Past, Present, and Future of Face Recognition: A Review

Face recognition is one of the most active research fields of computer vision and pattern recognition, with many practical and commercial applications including identification, access control, forensics, and human-computer interactions. However, identifying a face in a crowd raises serious questions...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 9; no. 8; p. 1188
Main Authors: Adjabi, Insaf, Ouahabi, Abdeldjalil, Benzaoui, Amir, Taleb-Ahmed, Abdelmalik
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.08.2020
MDPI
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Face recognition is one of the most active research fields of computer vision and pattern recognition, with many practical and commercial applications including identification, access control, forensics, and human-computer interactions. However, identifying a face in a crowd raises serious questions about individual freedoms and poses ethical issues. Significant methods, algorithms, approaches, and databases have been proposed over recent years to study constrained and unconstrained face recognition. 2D approaches reached some degree of maturity and reported very high rates of recognition. This performance is achieved in controlled environments where the acquisition parameters are controlled, such as lighting, angle of view, and distance between the camera–subject. However, if the ambient conditions (e.g., lighting) or the facial appearance (e.g., pose or facial expression) change, this performance will degrade dramatically. 3D approaches were proposed as an alternative solution to the problems mentioned above. The advantage of 3D data lies in its invariance to pose and lighting conditions, which has enhanced recognition systems efficiency. 3D data, however, is somewhat sensitive to changes in facial expressions. This review presents the history of face recognition technology, the current state-of-the-art methodologies, and future directions. We specifically concentrate on the most recent databases, 2D and 3D face recognition methods. Besides, we pay particular attention to deep learning approach as it presents the actuality in this field. Open issues are examined and potential directions for research in facial recognition are proposed in order to provide the reader with a point of reference for topics that deserve consideration.
AbstractList Face recognition is one of the most active research fields of computer vision and pattern recognition, with many practical and commercial applications including identification, access control, forensics, and human-computer interactions. However, identifying a face in a crowd raises serious questions about individual freedoms and poses ethical issues. Significant methods, algorithms, approaches, and databases have been proposed over recent years to study constrained and unconstrained face recognition. 2D approaches reached some degree of maturity and reported very high rates of recognition. This performance is achieved in controlled environments where the acquisition parameters are controlled, such as lighting, angle of view, and distance between the camera–subject. However, if the ambient conditions (e.g., lighting) or the facial appearance (e.g., pose or facial expression) change, this performance will degrade dramatically. 3D approaches were proposed as an alternative solution to the problems mentioned above. The advantage of 3D data lies in its invariance to pose and lighting conditions, which has enhanced recognition systems efficiency. 3D data, however, is somewhat sensitive to changes in facial expressions. This review presents the history of face recognition technology, the current state-of-the-art methodologies, and future directions. We specifically concentrate on the most recent databases, 2D and 3D face recognition methods. Besides, we pay particular attention to deep learning approach as it presents the actuality in this field. Open issues are examined and potential directions for research in facial recognition are proposed in order to provide the reader with a point of reference for topics that deserve consideration.
Face recognition is one of the most active research fields of computer vision and pattern recognition, with many practical and commercial applications including identification, access control, forensics, and human-computer interactions. However, identifying a face in a crowd raises serious questions about individual freedoms and poses ethical issues. Significant methods, algorithms, approaches, and databases have been proposed over recent years to study constrained and unconstrained face recognition. 2D approaches reached some degree of maturity and reported very high rates of recognition. This performance is achieved in controlled environments where the acquisition parameters are controlled, such as lighting, angle of view, and distance between the camera\textendash subject. However, if the ambient conditions (e.g., lighting) or the facial appearance (e.g., pose or facial expression) change, this performance will degrade dramatically. 3D approaches were proposed as an alternative solution to the problems mentioned above. The advantage of 3D data lies in its invariance to pose and lighting conditions, which has enhanced recognition systems efficiency. 3D data, however, is somewhat sensitive to changes in facial expressions. This review presents the history of face recognition technology, the current state-of-the-art methodologies, and future directions. We specifically concentrate on the most recent databases, 2D and 3D face recognition methods. Besides, we pay particular attention to deep learning approach as it presents the actuality in this field. Open issues are examined and potential directions for research in facial recognition are proposed in order to provide the reader with a point of reference for topics that deserve consideration.
Author Ouahabi, Abdeldjalil
Benzaoui, Amir
Taleb-Ahmed, Abdelmalik
Adjabi, Insaf
Author_xml – sequence: 1
  givenname: Insaf
  surname: Adjabi
  fullname: Adjabi, Insaf
– sequence: 2
  givenname: Abdeldjalil
  orcidid: 0000-0002-6392-7693
  surname: Ouahabi
  fullname: Ouahabi, Abdeldjalil
– sequence: 3
  givenname: Amir
  orcidid: 0000-0003-0437-1143
  surname: Benzaoui
  fullname: Benzaoui, Amir
– sequence: 4
  givenname: Abdelmalik
  surname: Taleb-Ahmed
  fullname: Taleb-Ahmed, Abdelmalik
BackLink https://hal.science/hal-03140632$$DView record in HAL
BookMark eNp9UMFKAzEQDVLBWvsDnhY8Ca5Okt1u1lsprhUKFtFzyKaJpqxJTbIV_96UKoiCc5k3M-8Nb-YYDayzCqFTDJeU1nClOiWjd9bIUAPDmLEDNCRQ1XlNajL4gY_QOIQ1pKgxZRSGqFqKEC-ypVdB2QSEXWVNH3uvMqezRkiVPSjpnq2JxtnrbJrKrVHvJ-hQiy6o8Vceoafm5nE2zxf3t3ez6SKXBa5jXmLBgBUM67bUolxVqm1ZpQutWigYFaTSMk1bQVgrJhhKmYwBFQCSqAooHaHz_d4X0fGNN6_Cf3AnDJ9PF3zXA4oLmFCyxYl7tuduvHvrVYh87Xpvkz1OClIxSiaMJRbbs6R3IXiluTRR7K6LXpiOY-C7r_K_X01S8kv67egf0SdSlX20
CitedBy_id crossref_primary_10_4018_IJDST_307987
crossref_primary_10_3788_AI_2025_10018
crossref_primary_10_1007_s00500_025_10866_8
crossref_primary_10_1016_j_ijhcs_2024_103345
crossref_primary_10_3390_electronics11101663
crossref_primary_10_1002_sres_2873
crossref_primary_10_1016_j_cviu_2024_104261
crossref_primary_10_1515_pac_2022_0202
crossref_primary_10_1016_j_procs_2025_04_371
crossref_primary_10_1007_s12559_024_10327_8
crossref_primary_10_1146_annurev_lawsocsci_042022_112215
crossref_primary_10_1631_jzus_B2100999
crossref_primary_10_1016_j_eswa_2025_128589
crossref_primary_10_1016_j_aquaculture_2025_742395
crossref_primary_10_1177_22925503211073843
crossref_primary_10_1007_s11042_023_14407_z
crossref_primary_10_1109_TASE_2023_3270764
crossref_primary_10_1016_j_neucom_2021_02_074
crossref_primary_10_1109_TCE_2024_3445435
crossref_primary_10_1016_j_elerap_2023_101298
crossref_primary_10_1186_s41235_024_00542_0
crossref_primary_10_1016_j_patrec_2021_01_010
crossref_primary_10_1016_j_chb_2021_106894
crossref_primary_10_1007_s00500_023_08119_7
crossref_primary_10_1007_s00056_023_00494_y
crossref_primary_10_1007_s11042_022_14244_6
crossref_primary_10_1080_0144929X_2024_2380095
crossref_primary_10_3389_fpsyg_2021_759485
crossref_primary_10_1016_j_seps_2022_101467
crossref_primary_10_1109_TAI_2024_3419077
crossref_primary_10_4103_jmp_jmp_106_23
crossref_primary_10_1016_j_cose_2022_102876
crossref_primary_10_1080_23812346_2024_2378395
crossref_primary_10_1016_j_jisa_2024_103748
crossref_primary_10_1109_ACCESS_2023_3297488
crossref_primary_10_1002_ima_22512
crossref_primary_10_1016_j_cviu_2025_104293
crossref_primary_10_1007_s11760_023_02679_9
crossref_primary_10_1109_JIOT_2023_3294944
crossref_primary_10_32604_cmc_2023_037958
crossref_primary_10_1049_cit2_12295
crossref_primary_10_32604_cmc_2022_020431
crossref_primary_10_1016_j_neucom_2023_03_040
crossref_primary_10_1049_ipr2_12863
crossref_primary_10_1049_ell2_70215
crossref_primary_10_1186_s40537_022_00566_7
crossref_primary_10_1016_j_cose_2024_103931
crossref_primary_10_1002_cb_2124
crossref_primary_10_1016_j_measurement_2024_114315
crossref_primary_10_1016_j_compeleceng_2025_110162
crossref_primary_10_1109_TSMC_2025_3547887
crossref_primary_10_1109_ACCESS_2023_3295330
crossref_primary_10_1007_s12144_025_07448_0
crossref_primary_10_1109_TSMC_2022_3166397
crossref_primary_10_1109_ACCESS_2023_3298443
crossref_primary_10_1371_journal_pone_0308566
crossref_primary_10_1016_j_matpr_2022_01_296
crossref_primary_10_1177_14413582231167645
crossref_primary_10_1093_comjnl_bxae066
crossref_primary_10_1109_TCSVT_2022_3212426
crossref_primary_10_1007_s11042_023_18007_9
crossref_primary_10_1109_JSEN_2021_3100151
crossref_primary_10_1109_TITS_2021_3102266
crossref_primary_10_1007_s13198_021_01406_2
crossref_primary_10_1109_JIOT_2025_3585249
crossref_primary_10_1002_cpe_7916
crossref_primary_10_1093_asjof_ojad046
crossref_primary_10_1109_ACCESS_2022_3185137
crossref_primary_10_1109_ACCESS_2024_3377564
crossref_primary_10_1117_1_JEI_33_4_043012
crossref_primary_10_1007_s12024_025_01031_6
crossref_primary_10_1016_j_jksuci_2022_04_001
crossref_primary_10_1016_j_engappai_2022_105636
crossref_primary_10_1016_j_cviu_2024_104066
crossref_primary_10_1140_epjs_s11734_024_01412_y
crossref_primary_10_2478_ijssis_2024_0008
crossref_primary_10_1007_s42979_024_02922_1
crossref_primary_10_1016_j_tele_2023_101939
crossref_primary_10_1007_s13369_025_10299_3
crossref_primary_10_1016_j_patrec_2023_07_010
crossref_primary_10_1049_ell2_12305
crossref_primary_10_1109_ACCESS_2024_3439572
crossref_primary_10_1016_j_measen_2022_100554
crossref_primary_10_1109_ACCESS_2021_3131733
crossref_primary_10_1016_j_ins_2025_122502
crossref_primary_10_1016_j_neucom_2024_127372
crossref_primary_10_1177_1357633X251342335
crossref_primary_10_3389_fphy_2023_1198457
crossref_primary_10_1007_s42835_025_02159_9
crossref_primary_10_1109_ACCESS_2022_3224437
crossref_primary_10_1155_2022_2086613
crossref_primary_10_1177_00258024241227717
crossref_primary_10_1016_j_inffus_2024_102322
crossref_primary_10_1109_ACCESS_2023_3312612
crossref_primary_10_1007_s10845_022_02039_3
crossref_primary_10_1016_j_ccell_2023_01_010
crossref_primary_10_1038_s41598_023_35094_8
crossref_primary_10_1109_ACCESS_2023_3238207
crossref_primary_10_1109_ACCESS_2024_3408270
crossref_primary_10_1109_ACCESS_2024_3349477
crossref_primary_10_4018_IJCINI_371402
crossref_primary_10_1177_01492063251318260
crossref_primary_10_1177_24551333241283992
crossref_primary_10_1088_1742_6596_2107_1_012041
crossref_primary_10_1109_ACCESS_2024_3366451
crossref_primary_10_1177_10692509251342680
crossref_primary_10_1109_TCAD_2023_3291670
crossref_primary_10_1016_j_jksuci_2022_02_019
crossref_primary_10_1155_2022_5389359
crossref_primary_10_4467_24497800RAP_25_007_21299
crossref_primary_10_1007_s12530_025_09739_0
crossref_primary_10_1016_j_image_2025_117304
crossref_primary_10_3390_s22155753
crossref_primary_10_1109_TCE_2024_3412100
crossref_primary_10_1016_j_jksuci_2022_02_009
crossref_primary_10_1016_j_joi_2024_101630
crossref_primary_10_1016_j_engfracmech_2025_111232
crossref_primary_10_1080_10447318_2024_2423352
crossref_primary_10_1109_TMM_2023_3283856
crossref_primary_10_7717_peerj_cs_2024
crossref_primary_10_1016_j_imavis_2023_104763
crossref_primary_10_1080_13032917_2025_2487548
crossref_primary_10_1007_s11770_021_0851_0
crossref_primary_10_1109_ACCESS_2025_3565304
crossref_primary_10_3233_HSM_230099
crossref_primary_10_1002_adom_202400327
crossref_primary_10_1016_j_neuropsychologia_2021_107807
crossref_primary_10_1145_3507902
crossref_primary_10_1007_s11042_021_11849_1
crossref_primary_10_1016_j_asoc_2025_113102
crossref_primary_10_1016_j_compag_2023_108072
crossref_primary_10_1016_j_compeleceng_2023_108891
crossref_primary_10_1109_JIOT_2025_3571052
crossref_primary_10_1016_j_oceaneng_2025_121447
crossref_primary_10_3389_fpsyg_2022_808189
crossref_primary_10_1016_j_eswa_2023_119546
crossref_primary_10_1049_tje2_70060
crossref_primary_10_1093_cercor_bhab238
crossref_primary_10_1016_j_imavis_2024_105241
crossref_primary_10_1007_s12273_022_0902_3
crossref_primary_10_1016_j_procs_2025_04_561
Cites_doi 10.1016/S0031-3203(98)00119-8
10.1016/0262-8856(95)90841-U
10.1109/19.963184
10.1002/9781118568767
10.1109/ICCV.2015.425
10.1007/978-3-319-10590-1_53
10.1109/ICCV.2017.578
10.1109/ISPA48434.2019.8966865
10.1007/978-3-319-46487-9_6
10.1109/ICCVW.2011.6130310
10.1109/CEIT.2015.7233002
10.1109/WoSSPA.2013.6602330
10.3390/electronics9040560
10.1016/j.neunet.2014.09.003
10.1109/ICCV.2019.00086
10.1109/34.24792
10.1016/j.sigpro.2010.03.019
10.1109/MEES.2017.8248937
10.1109/CVPR.2015.7298891
10.1016/j.imavis.2009.08.002
10.1016/j.ins.2003.03.002
10.1109/12.210173
10.1016/S1364-6613(00)01813-1
10.1109/CVPR.2014.220
10.1109/CVPR.2016.90
10.1016/j.cviu.2015.03.015
10.1007/978-0-85729-932-1
10.1117/1.JEI.23.5.053008
10.1109/CVPR.2015.7298682
10.1007/978-3-642-37880-5
10.1109/CVPR42600.2020.00690
10.1109/83.753738
10.1109/CVPRW.2018.00008
10.1007/978-3-642-15825-4_10
10.1016/j.crme.2008.06.001
10.3390/computers5040021
10.1109/ISSPA.2010.5605576
10.1109/CVPR.2018.00534
10.1109/TPAMI.2017.2725279
10.1016/S0262-8856(97)00070-X
10.1016/S0379-0738(00)00290-5
10.1109/BTAS.2012.6374605
10.1109/CVPR.2017.363
10.1109/CVPR.2017.713
10.1561/2000000039
10.1609/aaai.v31i1.11231
10.1016/j.cviu.2019.102805
10.1016/j.compeleceng.2017.01.001
10.1007/s11042-019-08422-2
10.1364/JOSAA.4.000519
10.1109/CVPR.2019.00585
10.1109/CVPR.2015.7298594
10.1109/FG.2018.00020
10.5244/C.29.41
10.1109/34.598235
10.1109/CVPR.2015.7298907
10.1109/ICCV.2007.4408858
10.1007/s00371-020-01794-9
10.1016/j.forsciint.2015.09.002
10.1109/TSMC.2014.2331215
10.1142/9781848161160
10.1109/34.476009
10.1109/ICPR.2008.4761847
10.1109/JPROC.2006.884093
10.1007/s11801-018-7199-6
10.1109/CVPR.2018.00552
10.1109/ISBA.2016.7477243
10.1109/83.841933
10.1109/TIFS.2018.2833032
10.1109/ICB2018.2018.00033
10.1016/j.image.2019.115636
10.1109/5.726791
10.1016/j.procs.2015.08.076
10.3390/electronics8010088
10.1109/CVPR.2015.7298803
10.1109/ACCESS.2019.2909039
10.1109/ICASSP.2015.7178258
10.1007/978-3-319-46454-1_35
10.1109/BTAS.2017.8272691
10.1016/S1364-6613(02)01908-3
10.1109/TPAMI.2013.48
10.1016/j.procs.2015.03.149
10.1016/j.patcog.2017.04.013
10.1016/S0031-3203(03)00181-X
10.1016/j.neucom.2019.10.117
10.1109/ICPR.1996.546848
10.1016/j.patcog.2017.08.003
10.1007/3-540-44887-X_5
10.1007/978-3-540-24670-1_36
10.1109/TMM.2015.2420374
10.1109/CVPRW.2017.251
10.1109/34.598228
10.1016/S0165-1684(02)00157-3
10.1007/11744085_25
10.1007/978-3-540-69905-7_27
10.1109/CVPR.2019.00482
10.1016/S0031-3203(96)00132-X
10.1109/ITSC.2007.4357759
10.1162/jocn.1991.3.1.71
10.1109/CVPR.1994.323814
10.3390/app9245474
10.1016/j.patcog.2019.107108
10.1007/978-3-642-33712-3_41
10.1109/TPAMI.2002.1008382
10.1145/3126686.3126693
10.1109/CVPR.2014.244
10.1109/ICIP.2014.7025068
10.1109/TPAMI.2006.244
10.1109/CVPR.2017.428
10.1109/IWBIS.2017.8275095
10.1109/WACV.2016.7477558
10.1007/s00138-004-0144-7
10.1109/ICASSP40776.2020.9053675
10.1109/ISPS.2013.6581486
10.1186/s13673-018-0157-2
10.1109/19.744659
10.1002/ett.3843
10.1145/3123266.3123359
10.1007/s11263-015-0816-y
10.1109/FG.2011.5771391
10.1109/ICIoT48696.2020.9089530
10.1109/ICCV.2019.00657
10.1134/S1054661815040215
10.1049/el:19910897
10.1109/CVPRW.2017.87
10.1007/978-3-319-46478-7_31
10.3390/s20020342
10.1016/j.patcog.2019.107012
10.1109/TNN.2002.804287
10.1109/34.41390
10.1109/LSP.2018.2822810
10.1109/IPTA.2012.6469545
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOI 10.3390/electronics9081188
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2079-9292
ExternalDocumentID oai:HAL:hal-03140632v1
10_3390_electronics9081188
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
COVID
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
IPNFZ
ITC
RIG
VOOES
ID FETCH-LOGICAL-c419t-51a808481fb5fa5d7ebb87f4feb0483a27fc481ba28ba6105c91303a00c2e7033
IEDL.DBID BENPR
ISICitedReferencesCount 312
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564707800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Tue Oct 14 20:31:03 EDT 2025
Sun Jul 13 03:54:35 EDT 2025
Sat Nov 29 07:16:04 EST 2025
Tue Nov 18 21:02:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords face recognition
deep learning
face analysis
face database
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-51a808481fb5fa5d7ebb87f4feb0483a27fc481ba28ba6105c91303a00c2e7033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6392-7693
0000-0003-0437-1143
0000-0001-7218-3799
0000-0001-8750-1905
OpenAccessLink https://www.proquest.com/docview/2427832688?pq-origsite=%requestingapplication%
PQID 2427832688
PQPubID 2032404
ParticipantIDs hal_primary_oai_HAL_hal_03140632v1
proquest_journals_2427832688
crossref_citationtrail_10_3390_electronics9081188
crossref_primary_10_3390_electronics9081188
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
ref_137
ref_93
ref_136
ref_92
ref_139
ref_91
ref_138
Gross (ref_29) 2010; 28
Schmidhuber (ref_96) 2015; 61
ref_14
ref_131
ref_11
ref_130
ref_10
ref_133
ref_132
ref_135
ref_95
ref_134
Deng (ref_97) 2014; 3
Ouahabi (ref_105) 1991; 27
Huang (ref_28) 2012; 25
ref_17
ref_16
ref_15
Soltanpour (ref_159) 2017; 72
Benzaoui (ref_90) 2014; 16
ref_126
ref_125
ref_128
ref_127
ref_129
ref_25
ref_23
ref_120
Ling (ref_151) 2020; 79
ref_22
ref_21
Duc (ref_68) 1999; 8
ref_122
ref_20
ref_124
ref_123
ref_27
ref_26
Kirby (ref_49) 1990; 12
Ouahabi (ref_104) 1992; 9
Kotropoulos (ref_69) 2000; 9
ref_72
Girault (ref_75) 2010; 90
Bartlett (ref_53) 2002; 13
Sirovich (ref_48) 1987; 4
Guo (ref_9) 2019; 189
Belhumeur (ref_46) 1997; 19
Hu (ref_114) 2019; 42
Wiskott (ref_67) 1997; 30
Ouahabi (ref_121) 1998; 47
ref_150
Martinez (ref_18) 2002; 24
ref_78
Beveridge (ref_82) 2005; 16
ref_153
ref_77
ref_152
ref_76
ref_155
ref_73
ref_156
Wu (ref_143) 2018; 13
Ahonen (ref_81) 2006; 28
Porter (ref_6) 2000; 114
Abhishree (ref_54) 2015; 45
Wiskott (ref_63) 1997; 19
Xue (ref_64) 2003; 36
ref_83
Boutella (ref_87) 2015; 7
ref_147
Min (ref_161) 2014; 44
ref_80
ref_140
ref_89
ref_88
ref_141
ref_144
ref_86
ref_85
ref_146
Turk (ref_12) 1991; 3
ref_84
ref_145
Shih (ref_61) 2004; 158
Wei (ref_148) 2020; 97
Min (ref_174) 2019; 7
Zhou (ref_160) 2018; 8
(ref_164) 2019; 9
Femmam (ref_50) 2001; 50
Ouamane (ref_5) 2015; 25
ref_58
Lades (ref_66) 1993; 42
ref_57
ref_56
ref_55
(ref_163) 2020; 100
Sinha (ref_4) 2006; 94
Phillips (ref_13) 1998; 16
ref_177
ref_52
Gilani (ref_166) 2017; 69
ref_178
Jackway (ref_70) 1996; 18
ref_59
Bookstein (ref_60) 1989; 11
Tome (ref_176) 2015; 257
Ouahabi (ref_74) 2011; 19
ref_169
Martinez (ref_24) 1998; 24
Roark (ref_2) 2002; 6
Zhang (ref_175) 2018; 14
ref_165
ref_168
ref_62
Ouahabi (ref_171) 2008; 336
Stone (ref_47) 2002; 6
ref_170
Zafeiriou (ref_173) 2015; 138
Oumane (ref_158) 2017; 62
ref_115
Lecun (ref_108) 1998; 86
Russakovsky (ref_109) 2015; 115
ref_117
Vincent (ref_99) 2010; 11
ref_116
ref_119
ref_118
Tefas (ref_71) 2002; 82
Wang (ref_142) 2018; 25
ref_36
ref_35
Sun (ref_149) 2020; 80
ref_34
Arya (ref_172) 2015; 58
ref_33
ref_32
ref_111
ref_31
ref_110
Chen (ref_154) 2015; 17
Sidahmed (ref_19) 2015; 17
ref_30
Tistarelli (ref_65) 1995; 13
Deng (ref_98) 2014; 7
ref_113
ref_112
ref_39
ref_38
ref_37
ref_103
ref_106
ref_107
Oumane (ref_157) 2016; 10
ref_45
ref_44
ref_43
ref_100
ref_42
Zhao (ref_51) 1999; 32
Benzaoui (ref_79) 2014; 23
ref_41
ref_102
ref_40
ref_101
Drira (ref_162) 2013; 35
ref_1
ref_3
ref_8
Gilani (ref_167) 2018; 40
ref_7
References_xml – ident: ref_117
– volume: 32
  start-page: 547
  year: 1999
  ident: ref_51
  article-title: Theoretical analysis of illumination in PCA-based vision systems
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(98)00119-8
– volume: 13
  start-page: 215
  year: 1995
  ident: ref_65
  article-title: Active/space-variant object recognition
  publication-title: Image Vis. Comput.
  doi: 10.1016/0262-8856(95)90841-U
– volume: 50
  start-page: 1203
  year: 2001
  ident: ref_50
  article-title: Perception and characterization of materials using signal processing techniques
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.963184
– ident: ref_56
  doi: 10.1002/9781118568767
– ident: ref_100
– ident: ref_155
  doi: 10.1109/ICCV.2015.425
– ident: ref_128
  doi: 10.1007/978-3-319-10590-1_53
– ident: ref_124
  doi: 10.1109/ICCV.2017.578
– ident: ref_73
  doi: 10.1109/ISPA48434.2019.8966865
– ident: ref_36
  doi: 10.1007/978-3-319-46487-9_6
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref_99
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref_102
  doi: 10.1109/ICCVW.2011.6130310
– volume: 17
  start-page: 2781
  year: 2015
  ident: ref_19
  article-title: Nonparametric denoising methods based on contourlet transform with sharp frequency localization: Application to electron microscopy images with low exposure time
  publication-title: Entropy
– ident: ref_170
  doi: 10.1109/CEIT.2015.7233002
– ident: ref_21
  doi: 10.1109/WoSSPA.2013.6602330
– ident: ref_169
  doi: 10.3390/electronics9040560
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_96
  article-title: Deep Learning in Neural Networks: An Overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref_146
– ident: ref_147
  doi: 10.1109/ICCV.2019.00086
– volume: 11
  start-page: 567
  year: 1989
  ident: ref_60
  article-title: Principal warps: Thin-plate splines and the decomposition of deformations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
  doi: 10.1109/34.24792
– volume: 90
  start-page: 2690
  year: 2010
  ident: ref_75
  article-title: Analytical formulation of the fractal dimension of filtered stochastic signal
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2010.03.019
– ident: ref_107
  doi: 10.1109/MEES.2017.8248937
– ident: ref_120
  doi: 10.1109/CVPR.2015.7298891
– volume: 28
  start-page: 807
  year: 2010
  ident: ref_29
  article-title: Multi-PIE
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2009.08.002
– volume: 158
  start-page: 117
  year: 2004
  ident: ref_61
  article-title: Automatic extraction of head and face boundaries and facial features
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2003.03.002
– volume: 42
  start-page: 300
  year: 1993
  ident: ref_66
  article-title: Distortion invariant object recognition in the dynamic link architecture
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.210173
– volume: 6
  start-page: 59
  year: 2002
  ident: ref_47
  article-title: Independent component analysis: An introduction
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(00)01813-1
– ident: ref_10
– ident: ref_15
  doi: 10.1109/CVPR.2014.220
– volume: 16
  start-page: 52
  year: 2014
  ident: ref_90
  article-title: Face Analysis, Description, and Recognition using Improved Local Binary Patterns in One Dimensional Space
  publication-title: J. Control Eng. Appl. Inform. (CEAI)
– ident: ref_113
  doi: 10.1109/CVPR.2016.90
– volume: 138
  start-page: 1
  year: 2015
  ident: ref_173
  article-title: A survey on face detection in the wild: Past, present and future
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2015.03.015
– ident: ref_7
  doi: 10.1007/978-0-85729-932-1
– volume: 23
  start-page: 053008
  year: 2014
  ident: ref_79
  article-title: Ear biometric recognition using local texture descriptors
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.23.5.053008
– ident: ref_62
– ident: ref_45
– ident: ref_127
  doi: 10.1109/CVPR.2015.7298682
– ident: ref_20
  doi: 10.1007/978-3-642-37880-5
– ident: ref_59
– ident: ref_150
  doi: 10.1109/CVPR42600.2020.00690
– volume: 8
  start-page: 504
  year: 1999
  ident: ref_68
  article-title: Face authentication with Gabor information on deformable graphs
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.753738
– ident: ref_42
  doi: 10.1109/CVPRW.2018.00008
– ident: ref_106
  doi: 10.1007/978-3-642-15825-4_10
– volume: 9
  start-page: 181
  year: 1992
  ident: ref_104
  article-title: Analyse spectrale paramétrique de signaux lacunaires
  publication-title: Traitement Signal
– volume: 336
  start-page: 677
  year: 2008
  ident: ref_171
  article-title: Monitoring crack growth using thermography.-Suivi de fissuration de matériaux par thermographie
  publication-title: C. R. Mécanique
  doi: 10.1016/j.crme.2008.06.001
– ident: ref_16
  doi: 10.3390/computers5040021
– ident: ref_30
– ident: ref_77
  doi: 10.1109/ISSPA.2010.5605576
– ident: ref_139
  doi: 10.1109/CVPR.2018.00534
– ident: ref_115
– ident: ref_140
– volume: 40
  start-page: 1584
  year: 2018
  ident: ref_167
  article-title: Dense 3D face correspondence
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/TPAMI.2017.2725279
– volume: 16
  start-page: 295
  year: 1998
  ident: ref_13
  article-title: The FERET database and evaluation procedure for face recognition algorithms
  publication-title: Image Vis. Comput.
  doi: 10.1016/S0262-8856(97)00070-X
– ident: ref_11
– volume: 114
  start-page: 97
  year: 2000
  ident: ref_6
  article-title: An anatomical and photographic technique for forensic facial identification
  publication-title: Forensic Sci. Int.
  doi: 10.1016/S0379-0738(00)00290-5
– ident: ref_86
– ident: ref_3
  doi: 10.1109/BTAS.2012.6374605
– ident: ref_41
  doi: 10.1109/CVPR.2017.363
– ident: ref_138
  doi: 10.1109/CVPR.2017.713
– volume: 7
  start-page: 197
  year: 2014
  ident: ref_98
  article-title: Deep Learning: Methods and Applications
  publication-title: Found. Trends Signal Process.
  doi: 10.1561/2000000039
– ident: ref_156
  doi: 10.1609/aaai.v31i1.11231
– ident: ref_14
– volume: 189
  start-page: 10285
  year: 2019
  ident: ref_9
  article-title: A survey on deep learning based face recognition
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2019.102805
– volume: 62
  start-page: 68
  year: 2017
  ident: ref_158
  article-title: A Novel Statistical and Multiscale Local Binary Feature for 2D and 3D Face Verification
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.01.001
– volume: 79
  start-page: 5595
  year: 2020
  ident: ref_151
  article-title: Attention-based convolutional neural network for deep face recognition
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-08422-2
– volume: 4
  start-page: 519
  year: 1987
  ident: ref_48
  article-title: Low-Dimensional procedure for the characterization of human faces
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSAA.4.000519
– ident: ref_132
  doi: 10.1109/CVPR.2019.00585
– ident: ref_112
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_39
  doi: 10.1109/FG.2018.00020
– ident: ref_25
– ident: ref_38
  doi: 10.5244/C.29.41
– ident: ref_33
– volume: 19
  start-page: 775
  year: 1997
  ident: ref_63
  article-title: Face recognition by elastic bunch graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
  doi: 10.1109/34.598235
– ident: ref_118
  doi: 10.1109/CVPR.2015.7298907
– ident: ref_27
  doi: 10.1109/ICCV.2007.4408858
– ident: ref_129
  doi: 10.1007/s00371-020-01794-9
– ident: ref_137
– volume: 257
  start-page: 271
  year: 2015
  ident: ref_176
  article-title: Facial soft biometric features for forensic face recognition
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2015.09.002
– volume: 44
  start-page: 1534
  year: 2014
  ident: ref_161
  article-title: KinectFaceDB: A Kinect Database for Face Recognition
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2014.2331215
– ident: ref_78
  doi: 10.1142/9781848161160
– volume: 18
  start-page: 38
  year: 1996
  ident: ref_70
  article-title: Scale-space properties of the multiscale morphological dilation-erosion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
  doi: 10.1109/34.476009
– ident: ref_89
– ident: ref_91
  doi: 10.1109/ICPR.2008.4761847
– volume: 94
  start-page: 1948
  year: 2006
  ident: ref_4
  article-title: Face recognition by humans: Nineteen results all computer vision researchers should know about
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2006.884093
– volume: 14
  start-page: 152
  year: 2018
  ident: ref_175
  article-title: Application of robust face recognition in video surveillance systems
  publication-title: Optoelectron. Lett.
  doi: 10.1007/s11801-018-7199-6
– ident: ref_101
– ident: ref_141
  doi: 10.1109/CVPR.2018.00552
– ident: ref_37
  doi: 10.1109/ISBA.2016.7477243
– ident: ref_95
– volume: 9
  start-page: 555
  year: 2000
  ident: ref_69
  article-title: Frontal face authentication using morphological elastic graph matching
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.841933
– ident: ref_168
– volume: 13
  start-page: 2884
  year: 2018
  ident: ref_143
  article-title: A Light CNN for Deep Face Representation with Noisy Labels
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2833032
– ident: ref_43
  doi: 10.1109/ICB2018.2018.00033
– volume: 80
  start-page: 115636
  year: 2020
  ident: ref_149
  article-title: Inter-class angular margin loss for face recognition
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2019.115636
– ident: ref_32
– ident: ref_55
– ident: ref_26
– volume: 10
  start-page: 12
  year: 2016
  ident: ref_157
  article-title: Robust Multimodal 2D and 3D Face Authentication using Local Feature Fusion
  publication-title: Signal Image Video Process.
– ident: ref_136
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_108
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 58
  start-page: 578
  year: 2015
  ident: ref_172
  article-title: Future of Face Recognition: A Review
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.08.076
– ident: ref_58
  doi: 10.3390/electronics8010088
– ident: ref_31
  doi: 10.1109/CVPR.2015.7298803
– volume: 7
  start-page: 45219
  year: 2019
  ident: ref_174
  article-title: Single-Sample Face Recognition Based on Feature Expansion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909039
– ident: ref_177
  doi: 10.1109/ICASSP.2015.7178258
– ident: ref_123
  doi: 10.1007/978-3-319-46454-1_35
– volume: 24
  start-page: 1
  year: 1998
  ident: ref_24
  article-title: The AR face database
  publication-title: CVC Tech. Rep.
– ident: ref_23
– volume: 7
  start-page: 31
  year: 2015
  ident: ref_87
  article-title: Face verification using local binary patterns and generic model adaptation
  publication-title: Int. J. Biomed.
– ident: ref_165
  doi: 10.1109/BTAS.2017.8272691
– volume: 6
  start-page: 261
  year: 2002
  ident: ref_2
  article-title: Recognizing moving faces: A psychological and neural synthesis
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(02)01908-3
– volume: 35
  start-page: 2270
  year: 2013
  ident: ref_162
  article-title: 3D Face Recognition under Expressions, Occlusions, and Pose Variations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.48
– volume: 45
  start-page: 312
  year: 2015
  ident: ref_54
  article-title: Face recognition using Gabor Filter based feature extraction with anisotropic diffusion as a pre-processing technique
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.03.149
– volume: 69
  start-page: 238
  year: 2017
  ident: ref_166
  article-title: Deep, dense and accurate 3D face correspondence for generating population specific deformable models
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.04.013
– volume: 36
  start-page: 2819
  year: 2003
  ident: ref_64
  article-title: Bayesian shape model for facial feature extraction and recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(03)00181-X
– ident: ref_72
  doi: 10.1016/j.neucom.2019.10.117
– ident: ref_8
– volume: 25
  start-page: 764
  year: 2012
  ident: ref_28
  article-title: Learning to align from scratch
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_83
  doi: 10.1109/ICPR.1996.546848
– volume: 72
  start-page: 391
  year: 2017
  ident: ref_159
  article-title: A survey of local feature methods for 3D face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.08.003
– ident: ref_85
  doi: 10.1007/3-540-44887-X_5
– ident: ref_80
  doi: 10.1007/978-3-540-24670-1_36
– volume: 17
  start-page: 804
  year: 2015
  ident: ref_154
  article-title: Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2015.2420374
– ident: ref_134
  doi: 10.1109/CVPRW.2017.251
– volume: 19
  start-page: 711
  year: 1997
  ident: ref_46
  article-title: Eigenfaces vs Fisherfaces: Recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
  doi: 10.1109/34.598228
– volume: 82
  start-page: 833
  year: 2002
  ident: ref_71
  article-title: Face verification using elastic graph matching based on morphological signal decomposition
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(02)00157-3
– ident: ref_84
  doi: 10.1007/11744085_25
– ident: ref_92
  doi: 10.1007/978-3-540-69905-7_27
– ident: ref_145
  doi: 10.1109/CVPR.2019.00482
– volume: 30
  start-page: 837
  year: 1997
  ident: ref_67
  article-title: Phantom faces for face analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(96)00132-X
– ident: ref_110
– volume: 42
  start-page: 7132
  year: 2019
  ident: ref_114
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
– ident: ref_22
  doi: 10.1109/ITSC.2007.4357759
– ident: ref_93
– volume: 19
  start-page: 175
  year: 2011
  ident: ref_74
  article-title: Nonlinear Fracture Signal Analysis Using Multifractal Approach Combined with Wavelet
  publication-title: Fractals Complex Geom. Patterns Scaling Nat. Soc.
– volume: 3
  start-page: 71
  year: 1991
  ident: ref_12
  article-title: Eigenfaces for recognition
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref_76
– ident: ref_119
– ident: ref_52
  doi: 10.1109/CVPR.1994.323814
– volume: 9
  start-page: 5474
  year: 2019
  ident: ref_164
  article-title: Deep Learning for Facial Recognition on Single Sample per Person Scenarios with Varied Capturing Conditions
  publication-title: Appl. Sci.
  doi: 10.3390/app9245474
– volume: 100
  start-page: 107108
  year: 2020
  ident: ref_163
  article-title: Systematic review of 3D facial expression recognition methods
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107108
– ident: ref_153
  doi: 10.1007/978-3-642-33712-3_41
– volume: 24
  start-page: 748
  year: 2002
  ident: ref_18
  article-title: Recognizing imprecisely localized, partially occluded and expression variant faces from a single sample per class
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
  doi: 10.1109/TPAMI.2002.1008382
– ident: ref_131
  doi: 10.1145/3126686.3126693
– ident: ref_116
  doi: 10.1109/CVPR.2014.244
– ident: ref_34
  doi: 10.1109/ICIP.2014.7025068
– volume: 28
  start-page: 2037
  year: 2006
  ident: ref_81
  article-title: Face description with local binary patterns: Application to face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.244
– ident: ref_126
  doi: 10.1109/CVPR.2017.428
– ident: ref_125
– ident: ref_103
  doi: 10.1109/IWBIS.2017.8275095
– ident: ref_111
– ident: ref_35
  doi: 10.1109/WACV.2016.7477558
– volume: 16
  start-page: 128
  year: 2005
  ident: ref_82
  article-title: The CSU face identification evaluation system: Its purpose, features, and structure
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-004-0144-7
– ident: ref_152
  doi: 10.1109/ICASSP40776.2020.9053675
– ident: ref_88
  doi: 10.1109/ISPS.2013.6581486
– volume: 8
  start-page: 8
  year: 2018
  ident: ref_160
  article-title: 3D Face Recognition: A Survey
  publication-title: Hum. Cent. Comput. Inf. Sci.
  doi: 10.1186/s13673-018-0157-2
– volume: 47
  start-page: 1005
  year: 1998
  ident: ref_121
  article-title: Spectrum estimation from randomly sampled velocity data [LDV]
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.744659
– ident: ref_178
  doi: 10.1002/ett.3843
– ident: ref_135
  doi: 10.1145/3123266.3123359
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_109
  article-title: ImageNet Large Scale Visual Recognition Challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: ref_122
– ident: ref_94
  doi: 10.1109/FG.2011.5771391
– ident: ref_44
  doi: 10.1109/ICIoT48696.2020.9089530
– ident: ref_144
  doi: 10.1109/ICCV.2019.00657
– volume: 25
  start-page: 603
  year: 2015
  ident: ref_5
  article-title: Multimodal depth and intensity face verification approach using LBP, SLF, BSIF, and LPQ local features fusion
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/S1054661815040215
– volume: 27
  start-page: 1430
  year: 1991
  ident: ref_105
  article-title: New results in spectral estimation of decimated processes
  publication-title: IEEE Electron. Lett.
  doi: 10.1049/el:19910897
– ident: ref_40
  doi: 10.1109/CVPRW.2017.87
– ident: ref_130
  doi: 10.1007/978-3-319-46478-7_31
– ident: ref_1
  doi: 10.3390/s20020342
– volume: 97
  start-page: 107012
  year: 2020
  ident: ref_148
  article-title: Minimum margin loss for deep face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107012
– volume: 13
  start-page: 1450
  year: 2002
  ident: ref_53
  article-title: Face Recognition by Independent Component Analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.804287
– volume: 12
  start-page: 831
  year: 1990
  ident: ref_49
  article-title: Application of the Karhunen-Loève procedure for the characterization of human faces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
  doi: 10.1109/34.41390
– volume: 3
  start-page: 1
  year: 2014
  ident: ref_97
  article-title: A tutorial survey of architectures, algorithms, and applications for deep learning
  publication-title: APSIPA Trans. Signal Inf. Process.
– volume: 25
  start-page: 926
  year: 2018
  ident: ref_142
  article-title: Additive Margin Softmax for Face Verification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2822810
– ident: ref_133
– ident: ref_17
  doi: 10.1109/IPTA.2012.6469545
– ident: ref_57
SSID ssj0000913830
Score 2.6340551
SecondaryResourceType review_article
Snippet Face recognition is one of the most active research fields of computer vision and pattern recognition, with many practical and commercial applications...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1188
SubjectTerms Access control
Algorithms
Artificial intelligence
Computer Science
Computer vision
Computer Vision and Pattern Recognition
Datasets
Face recognition
Facial recognition technology
Lighting
Machine Learning
Pattern recognition
Performance degradation
Social networks
Title Past, Present, and Future of Face Recognition: A Review
URI https://www.proquest.com/docview/2427832688
https://hal.science/hal-03140632
Volume 9
WOSCitedRecordID wos000564707800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-4zYMe_BbnF0G8ueKStmvjRaasTHCjDIXppSRpgoJ0006P_u0mabuJghcvPSQphLzkvZf3Xn4_gFNOZephwRymTOiGdqjD9aFzghS7qu0S5nrCkk0Ew2E4HtO4DLjlZVllpROtok4nwsTIz4nlhCCdMLycvjqGNcpkV0sKjRo0DFKZV4fGVW8Yj-ZRFoN6Gbrt4rWMq-_35wt2mZxqc4gt5crCItWeTD3kD7VsbU20_t9ZbsBa6WWibrEtNmFJZluw-g17cBuCmOWzFoqL50ctxLIURRZgBE0UipiQaFQVF02yC9RFRRphB-6j3t113ylZFBzhYTpzfMxCC5qvuK-YnwaSa2koT0lu4OQZCZTQvZyRkDPtTPmCGrvG2m1BpNYH7i7Us0km9wAJQlXgKt5JObUJQ8IZ7gRYqVSF0sVNwNVKJqKEGDdMFy-JvmqY1U9-r34Tzub_TAuAjT9Hn2gBzQcabOx-9zYxbQaHX_tb5ENP47ASTlKeyDxZSGb_7-4DWCHmTm2L_A6hPnt7l0ewLD5mz_nbcbnBjqE2-Ozpb-w_6rb4ZhA_fAGZr97E
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwFD54A_XBu3g3iD5pWZO0ayOIDHVMnGOIgvhSkzRBQTq1U_FP-RtN0nUTBd988LVJS-j5ck5ycvJ9ANuCqTTAkntc29QNqzJPmEnnRSmm2qeE00A6sYmo1Yqvr1l7CD7KuzC2rLL0ic5Rpx1pc-QV4jQhSDWODx-fPKsaZU9XSwmNAhZn6v3NbNnyg9NjY98dQuonl0cNr6cq4MkAs64XYh47EnktQs3DNFLCjE4HWglLr85JpKVpFZzEgpvFRSiZ9fPc9yVRZn5Q891hGA0Cs1ky86cd3vRzOpZjM6Z-cTeHUuZXBlo2OTPBFzuBl0H8G76z1ZffgoCLbPXp__ZPZmCqt4ZGtQL0szCksjmY_MKsOA9Rm-fdPdQuLlftIZ6lqO7oU1BHozqXCl2UpVOdbB_VUHFIsgBXfzLyRRjJOplaAiQJ0xHVopoK5o5DieC4GmGtUx0ripcBl5ZLZI9A3ep4PCRmI2Wtnfy09jLs9t95LOhDfu29ZQDR72iZvxu1ZmKfWZUBs5okr2YYayUYkp6_yZMBElZ-b96E8cbleTNpnrbOVmGC2OyBK2dcg5Hu84tahzH52r3PnzcctBHc_jVuPgGkLjYE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58IXrwLb4NoictNsl22wgii1oUZSmiIF5qkiYoSFftqvjX_HUmabsrCt48eG3SEjqvzGTyfQCbgqmsgSX3uLalG9ZknjBG54UZptqnhNOGdGQTYbsdXV-zZAA-6rswtq2y9onOUWcdaWvku8RxQpCmSdh01RaRHMUHj0-eZZCyJ601nUapImfq_c2kb8X-6ZGR9RYh8fHl4YlXMQx4soFZ1wswjxygvBaB5kEWKmFWqhtaCQu1zkmopRkVnESCm41GIJn1-dz3JVHGVqj57iAMhybHtNaVBDe9-o7F24yoX97ToZT5u31em4KZQIwd2Us_Fg7e2U7MbwHBRbl48j__nymYqPbWqFUawzQMqHwGxr8gLs5CmPCiu4OS8tLVDuJ5hmIHq4I6GsVcKnRRt1R18j3UQuXhyRxc_cnK52Eo7-RqAZAkTIdUi2YmmDsmJYLjZoi1znSkKF4EXEsxlRWwuuX3eEhNgmUln_6U_CJs9955LGFFfp29YZSjN9Eigp-0zlP7zLIPmF0meTXLWKkVI638UJH2tWLp9-F1GDXqkp6fts-WYYzYooLrclyBoe7zi1qFEfnavS-e15yWI7j9a7X5BAwHPtc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Past%2C+Present%2C+and+Future+of+Face+Recognition%3A+A+Review&rft.jtitle=Electronics+%28Basel%29&rft.au=Adjabi%2C+Insaf&rft.au=Ouahabi%2C+Abdeldjalil&rft.au=Benzaoui%2C+Amir&rft.au=Taleb-Ahmed%2C+Abdelmalik&rft.date=2020-08-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=9&rft.issue=8&rft.spage=1188&rft_id=info:doi/10.3390%2Felectronics9081188&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon