g., pose or facial expression) change, this performance will degrade dramatically. 3D approaches were proposed as an alternative solution to the problems mentioned above. The advantage of 3D data lies in its invariance to pose and lighting conditions, which has enhanced recognition systems efficiency. 3D data, however, is somewhat sensitive to changes in facial expressions. This review presents the history of face recognition technology, the current state-of-the-art methodologies, and future directions. We specifically concentrate on the most recent databases, 2D and 3D face recognition methods. Besides, we pay particular attention to deep learning approach as it presents the actuality in this field. Open issues are examined and potential directions for research in facial recognition are proposed in order to provide the reader with a point of reference for topics that deserve consideration. |
| Author | Ouahabi, Abdeldjalil Benzaoui, Amir Taleb-Ahmed, Abdelmalik Adjabi, Insaf |
| Author_xml | – sequence: 1 givenname: Insaf surname: Adjabi fullname: Adjabi, Insaf – sequence: 2 givenname: Abdeldjalil orcidid: 0000-0002-6392-7693 surname: Ouahabi fullname: Ouahabi, Abdeldjalil – sequence: 3 givenname: Amir orcidid: 0000-0003-0437-1143 surname: Benzaoui fullname: Benzaoui, Amir – sequence: 4 givenname: Abdelmalik surname: Taleb-Ahmed fullname: Taleb-Ahmed, Abdelmalik |
| BackLink | https://hal.science/hal-03140632$$DView record in HAL |
| BookMark | eNp9UMFKAzEQDVLBWvsDnhY8Ca5Okt1u1lsprhUKFtFzyKaJpqxJTbIV_96UKoiCc5k3M-8Nb-YYDayzCqFTDJeU1nClOiWjd9bIUAPDmLEDNCRQ1XlNajL4gY_QOIQ1pKgxZRSGqFqKEC-ypVdB2QSEXWVNH3uvMqezRkiVPSjpnq2JxtnrbJrKrVHvJ-hQiy6o8Vceoafm5nE2zxf3t3ez6SKXBa5jXmLBgBUM67bUolxVqm1ZpQutWigYFaTSMk1bQVgrJhhKmYwBFQCSqAooHaHz_d4X0fGNN6_Cf3AnDJ9PF3zXA4oLmFCyxYl7tuduvHvrVYh87Xpvkz1OClIxSiaMJRbbs6R3IXiluTRR7K6LXpiOY-C7r_K_X01S8kv67egf0SdSlX20 |
| CitedBy_id | crossref_primary_10_4018_IJDST_307987 crossref_primary_10_3788_AI_2025_10018 crossref_primary_10_1007_s00500_025_10866_8 crossref_primary_10_1016_j_ijhcs_2024_103345 crossref_primary_10_3390_electronics11101663 crossref_primary_10_1002_sres_2873 crossref_primary_10_1016_j_cviu_2024_104261 crossref_primary_10_1515_pac_2022_0202 crossref_primary_10_1016_j_procs_2025_04_371 crossref_primary_10_1007_s12559_024_10327_8 crossref_primary_10_1146_annurev_lawsocsci_042022_112215 crossref_primary_10_1631_jzus_B2100999 crossref_primary_10_1016_j_eswa_2025_128589 crossref_primary_10_1016_j_aquaculture_2025_742395 crossref_primary_10_1177_22925503211073843 crossref_primary_10_1007_s11042_023_14407_z crossref_primary_10_1109_TASE_2023_3270764 crossref_primary_10_1016_j_neucom_2021_02_074 crossref_primary_10_1109_TCE_2024_3445435 crossref_primary_10_1016_j_elerap_2023_101298 crossref_primary_10_1186_s41235_024_00542_0 crossref_primary_10_1016_j_patrec_2021_01_010 crossref_primary_10_1016_j_chb_2021_106894 crossref_primary_10_1007_s00500_023_08119_7 crossref_primary_10_1007_s00056_023_00494_y crossref_primary_10_1007_s11042_022_14244_6 crossref_primary_10_1080_0144929X_2024_2380095 crossref_primary_10_3389_fpsyg_2021_759485 crossref_primary_10_1016_j_seps_2022_101467 crossref_primary_10_1109_TAI_2024_3419077 crossref_primary_10_4103_jmp_jmp_106_23 crossref_primary_10_1016_j_cose_2022_102876 crossref_primary_10_1080_23812346_2024_2378395 crossref_primary_10_1016_j_jisa_2024_103748 crossref_primary_10_1109_ACCESS_2023_3297488 crossref_primary_10_1002_ima_22512 crossref_primary_10_1016_j_cviu_2025_104293 crossref_primary_10_1007_s11760_023_02679_9 crossref_primary_10_1109_JIOT_2023_3294944 crossref_primary_10_32604_cmc_2023_037958 crossref_primary_10_1049_cit2_12295 crossref_primary_10_32604_cmc_2022_020431 crossref_primary_10_1016_j_neucom_2023_03_040 crossref_primary_10_1049_ipr2_12863 crossref_primary_10_1049_ell2_70215 crossref_primary_10_1186_s40537_022_00566_7 crossref_primary_10_1016_j_cose_2024_103931 crossref_primary_10_1002_cb_2124 crossref_primary_10_1016_j_measurement_2024_114315 crossref_primary_10_1016_j_compeleceng_2025_110162 crossref_primary_10_1109_TSMC_2025_3547887 crossref_primary_10_1109_ACCESS_2023_3295330 crossref_primary_10_1007_s12144_025_07448_0 crossref_primary_10_1109_TSMC_2022_3166397 crossref_primary_10_1109_ACCESS_2023_3298443 crossref_primary_10_1371_journal_pone_0308566 crossref_primary_10_1016_j_matpr_2022_01_296 crossref_primary_10_1177_14413582231167645 crossref_primary_10_1093_comjnl_bxae066 crossref_primary_10_1109_TCSVT_2022_3212426 crossref_primary_10_1007_s11042_023_18007_9 crossref_primary_10_1109_JSEN_2021_3100151 crossref_primary_10_1109_TITS_2021_3102266 crossref_primary_10_1007_s13198_021_01406_2 crossref_primary_10_1109_JIOT_2025_3585249 crossref_primary_10_1002_cpe_7916 crossref_primary_10_1093_asjof_ojad046 crossref_primary_10_1109_ACCESS_2022_3185137 crossref_primary_10_1109_ACCESS_2024_3377564 crossref_primary_10_1117_1_JEI_33_4_043012 crossref_primary_10_1007_s12024_025_01031_6 crossref_primary_10_1016_j_jksuci_2022_04_001 crossref_primary_10_1016_j_engappai_2022_105636 crossref_primary_10_1016_j_cviu_2024_104066 crossref_primary_10_1140_epjs_s11734_024_01412_y crossref_primary_10_2478_ijssis_2024_0008 crossref_primary_10_1007_s42979_024_02922_1 crossref_primary_10_1016_j_tele_2023_101939 crossref_primary_10_1007_s13369_025_10299_3 crossref_primary_10_1016_j_patrec_2023_07_010 crossref_primary_10_1049_ell2_12305 crossref_primary_10_1109_ACCESS_2024_3439572 crossref_primary_10_1016_j_measen_2022_100554 crossref_primary_10_1109_ACCESS_2021_3131733 crossref_primary_10_1016_j_ins_2025_122502 crossref_primary_10_1016_j_neucom_2024_127372 crossref_primary_10_1177_1357633X251342335 crossref_primary_10_3389_fphy_2023_1198457 crossref_primary_10_1007_s42835_025_02159_9 crossref_primary_10_1109_ACCESS_2022_3224437 crossref_primary_10_1155_2022_2086613 crossref_primary_10_1177_00258024241227717 crossref_primary_10_1016_j_inffus_2024_102322 crossref_primary_10_1109_ACCESS_2023_3312612 crossref_primary_10_1007_s10845_022_02039_3 crossref_primary_10_1016_j_ccell_2023_01_010 crossref_primary_10_1038_s41598_023_35094_8 crossref_primary_10_1109_ACCESS_2023_3238207 crossref_primary_10_1109_ACCESS_2024_3408270 crossref_primary_10_1109_ACCESS_2024_3349477 crossref_primary_10_4018_IJCINI_371402 crossref_primary_10_1177_01492063251318260 crossref_primary_10_1177_24551333241283992 crossref_primary_10_1088_1742_6596_2107_1_012041 crossref_primary_10_1109_ACCESS_2024_3366451 crossref_primary_10_1177_10692509251342680 crossref_primary_10_1109_TCAD_2023_3291670 crossref_primary_10_1016_j_jksuci_2022_02_019 crossref_primary_10_1155_2022_5389359 crossref_primary_10_4467_24497800RAP_25_007_21299 crossref_primary_10_1007_s12530_025_09739_0 crossref_primary_10_1016_j_image_2025_117304 crossref_primary_10_3390_s22155753 crossref_primary_10_1109_TCE_2024_3412100 crossref_primary_10_1016_j_jksuci_2022_02_009 crossref_primary_10_1016_j_joi_2024_101630 crossref_primary_10_1016_j_engfracmech_2025_111232 crossref_primary_10_1080_10447318_2024_2423352 crossref_primary_10_1109_TMM_2023_3283856 crossref_primary_10_7717_peerj_cs_2024 crossref_primary_10_1016_j_imavis_2023_104763 crossref_primary_10_1080_13032917_2025_2487548 crossref_primary_10_1007_s11770_021_0851_0 crossref_primary_10_1109_ACCESS_2025_3565304 crossref_primary_10_3233_HSM_230099 crossref_primary_10_1002_adom_202400327 crossref_primary_10_1016_j_neuropsychologia_2021_107807 crossref_primary_10_1145_3507902 crossref_primary_10_1007_s11042_021_11849_1 crossref_primary_10_1016_j_asoc_2025_113102 crossref_primary_10_1016_j_compag_2023_108072 crossref_primary_10_1016_j_compeleceng_2023_108891 crossref_primary_10_1109_JIOT_2025_3571052 crossref_primary_10_1016_j_oceaneng_2025_121447 crossref_primary_10_3389_fpsyg_2022_808189 crossref_primary_10_1016_j_eswa_2023_119546 crossref_primary_10_1049_tje2_70060 crossref_primary_10_1093_cercor_bhab238 crossref_primary_10_1016_j_imavis_2024_105241 crossref_primary_10_1007_s12273_022_0902_3 crossref_primary_10_1016_j_procs_2025_04_561 |
| Cites_doi | 10.1016/S0031-3203(98)00119-8 10.1016/0262-8856(95)90841-U 10.1109/19.963184 10.1002/9781118568767 10.1109/ICCV.2015.425 10.1007/978-3-319-10590-1_53 10.1109/ICCV.2017.578 10.1109/ISPA48434.2019.8966865 10.1007/978-3-319-46487-9_6 10.1109/ICCVW.2011.6130310 10.1109/CEIT.2015.7233002 10.1109/WoSSPA.2013.6602330 10.3390/electronics9040560 10.1016/j.neunet.2014.09.003 10.1109/ICCV.2019.00086 10.1109/34.24792 10.1016/j.sigpro.2010.03.019 10.1109/MEES.2017.8248937 10.1109/CVPR.2015.7298891 10.1016/j.imavis.2009.08.002 10.1016/j.ins.2003.03.002 10.1109/12.210173 10.1016/S1364-6613(00)01813-1 10.1109/CVPR.2014.220 10.1109/CVPR.2016.90 10.1016/j.cviu.2015.03.015 10.1007/978-0-85729-932-1 10.1117/1.JEI.23.5.053008 10.1109/CVPR.2015.7298682 10.1007/978-3-642-37880-5 10.1109/CVPR42600.2020.00690 10.1109/83.753738 10.1109/CVPRW.2018.00008 10.1007/978-3-642-15825-4_10 10.1016/j.crme.2008.06.001 10.3390/computers5040021 10.1109/ISSPA.2010.5605576 10.1109/CVPR.2018.00534 10.1109/TPAMI.2017.2725279 10.1016/S0262-8856(97)00070-X 10.1016/S0379-0738(00)00290-5 10.1109/BTAS.2012.6374605 10.1109/CVPR.2017.363 10.1109/CVPR.2017.713 10.1561/2000000039 10.1609/aaai.v31i1.11231 10.1016/j.cviu.2019.102805 10.1016/j.compeleceng.2017.01.001 10.1007/s11042-019-08422-2 10.1364/JOSAA.4.000519 10.1109/CVPR.2019.00585 10.1109/CVPR.2015.7298594 10.1109/FG.2018.00020 10.5244/C.29.41 10.1109/34.598235 10.1109/CVPR.2015.7298907 10.1109/ICCV.2007.4408858 10.1007/s00371-020-01794-9 10.1016/j.forsciint.2015.09.002 10.1109/TSMC.2014.2331215 10.1142/9781848161160 10.1109/34.476009 10.1109/ICPR.2008.4761847 10.1109/JPROC.2006.884093 10.1007/s11801-018-7199-6 10.1109/CVPR.2018.00552 10.1109/ISBA.2016.7477243 10.1109/83.841933 10.1109/TIFS.2018.2833032 10.1109/ICB2018.2018.00033 10.1016/j.image.2019.115636 10.1109/5.726791 10.1016/j.procs.2015.08.076 10.3390/electronics8010088 10.1109/CVPR.2015.7298803 10.1109/ACCESS.2019.2909039 10.1109/ICASSP.2015.7178258 10.1007/978-3-319-46454-1_35 10.1109/BTAS.2017.8272691 10.1016/S1364-6613(02)01908-3 10.1109/TPAMI.2013.48 10.1016/j.procs.2015.03.149 10.1016/j.patcog.2017.04.013 10.1016/S0031-3203(03)00181-X 10.1016/j.neucom.2019.10.117 10.1109/ICPR.1996.546848 10.1016/j.patcog.2017.08.003 10.1007/3-540-44887-X_5 10.1007/978-3-540-24670-1_36 10.1109/TMM.2015.2420374 10.1109/CVPRW.2017.251 10.1109/34.598228 10.1016/S0165-1684(02)00157-3 10.1007/11744085_25 10.1007/978-3-540-69905-7_27 10.1109/CVPR.2019.00482 10.1016/S0031-3203(96)00132-X 10.1109/ITSC.2007.4357759 10.1162/jocn.1991.3.1.71 10.1109/CVPR.1994.323814 10.3390/app9245474 10.1016/j.patcog.2019.107108 10.1007/978-3-642-33712-3_41 10.1109/TPAMI.2002.1008382 10.1145/3126686.3126693 10.1109/CVPR.2014.244 10.1109/ICIP.2014.7025068 10.1109/TPAMI.2006.244 10.1109/CVPR.2017.428 10.1109/IWBIS.2017.8275095 10.1109/WACV.2016.7477558 10.1007/s00138-004-0144-7 10.1109/ICASSP40776.2020.9053675 10.1109/ISPS.2013.6581486 10.1186/s13673-018-0157-2 10.1109/19.744659 10.1002/ett.3843 10.1145/3123266.3123359 10.1007/s11263-015-0816-y 10.1109/FG.2011.5771391 10.1109/ICIoT48696.2020.9089530 10.1109/ICCV.2019.00657 10.1134/S1054661815040215 10.1049/el:19910897 10.1109/CVPRW.2017.87 10.1007/978-3-319-46478-7_31 10.3390/s20020342 10.1016/j.patcog.2019.107012 10.1109/TNN.2002.804287 10.1109/34.41390 10.1109/LSP.2018.2822810 10.1109/IPTA.2012.6469545 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC VOOES |
| DOI | 10.3390/electronics9081188 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2079-9292 |
| ExternalDocumentID | oai:HAL:hal-03140632v1 10_3390_electronics9081188 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC COVID DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS 1XC IPNFZ ITC RIG VOOES |
| ID | FETCH-LOGICAL-c419t-51a808481fb5fa5d7ebb87f4feb0483a27fc481ba28ba6105c91303a00c2e7033 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 312 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564707800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Tue Oct 14 20:31:03 EDT 2025 Sun Jul 13 03:54:35 EDT 2025 Sat Nov 29 07:16:04 EST 2025 Tue Nov 18 21:02:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | face recognition deep learning face analysis face database |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-51a808481fb5fa5d7ebb87f4feb0483a27fc481ba28ba6105c91303a00c2e7033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6392-7693 0000-0003-0437-1143 0000-0001-7218-3799 0000-0001-8750-1905 |
| OpenAccessLink | https://www.proquest.com/docview/2427832688?pq-origsite=%requestingapplication% |
| PQID | 2427832688 |
| PQPubID | 2032404 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03140632v1 proquest_journals_2427832688 crossref_citationtrail_10_3390_electronics9081188 crossref_primary_10_3390_electronics9081188 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_94 ref_137 ref_93 ref_136 ref_92 ref_139 ref_91 ref_138 Gross (ref_29) 2010; 28 Schmidhuber (ref_96) 2015; 61 ref_14 ref_131 ref_11 ref_130 ref_10 ref_133 ref_132 ref_135 ref_95 ref_134 Deng (ref_97) 2014; 3 Ouahabi (ref_105) 1991; 27 Huang (ref_28) 2012; 25 ref_17 ref_16 ref_15 Soltanpour (ref_159) 2017; 72 Benzaoui (ref_90) 2014; 16 ref_126 ref_125 ref_128 ref_127 ref_129 ref_25 ref_23 ref_120 Ling (ref_151) 2020; 79 ref_22 ref_21 Duc (ref_68) 1999; 8 ref_122 ref_20 ref_124 ref_123 ref_27 ref_26 Kirby (ref_49) 1990; 12 Ouahabi (ref_104) 1992; 9 Kotropoulos (ref_69) 2000; 9 ref_72 Girault (ref_75) 2010; 90 Bartlett (ref_53) 2002; 13 Sirovich (ref_48) 1987; 4 Guo (ref_9) 2019; 189 Belhumeur (ref_46) 1997; 19 Hu (ref_114) 2019; 42 Wiskott (ref_67) 1997; 30 Ouahabi (ref_121) 1998; 47 ref_150 Martinez (ref_18) 2002; 24 ref_78 Beveridge (ref_82) 2005; 16 ref_153 ref_77 ref_152 ref_76 ref_155 ref_73 ref_156 Wu (ref_143) 2018; 13 Ahonen (ref_81) 2006; 28 Porter (ref_6) 2000; 114 Abhishree (ref_54) 2015; 45 Wiskott (ref_63) 1997; 19 Xue (ref_64) 2003; 36 ref_83 Boutella (ref_87) 2015; 7 ref_147 Min (ref_161) 2014; 44 ref_80 ref_140 ref_89 ref_88 ref_141 ref_144 ref_86 ref_85 ref_146 Turk (ref_12) 1991; 3 ref_84 ref_145 Shih (ref_61) 2004; 158 Wei (ref_148) 2020; 97 Min (ref_174) 2019; 7 Zhou (ref_160) 2018; 8 (ref_164) 2019; 9 Femmam (ref_50) 2001; 50 Ouamane (ref_5) 2015; 25 ref_58 Lades (ref_66) 1993; 42 ref_57 ref_56 ref_55 (ref_163) 2020; 100 Sinha (ref_4) 2006; 94 Phillips (ref_13) 1998; 16 ref_177 ref_52 Gilani (ref_166) 2017; 69 ref_178 Jackway (ref_70) 1996; 18 ref_59 Bookstein (ref_60) 1989; 11 Tome (ref_176) 2015; 257 Ouahabi (ref_74) 2011; 19 ref_169 Martinez (ref_24) 1998; 24 Roark (ref_2) 2002; 6 Zhang (ref_175) 2018; 14 ref_165 ref_168 ref_62 Ouahabi (ref_171) 2008; 336 Stone (ref_47) 2002; 6 ref_170 Zafeiriou (ref_173) 2015; 138 Oumane (ref_158) 2017; 62 ref_115 Lecun (ref_108) 1998; 86 Russakovsky (ref_109) 2015; 115 ref_117 Vincent (ref_99) 2010; 11 ref_116 ref_119 ref_118 Tefas (ref_71) 2002; 82 Wang (ref_142) 2018; 25 ref_36 ref_35 Sun (ref_149) 2020; 80 ref_34 Arya (ref_172) 2015; 58 ref_33 ref_32 ref_111 ref_31 ref_110 Chen (ref_154) 2015; 17 Sidahmed (ref_19) 2015; 17 ref_30 Tistarelli (ref_65) 1995; 13 Deng (ref_98) 2014; 7 ref_113 ref_112 ref_39 ref_38 ref_37 ref_103 ref_106 ref_107 Oumane (ref_157) 2016; 10 ref_45 ref_44 ref_43 ref_100 ref_42 Zhao (ref_51) 1999; 32 Benzaoui (ref_79) 2014; 23 ref_41 ref_102 ref_40 ref_101 Drira (ref_162) 2013; 35 ref_1 ref_3 ref_8 Gilani (ref_167) 2018; 40 ref_7 |
| References_xml | – ident: ref_117 – volume: 32 start-page: 547 year: 1999 ident: ref_51 article-title: Theoretical analysis of illumination in PCA-based vision systems publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(98)00119-8 – volume: 13 start-page: 215 year: 1995 ident: ref_65 article-title: Active/space-variant object recognition publication-title: Image Vis. Comput. doi: 10.1016/0262-8856(95)90841-U – volume: 50 start-page: 1203 year: 2001 ident: ref_50 article-title: Perception and characterization of materials using signal processing techniques publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.963184 – ident: ref_56 doi: 10.1002/9781118568767 – ident: ref_100 – ident: ref_155 doi: 10.1109/ICCV.2015.425 – ident: ref_128 doi: 10.1007/978-3-319-10590-1_53 – ident: ref_124 doi: 10.1109/ICCV.2017.578 – ident: ref_73 doi: 10.1109/ISPA48434.2019.8966865 – ident: ref_36 doi: 10.1007/978-3-319-46487-9_6 – volume: 11 start-page: 3371 year: 2010 ident: ref_99 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: ref_102 doi: 10.1109/ICCVW.2011.6130310 – volume: 17 start-page: 2781 year: 2015 ident: ref_19 article-title: Nonparametric denoising methods based on contourlet transform with sharp frequency localization: Application to electron microscopy images with low exposure time publication-title: Entropy – ident: ref_170 doi: 10.1109/CEIT.2015.7233002 – ident: ref_21 doi: 10.1109/WoSSPA.2013.6602330 – ident: ref_169 doi: 10.3390/electronics9040560 – volume: 61 start-page: 85 year: 2015 ident: ref_96 article-title: Deep Learning in Neural Networks: An Overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – ident: ref_146 – ident: ref_147 doi: 10.1109/ICCV.2019.00086 – volume: 11 start-page: 567 year: 1989 ident: ref_60 article-title: Principal warps: Thin-plate splines and the decomposition of deformations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) doi: 10.1109/34.24792 – volume: 90 start-page: 2690 year: 2010 ident: ref_75 article-title: Analytical formulation of the fractal dimension of filtered stochastic signal publication-title: Signal Process. doi: 10.1016/j.sigpro.2010.03.019 – ident: ref_107 doi: 10.1109/MEES.2017.8248937 – ident: ref_120 doi: 10.1109/CVPR.2015.7298891 – volume: 28 start-page: 807 year: 2010 ident: ref_29 article-title: Multi-PIE publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2009.08.002 – volume: 158 start-page: 117 year: 2004 ident: ref_61 article-title: Automatic extraction of head and face boundaries and facial features publication-title: Inf. Sci. doi: 10.1016/j.ins.2003.03.002 – volume: 42 start-page: 300 year: 1993 ident: ref_66 article-title: Distortion invariant object recognition in the dynamic link architecture publication-title: IEEE Trans. Comput. doi: 10.1109/12.210173 – volume: 6 start-page: 59 year: 2002 ident: ref_47 article-title: Independent component analysis: An introduction publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(00)01813-1 – ident: ref_10 – ident: ref_15 doi: 10.1109/CVPR.2014.220 – volume: 16 start-page: 52 year: 2014 ident: ref_90 article-title: Face Analysis, Description, and Recognition using Improved Local Binary Patterns in One Dimensional Space publication-title: J. Control Eng. Appl. Inform. (CEAI) – ident: ref_113 doi: 10.1109/CVPR.2016.90 – volume: 138 start-page: 1 year: 2015 ident: ref_173 article-title: A survey on face detection in the wild: Past, present and future publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2015.03.015 – ident: ref_7 doi: 10.1007/978-0-85729-932-1 – volume: 23 start-page: 053008 year: 2014 ident: ref_79 article-title: Ear biometric recognition using local texture descriptors publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.23.5.053008 – ident: ref_62 – ident: ref_45 – ident: ref_127 doi: 10.1109/CVPR.2015.7298682 – ident: ref_20 doi: 10.1007/978-3-642-37880-5 – ident: ref_59 – ident: ref_150 doi: 10.1109/CVPR42600.2020.00690 – volume: 8 start-page: 504 year: 1999 ident: ref_68 article-title: Face authentication with Gabor information on deformable graphs publication-title: IEEE Trans. Image Process. doi: 10.1109/83.753738 – ident: ref_42 doi: 10.1109/CVPRW.2018.00008 – ident: ref_106 doi: 10.1007/978-3-642-15825-4_10 – volume: 9 start-page: 181 year: 1992 ident: ref_104 article-title: Analyse spectrale paramétrique de signaux lacunaires publication-title: Traitement Signal – volume: 336 start-page: 677 year: 2008 ident: ref_171 article-title: Monitoring crack growth using thermography.-Suivi de fissuration de matériaux par thermographie publication-title: C. R. Mécanique doi: 10.1016/j.crme.2008.06.001 – ident: ref_16 doi: 10.3390/computers5040021 – ident: ref_30 – ident: ref_77 doi: 10.1109/ISSPA.2010.5605576 – ident: ref_139 doi: 10.1109/CVPR.2018.00534 – ident: ref_115 – ident: ref_140 – volume: 40 start-page: 1584 year: 2018 ident: ref_167 article-title: Dense 3D face correspondence publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/TPAMI.2017.2725279 – volume: 16 start-page: 295 year: 1998 ident: ref_13 article-title: The FERET database and evaluation procedure for face recognition algorithms publication-title: Image Vis. Comput. doi: 10.1016/S0262-8856(97)00070-X – ident: ref_11 – volume: 114 start-page: 97 year: 2000 ident: ref_6 article-title: An anatomical and photographic technique for forensic facial identification publication-title: Forensic Sci. Int. doi: 10.1016/S0379-0738(00)00290-5 – ident: ref_86 – ident: ref_3 doi: 10.1109/BTAS.2012.6374605 – ident: ref_41 doi: 10.1109/CVPR.2017.363 – ident: ref_138 doi: 10.1109/CVPR.2017.713 – volume: 7 start-page: 197 year: 2014 ident: ref_98 article-title: Deep Learning: Methods and Applications publication-title: Found. Trends Signal Process. doi: 10.1561/2000000039 – ident: ref_156 doi: 10.1609/aaai.v31i1.11231 – ident: ref_14 – volume: 189 start-page: 10285 year: 2019 ident: ref_9 article-title: A survey on deep learning based face recognition publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2019.102805 – volume: 62 start-page: 68 year: 2017 ident: ref_158 article-title: A Novel Statistical and Multiscale Local Binary Feature for 2D and 3D Face Verification publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.01.001 – volume: 79 start-page: 5595 year: 2020 ident: ref_151 article-title: Attention-based convolutional neural network for deep face recognition publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-08422-2 – volume: 4 start-page: 519 year: 1987 ident: ref_48 article-title: Low-Dimensional procedure for the characterization of human faces publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSAA.4.000519 – ident: ref_132 doi: 10.1109/CVPR.2019.00585 – ident: ref_112 doi: 10.1109/CVPR.2015.7298594 – ident: ref_39 doi: 10.1109/FG.2018.00020 – ident: ref_25 – ident: ref_38 doi: 10.5244/C.29.41 – ident: ref_33 – volume: 19 start-page: 775 year: 1997 ident: ref_63 article-title: Face recognition by elastic bunch graph matching publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) doi: 10.1109/34.598235 – ident: ref_118 doi: 10.1109/CVPR.2015.7298907 – ident: ref_27 doi: 10.1109/ICCV.2007.4408858 – ident: ref_129 doi: 10.1007/s00371-020-01794-9 – ident: ref_137 – volume: 257 start-page: 271 year: 2015 ident: ref_176 article-title: Facial soft biometric features for forensic face recognition publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2015.09.002 – volume: 44 start-page: 1534 year: 2014 ident: ref_161 article-title: KinectFaceDB: A Kinect Database for Face Recognition publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2014.2331215 – ident: ref_78 doi: 10.1142/9781848161160 – volume: 18 start-page: 38 year: 1996 ident: ref_70 article-title: Scale-space properties of the multiscale morphological dilation-erosion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) doi: 10.1109/34.476009 – ident: ref_89 – ident: ref_91 doi: 10.1109/ICPR.2008.4761847 – volume: 94 start-page: 1948 year: 2006 ident: ref_4 article-title: Face recognition by humans: Nineteen results all computer vision researchers should know about publication-title: Proc. IEEE doi: 10.1109/JPROC.2006.884093 – volume: 14 start-page: 152 year: 2018 ident: ref_175 article-title: Application of robust face recognition in video surveillance systems publication-title: Optoelectron. Lett. doi: 10.1007/s11801-018-7199-6 – ident: ref_101 – ident: ref_141 doi: 10.1109/CVPR.2018.00552 – ident: ref_37 doi: 10.1109/ISBA.2016.7477243 – ident: ref_95 – volume: 9 start-page: 555 year: 2000 ident: ref_69 article-title: Frontal face authentication using morphological elastic graph matching publication-title: IEEE Trans. Image Process. doi: 10.1109/83.841933 – ident: ref_168 – volume: 13 start-page: 2884 year: 2018 ident: ref_143 article-title: A Light CNN for Deep Face Representation with Noisy Labels publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2833032 – ident: ref_43 doi: 10.1109/ICB2018.2018.00033 – volume: 80 start-page: 115636 year: 2020 ident: ref_149 article-title: Inter-class angular margin loss for face recognition publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2019.115636 – ident: ref_32 – ident: ref_55 – ident: ref_26 – volume: 10 start-page: 12 year: 2016 ident: ref_157 article-title: Robust Multimodal 2D and 3D Face Authentication using Local Feature Fusion publication-title: Signal Image Video Process. – ident: ref_136 – volume: 86 start-page: 2278 year: 1998 ident: ref_108 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 58 start-page: 578 year: 2015 ident: ref_172 article-title: Future of Face Recognition: A Review publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.08.076 – ident: ref_58 doi: 10.3390/electronics8010088 – ident: ref_31 doi: 10.1109/CVPR.2015.7298803 – volume: 7 start-page: 45219 year: 2019 ident: ref_174 article-title: Single-Sample Face Recognition Based on Feature Expansion publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909039 – ident: ref_177 doi: 10.1109/ICASSP.2015.7178258 – ident: ref_123 doi: 10.1007/978-3-319-46454-1_35 – volume: 24 start-page: 1 year: 1998 ident: ref_24 article-title: The AR face database publication-title: CVC Tech. Rep. – ident: ref_23 – volume: 7 start-page: 31 year: 2015 ident: ref_87 article-title: Face verification using local binary patterns and generic model adaptation publication-title: Int. J. Biomed. – ident: ref_165 doi: 10.1109/BTAS.2017.8272691 – volume: 6 start-page: 261 year: 2002 ident: ref_2 article-title: Recognizing moving faces: A psychological and neural synthesis publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(02)01908-3 – volume: 35 start-page: 2270 year: 2013 ident: ref_162 article-title: 3D Face Recognition under Expressions, Occlusions, and Pose Variations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.48 – volume: 45 start-page: 312 year: 2015 ident: ref_54 article-title: Face recognition using Gabor Filter based feature extraction with anisotropic diffusion as a pre-processing technique publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.03.149 – volume: 69 start-page: 238 year: 2017 ident: ref_166 article-title: Deep, dense and accurate 3D face correspondence for generating population specific deformable models publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.04.013 – volume: 36 start-page: 2819 year: 2003 ident: ref_64 article-title: Bayesian shape model for facial feature extraction and recognition publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(03)00181-X – ident: ref_72 doi: 10.1016/j.neucom.2019.10.117 – ident: ref_8 – volume: 25 start-page: 764 year: 2012 ident: ref_28 article-title: Learning to align from scratch publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_83 doi: 10.1109/ICPR.1996.546848 – volume: 72 start-page: 391 year: 2017 ident: ref_159 article-title: A survey of local feature methods for 3D face recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.08.003 – ident: ref_85 doi: 10.1007/3-540-44887-X_5 – ident: ref_80 doi: 10.1007/978-3-540-24670-1_36 – volume: 17 start-page: 804 year: 2015 ident: ref_154 article-title: Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2015.2420374 – ident: ref_134 doi: 10.1109/CVPRW.2017.251 – volume: 19 start-page: 711 year: 1997 ident: ref_46 article-title: Eigenfaces vs Fisherfaces: Recognition using class specific linear projection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) doi: 10.1109/34.598228 – volume: 82 start-page: 833 year: 2002 ident: ref_71 article-title: Face verification using elastic graph matching based on morphological signal decomposition publication-title: Signal Process. doi: 10.1016/S0165-1684(02)00157-3 – ident: ref_84 doi: 10.1007/11744085_25 – ident: ref_92 doi: 10.1007/978-3-540-69905-7_27 – ident: ref_145 doi: 10.1109/CVPR.2019.00482 – volume: 30 start-page: 837 year: 1997 ident: ref_67 article-title: Phantom faces for face analysis publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(96)00132-X – ident: ref_110 – volume: 42 start-page: 7132 year: 2019 ident: ref_114 article-title: Squeeze-and-excitation networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) – ident: ref_22 doi: 10.1109/ITSC.2007.4357759 – ident: ref_93 – volume: 19 start-page: 175 year: 2011 ident: ref_74 article-title: Nonlinear Fracture Signal Analysis Using Multifractal Approach Combined with Wavelet publication-title: Fractals Complex Geom. Patterns Scaling Nat. Soc. – volume: 3 start-page: 71 year: 1991 ident: ref_12 article-title: Eigenfaces for recognition publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1991.3.1.71 – ident: ref_76 – ident: ref_119 – ident: ref_52 doi: 10.1109/CVPR.1994.323814 – volume: 9 start-page: 5474 year: 2019 ident: ref_164 article-title: Deep Learning for Facial Recognition on Single Sample per Person Scenarios with Varied Capturing Conditions publication-title: Appl. Sci. doi: 10.3390/app9245474 – volume: 100 start-page: 107108 year: 2020 ident: ref_163 article-title: Systematic review of 3D facial expression recognition methods publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107108 – ident: ref_153 doi: 10.1007/978-3-642-33712-3_41 – volume: 24 start-page: 748 year: 2002 ident: ref_18 article-title: Recognizing imprecisely localized, partially occluded and expression variant faces from a single sample per class publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) doi: 10.1109/TPAMI.2002.1008382 – ident: ref_131 doi: 10.1145/3126686.3126693 – ident: ref_116 doi: 10.1109/CVPR.2014.244 – ident: ref_34 doi: 10.1109/ICIP.2014.7025068 – volume: 28 start-page: 2037 year: 2006 ident: ref_81 article-title: Face description with local binary patterns: Application to face recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.244 – ident: ref_126 doi: 10.1109/CVPR.2017.428 – ident: ref_125 – ident: ref_103 doi: 10.1109/IWBIS.2017.8275095 – ident: ref_111 – ident: ref_35 doi: 10.1109/WACV.2016.7477558 – volume: 16 start-page: 128 year: 2005 ident: ref_82 article-title: The CSU face identification evaluation system: Its purpose, features, and structure publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-004-0144-7 – ident: ref_152 doi: 10.1109/ICASSP40776.2020.9053675 – ident: ref_88 doi: 10.1109/ISPS.2013.6581486 – volume: 8 start-page: 8 year: 2018 ident: ref_160 article-title: 3D Face Recognition: A Survey publication-title: Hum. Cent. Comput. Inf. Sci. doi: 10.1186/s13673-018-0157-2 – volume: 47 start-page: 1005 year: 1998 ident: ref_121 article-title: Spectrum estimation from randomly sampled velocity data [LDV] publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.744659 – ident: ref_178 doi: 10.1002/ett.3843 – ident: ref_135 doi: 10.1145/3123266.3123359 – volume: 115 start-page: 211 year: 2015 ident: ref_109 article-title: ImageNet Large Scale Visual Recognition Challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: ref_122 – ident: ref_94 doi: 10.1109/FG.2011.5771391 – ident: ref_44 doi: 10.1109/ICIoT48696.2020.9089530 – ident: ref_144 doi: 10.1109/ICCV.2019.00657 – volume: 25 start-page: 603 year: 2015 ident: ref_5 article-title: Multimodal depth and intensity face verification approach using LBP, SLF, BSIF, and LPQ local features fusion publication-title: Pattern Recognit. Image Anal. doi: 10.1134/S1054661815040215 – volume: 27 start-page: 1430 year: 1991 ident: ref_105 article-title: New results in spectral estimation of decimated processes publication-title: IEEE Electron. Lett. doi: 10.1049/el:19910897 – ident: ref_40 doi: 10.1109/CVPRW.2017.87 – ident: ref_130 doi: 10.1007/978-3-319-46478-7_31 – ident: ref_1 doi: 10.3390/s20020342 – volume: 97 start-page: 107012 year: 2020 ident: ref_148 article-title: Minimum margin loss for deep face recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107012 – volume: 13 start-page: 1450 year: 2002 ident: ref_53 article-title: Face Recognition by Independent Component Analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2002.804287 – volume: 12 start-page: 831 year: 1990 ident: ref_49 article-title: Application of the Karhunen-Loève procedure for the characterization of human faces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) doi: 10.1109/34.41390 – volume: 3 start-page: 1 year: 2014 ident: ref_97 article-title: A tutorial survey of architectures, algorithms, and applications for deep learning publication-title: APSIPA Trans. Signal Inf. Process. – volume: 25 start-page: 926 year: 2018 ident: ref_142 article-title: Additive Margin Softmax for Face Verification publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2822810 – ident: ref_133 – ident: ref_17 doi: 10.1109/IPTA.2012.6469545 – ident: ref_57 |
| SSID | ssj0000913830 |
| Score | 2.6340551 |
| SecondaryResourceType | review_article |
| Snippet | Face recognition is one of the most active research fields of computer vision and pattern recognition, with many practical and commercial applications... |
| SourceID | hal proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1188 |
| SubjectTerms | Access control Algorithms Artificial intelligence Computer Science Computer vision Computer Vision and Pattern Recognition Datasets Face recognition Facial recognition technology Lighting Machine Learning Pattern recognition Performance degradation Social networks |
| Title | Past, Present, and Future of Face Recognition: A Review |
| URI | https://www.proquest.com/docview/2427832688 https://hal.science/hal-03140632 |
| Volume | 9 |
| WOSCitedRecordID | wos000564707800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGP9wmwc9-BancwTx5optmq6ZF5myMmEbZShMLyVpExSknevc0b_dpI9NFHbx0kMeUPIl3ytffj-AS0akMgOMGcy1sUGkyQxKiWMIjU7GHWESmaHrD9zRiE4mHb9IuKVFWWWpEzNFHSWhzpFf44wTArcpvZ1-GJo1St-uFhQaFahppDJShdpdb-SPl1kWjXpJbTN_LWOr-P56xS6TdpQ5tDLKlZVFqrzqeshfajmzNd7uf_9yD3YKLxN1822xDxsiPoDtH9iDh-D6LJ23kJ8_P2ohFkfIywBGUCKRx0KBxmVxURLfoC7KrxGO4MnrPd73jYJFwQiJ1ZkbjsVoBpovuSOZE7mCc-pKIgXXcPIMuzJUvZxhyplyppywo-0aM80QC6UP7GOoxkksTgA5rsQ2V2dYtDnhEWaCtiMlUEtwYrlM1MEqVzIIC4hxzXTxHqhQQ69-8Hf163C1nDPNATbWjr5QAloO1NjY_e4g0G0ah1_5W3hh1aFRCicoTmQarCRzur77DLawjqmzIr8GVOezT3EOm-Fi_pbOmsUGa0Jl-NVTX995UW3-w9B__gYkzd7K |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dS8MwFL3oFNQHv8Xp1CD6pGVtmq6pIDLUMXGOIQriS03aBAXp5lon_il_o0m6bqLgmw--NkkpvSf35uPecwD2GJEqDDBmMd_FFpE2syglniU0Oxn3hE2kYddv-e02vbsLOhPwUdTC6LTKwicaRx13I31GXsVGEwLXKD3pvVhaNUrfrhYSGjksLsX7m9qypccXZ8q--xg3zm9Om9ZQVcCKiBNklucwakjkJfck82JfcE59SaTgml6dYV9GqpUzTDlTiwsvCrSfZ7YdYaHmh6veOwlThKjNkpo_He9-dKajOTapa-e1Oa4b2NWxlk0aqODrGIGXcfybfNTZl9-CgIlsjYX_9k8WYX64hkb1HPRLMCGSZZj7wqy4An6Hpdkh6uTFVYeIJTFqGPoU1JWowSKBrovUqW5yhOoovyRZhds_-fI1KCXdRKwD8nyJXa48lKhxwmPMBK3FCq6O4MTxmSiDU1gujIYE6lrH4zlUGylt7fCntctwMBrTy-lDfu29qwAx6qiZv5v1VqifaZUBtZrEA6cMlQIM4dDfpOEYCRu_N-_ATPPmqhW2LtqXmzCL9emBSWesQCnrv4otmI4G2VPa3zbQRvDw17j5BPuPNgo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dS8MwFL24KaIPfovTqUH0yRXbtF1aQWSoRXGMIgrDl5q0CQrS6Ton_jV_nUnabqLg2x58bZJSek_uzU1uzgHYp46QYYBSgxIbG44wqeF5jmtwxU7GXG46QrPrt0mn43W7fjgFn-VdGFVWWfpE7aiTXqz2yI-w1oTATZmwiaIsIjwPTl9eDaUgpU5aSzmNHCLX_ONdpm_ZydW5tPUBxsHF7dmlUSgMGLFj-QPDtainCeUFcwV1E8IZ84hwBGeKap1iImLZyij2GJULDTf2lc-nphljLueKLd9bgWkic0w1u0L3frS_o_g2PdvM7-nYtm8ejXVtMl8GYkuLvYxjYeVRVWL-CAg6ygWL__n_LMFCsbZGrXwyLMMUT1dg_hvj4iqQkGaDBgrzS1cNRNMEBZpWBfUECmjM0U1ZUtVLj1EL5Ycna3A3kS9fh2raS_kGIJcIbDPpuXiTOSzBlHvNRMLY4syxCOU1sEorRnFBrK70PZ4jmWApy0e_LV-Dw9GYl5xW5M_eexIco46KEfyy1Y7UM6U-IFeZeGjVoF4CIyr8UBaNUbH5d_MuzEq4RO2rzvUWzGG1qaCrHOtQHfTf-DbMxMPBU9bf0ShH8DBp2HwBXZI-3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Past%2C+Present%2C+and+Future+of+Face+Recognition%3A+A+Review&rft.jtitle=Electronics+%28Basel%29&rft.au=Adjabi%2C+Insaf&rft.au=Ouahabi%2C+Abdeldjalil&rft.au=Benzaoui%2C+Amir&rft.au=Taleb-Ahmed%2C+Abdelmalik&rft.date=2020-08-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=9&rft.issue=8&rft.spage=1188&rft_id=info:doi/10.3390%2Felectronics9081188&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics9081188 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |