Local Discontinuous Galerkin Methods for the Functionalized Cahn–Hilliard Equation

In this paper, we develop a local discontinuous Galerkin (LDG) method for the sixth order nonlinear functionalized Cahn–Hilliard (FCH) equation. We address the accuracy and stability issues from simulating high order stiff equations in phase-field modeling. Within the LDG framework, various boundary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing Jg. 63; H. 3; S. 913 - 937
Hauptverfasser: Guo, Ruihan, Xu, Yan, Xu, Zhengfu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2015
Springer Nature B.V
Schlagworte:
ISSN:0885-7474, 1573-7691
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop a local discontinuous Galerkin (LDG) method for the sixth order nonlinear functionalized Cahn–Hilliard (FCH) equation. We address the accuracy and stability issues from simulating high order stiff equations in phase-field modeling. Within the LDG framework, various boundary conditions associated with the background physics can be naturally implemented. We prove the energy stability of the LDG method for the general nonlinear case. A semi-implicit time marching method is applied to remove the severe time step restriction ( Δ t ∼ O ( Δ x 6 ) ) for explicit methods. The h - p adaptive capability of the LDG method allows for capturing the interfacial layers and the complicated geometric structures of the solution with high resolution. To enhance the efficiency of the proposed approach, the multigrid (MG) method is used to solve the system of linear equations resulting from the semi-implicit temporal integration at each time step. We show numerically that the MG solver has mesh-independent convergence rates. Numerical simulation results for the FCH equation in two and three dimensions are provided to illustrate that the combination of the LDG method for spatial approximation, semi-implicit temporal integration with the MG solver provides a practical and efficient approach when solving this family of problems.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-014-9920-3