An enhanced video compression approach through RLAH encoding and KDENN algorithms

Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:EURASIP journal on advances in signal processing Ročník 2024; číslo 1; s. 15 - 19
Hlavní autoři: Manjunatha, D. V., Dattathreya, Khan, Umair, Siddesh, G. K., Prabhakar, S. V., Sreenivasa, B. R., Muhammad, Taseer, Hassan, Ahmed M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2024
Springer
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-6180, 1687-6172, 1687-6180
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However, the VC often falls short to maintain a good quality of compression if motion discontinuities are present in the video frames (VF). To trounce this challenge, this paper proposes an enhanced VC approach via run length-based ASCII Huffman (RLAH) encoding, Kernel-based deep Elman neural network (KDENN), together with modified Kalman filters (MKF) algorithms. Initially, the video is transmuted into frames, and the frame's color space model (CSM) is changed as of RGB to YC b C r . Next, the frames are bifurcated into [8 × 8] blocks, and the significant features are extracted as of every block. On account of these features, the KDENN identifies the motion of every block. Those blocks directly undergo a compression process in case of a single motion. Otherwise, MFK smoothens those blocks in order to eradicate the jitters and undesired movements, and then, it goes through compression. After that, RLAH encoding compresses the VF. Then, on the other side, the RLAH decoding algorithm decomposes the video. The results exhibit that the proposed work renders good quality videos with high PSNR value and also it trounces the prevailing compression techniques concerning compression ratio (CR).
AbstractList Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However, the VC often falls short to maintain a good quality of compression if motion discontinuities are present in the video frames (VF). To trounce this challenge, this paper proposes an enhanced VC approach via run length-based ASCII Huffman (RLAH) encoding, Kernel-based deep Elman neural network (KDENN), together with modified Kalman filters (MKF) algorithms. Initially, the video is transmuted into frames, and the frame's color space model (CSM) is changed as of RGB to YCbCr. Next, the frames are bifurcated into [8 × 8] blocks, and the significant features are extracted as of every block. On account of these features, the KDENN identifies the motion of every block. Those blocks directly undergo a compression process in case of a single motion. Otherwise, MFK smoothens those blocks in order to eradicate the jitters and undesired movements, and then, it goes through compression. After that, RLAH encoding compresses the VF. Then, on the other side, the RLAH decoding algorithm decomposes the video. The results exhibit that the proposed work renders good quality videos with high PSNR value and also it trounces the prevailing compression techniques concerning compression ratio (CR).
Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However, the VC often falls short to maintain a good quality of compression if motion discontinuities are present in the video frames (VF). To trounce this challenge, this paper proposes an enhanced VC approach via run length-based ASCII Huffman (RLAH) encoding, Kernel-based deep Elman neural network (KDENN), together with modified Kalman filters (MKF) algorithms. Initially, the video is transmuted into frames, and the frame's color space model (CSM) is changed as of RGB to YC b C r . Next, the frames are bifurcated into [8 × 8] blocks, and the significant features are extracted as of every block. On account of these features, the KDENN identifies the motion of every block. Those blocks directly undergo a compression process in case of a single motion. Otherwise, MFK smoothens those blocks in order to eradicate the jitters and undesired movements, and then, it goes through compression. After that, RLAH encoding compresses the VF. Then, on the other side, the RLAH decoding algorithm decomposes the video. The results exhibit that the proposed work renders good quality videos with high PSNR value and also it trounces the prevailing compression techniques concerning compression ratio (CR).
Abstract Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However, the VC often falls short to maintain a good quality of compression if motion discontinuities are present in the video frames (VF). To trounce this challenge, this paper proposes an enhanced VC approach via run length-based ASCII Huffman (RLAH) encoding, Kernel-based deep Elman neural network (KDENN), together with modified Kalman filters (MKF) algorithms. Initially, the video is transmuted into frames, and the frame's color space model (CSM) is changed as of RGB to YCbCr. Next, the frames are bifurcated into [8 × 8] blocks, and the significant features are extracted as of every block. On account of these features, the KDENN identifies the motion of every block. Those blocks directly undergo a compression process in case of a single motion. Otherwise, MFK smoothens those blocks in order to eradicate the jitters and undesired movements, and then, it goes through compression. After that, RLAH encoding compresses the VF. Then, on the other side, the RLAH decoding algorithm decomposes the video. The results exhibit that the proposed work renders good quality videos with high PSNR value and also it trounces the prevailing compression techniques concerning compression ratio (CR).
Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However, the VC often falls short to maintain a good quality of compression if motion discontinuities are present in the video frames (VF). To trounce this challenge, this paper proposes an enhanced VC approach via run length-based ASCII Huffman (RLAH) encoding, Kernel-based deep Elman neural network (KDENN), together with modified Kalman filters (MKF) algorithms. Initially, the video is transmuted into frames, and the frame's color space model (CSM) is changed as of RGB to YC.sub.bC.sub.r. Next, the frames are bifurcated into [8 x 8] blocks, and the significant features are extracted as of every block. On account of these features, the KDENN identifies the motion of every block. Those blocks directly undergo a compression process in case of a single motion. Otherwise, MFK smoothens those blocks in order to eradicate the jitters and undesired movements, and then, it goes through compression. After that, RLAH encoding compresses the VF. Then, on the other side, the RLAH decoding algorithm decomposes the video. The results exhibit that the proposed work renders good quality videos with high PSNR value and also it trounces the prevailing compression techniques concerning compression ratio (CR).
ArticleNumber 15
Audience Academic
Author Prabhakar, S. V.
Manjunatha, D. V.
Khan, Umair
Dattathreya
Siddesh, G. K.
Sreenivasa, B. R.
Muhammad, Taseer
Hassan, Ahmed M.
Author_xml – sequence: 1
  givenname: D. V.
  surname: Manjunatha
  fullname: Manjunatha, D. V.
  organization: Department of Electronics & Communication Engineering, Alva’s Institute of Engineering & Technology
– sequence: 2
  surname: Dattathreya
  fullname: Dattathreya
  organization: Department of Electronics & Communication Engineering, Alva’s Institute of Engineering & Technology
– sequence: 3
  givenname: Umair
  orcidid: 0000-0002-2034-1211
  surname: Khan
  fullname: Khan, Umair
  email: umair.khan@lau.edu.lb
  organization: Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Department of Mathematics, Faculty of Science, Sakarya University, Department of Computer Science and Mathematics, Lebanese American University
– sequence: 4
  givenname: G. K.
  surname: Siddesh
  fullname: Siddesh, G. K.
  organization: Department of Electronics & Communication Engineering, Alva’s Institute of Engineering & Technology
– sequence: 5
  givenname: S. V.
  surname: Prabhakar
  fullname: Prabhakar, S. V.
  organization: Department of Electronics, Maharani’s Science College for Women (Autonomous)
– sequence: 6
  givenname: B. R.
  surname: Sreenivasa
  fullname: Sreenivasa, B. R.
  organization: Department of Information Science and Engineering, Bapuji Institute of Engineering and Technology
– sequence: 7
  givenname: Taseer
  surname: Muhammad
  fullname: Muhammad, Taseer
  organization: Department of Mathematics, College of Science, King Khalid University
– sequence: 8
  givenname: Ahmed M.
  surname: Hassan
  fullname: Hassan, Ahmed M.
  organization: Mechanical Engineering, Future University in Egypt
BookMark eNp9kV1rFDEUhoNUsK3-Aa8GvJ6ak2TycbnUaotLRdHrkMnHTJbdZE1mBf-92Y6oVxIOCYfzvHkP7xW6SDl5hF4DvgGQ_G0FyinrMWkFgFVPn6FL4FL0HCS--Of9Al3VusN44ASTS_R5kzqfZpOsd92P6HzubD4ci6815tSZ47FkY-dumUs-TXP3Zbu5b4DNLqapM8l1H9_dPT52Zj_lEpf5UF-i58Hsq3_1-75G397ffb2977efPjzcbra9ZaCWnlmqRuOpAik8MMIFMCVdYCNmoyUOD0NgzIyC-UF6DG4kHLzjwcsw0EDoNXpYdV02O30s8WDKT51N1E-NXCZtyhLt3usBuHJKilGGwAYwynlGpONEqFEKMTStN6tW2_b7yddF7_KppGZfEwWCERDk_OPNOjWZJhpTyEsxth3nD9G2QEJs_Y2QGATQgTaArIAtudbiwx-bgPU5N73mpltu-ik3fYboCtU2nCZf_nr5D_UL7uqaYw
Cites_doi 10.1016/j.jvcir.2020.102813
10.1007/s11042-015-3138-8
10.1007/s11042-020-09038-7
10.1007/s11760-019-01625-y
10.1007/s11042-019-08572-3
10.1109/TCSVT.2018.2878952
10.1016/j.neucom.2018.10.060
10.1007/s11042-018-6008-3
10.1007/s11760-020-01763-8
10.1016/j.cageo.2016.11.017
10.1007/s10586-018-2508-1
10.1109/ACCESS.2019.2940252
10.1016/j.neucom.2020.06.048
10.1109/TCSVT.2019.2910119
10.1007/s00034-017-0720-5
10.1007/s11042-020-08660-9
10.1007/s11042-016-4309-y
10.1109/TCSVT.2018.2867568
10.1007/s11042-020-10003-7
10.1007/s00034-017-0613-7
10.1016/j.comcom.2019.11.026
10.1007/s11704-018-7304-9
10.1007/s11220-019-0262-y
10.1109/ICECCT.2017.8117850
ContentType Journal Article
Copyright The Author(s) 2024
COPYRIGHT 2024 Springer
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: COPYRIGHT 2024 Springer
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOA
DOI 10.1186/s13634-024-01109-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6180
EndPage 19
ExternalDocumentID oai_doaj_org_article_5169d987b8ff451a9de428d6279b8775
A780171353
10_1186_s13634_024_01109_3
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABEEZ
ABUWG
ACACY
ACGFO
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ARCSS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DU5
DWQXO
E3Z
EBLON
EBS
EDO
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RNS
RSV
SEG
SOJ
TUS
U2A
AASML
AAYXX
CITATION
OVT
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c419t-4c39bae39187e142671498df4b04bc2d055f44ab74e58e01db261ed6fe8f53f23
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001152350500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-6180
1687-6172
IngestDate Fri Oct 03 12:45:48 EDT 2025
Sat Oct 11 05:44:37 EDT 2025
Mon Oct 20 17:07:01 EDT 2025
Sat Nov 29 03:12:13 EST 2025
Fri Feb 21 02:41:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Video compression
Compression ratio
Block motion
Run length-based ASCII Huffman (RLAH) encoding
Kernel-based deep Elman neural network (KDENN)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-4c39bae39187e142671498df4b04bc2d055f44ab74e58e01db261ed6fe8f53f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2034-1211
OpenAccessLink https://doaj.org/article/5169d987b8ff451a9de428d6279b8775
PQID 2917421722
PQPubID 237299
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_5169d987b8ff451a9de428d6279b8775
proquest_journals_2917421722
gale_infotracacademiconefile_A780171353
crossref_primary_10_1186_s13634_024_01109_3
springer_journals_10_1186_s13634_024_01109_3
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on advances in signal processing
PublicationTitleAbbrev EURASIP J. Adv. Signal Process
PublicationYear 2024
Publisher Springer International Publishing
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Raghavendra, Sivasubramanian, Kumaravel (CR11) 2019; 22
Darwish, Almajtomi (CR7) 2020
Yang, Mai, Liu, Wang, Guan (CR15) 2018; 29
Jude-Hemanth, Anitha (CR23) 2018; 37
Hussain, Ahmed (CR1) 2018; 335
CR13
Ma, Zhang, Jia, Zhao, Wang, Wanga (CR6) 2019
Pal, Bit (CR21) 2020
Karthik, Kanthavel, Dhaya (CR5) 2020; 79
Rabie, Baziyad (CR22) 2020
Li, Tuo, Shen, Henderson, Courtois, Yan (CR14) 2017; 100
Tian, Wang (CR4) 2018; 12
Siva Kumar, Sasi Kumar, Mohan Kumar (CR8) 2020; 153
Alshehri (CR12) 2020; 80
Saeedi, Ivanovic, Stolarczyk, Amer, Sines (CR18) 2020
Antony, Sreelekha (CR19) 2019; 77
Chunxiao, Zhou, Lu, Hai (CR10) 2020
Zonglei, Xianhong (CR2) 2019; 7
Guo, Zhang, Ouyang, Dong, Chen, Gao (CR17) 2019; 29
Irannejad, Mahdavi-Nasab (CR20) 2018; 37
Siddeq, Rodrigues (CR24) 2020; 21
Sun, He, Chen, Sheriff, Xiong (CR16) 2020; 411
Antony, Sreelekha (CR9) 2017; 76
Birman, Segal, Hadar (CR3) 2020
Afonso, Zhang, Bull (CR25) 2018; 29
S Ma (1109_CR6) 2019
M Saeedi (1109_CR18) 2020
T Tian (1109_CR4) 2018; 12
D Jude-Hemanth (1109_CR23) 2018; 37
R Birman (1109_CR3) 2020
M Afonso (1109_CR25) 2018; 29
MM Siddeq (1109_CR24) 2020; 21
GR Karthik (1109_CR5) 2020; 79
1109_CR13
Lu Zonglei (1109_CR2) 2019; 7
A Antony (1109_CR19) 2019; 77
AJ Hussain (1109_CR1) 2018; 335
K Siva Kumar (1109_CR8) 2020; 153
T Pal (1109_CR21) 2020
SM Darwish (1109_CR7) 2020
F Chunxiao (1109_CR10) 2020
SA Alshehri (1109_CR12) 2020; 80
C Raghavendra (1109_CR11) 2019; 22
Lu Guo (1109_CR17) 2019; 29
T Rabie (1109_CR22) 2020
R Yang (1109_CR15) 2018; 29
A Antony (1109_CR9) 2017; 76
M Irannejad (1109_CR20) 2018; 37
H Li (1109_CR14) 2017; 100
W Sun (1109_CR16) 2020; 411
References_xml – year: 2020
  ident: CR21
  article-title: Low overhead spatiotemporal video compression over smartphone based Delay Tolerant Network
  publication-title: J. Visual Commun. Image Represent
  doi: 10.1016/j.jvcir.2020.102813
– volume: 76
  start-page: 1639
  issue: 2
  year: 2017
  end-page: 1658
  ident: CR9
  article-title: HEVC-based lossless intra coding for efficient still image compression
  publication-title: Multim. Tool Appl
  doi: 10.1007/s11042-015-3138-8
– volume: 80
  start-page: 367
  issue: 1
  year: 2020
  end-page: 381
  ident: CR12
  article-title: Video compression using frame redundancy elimination and discrete cosine transform coefficient reduction
  publication-title: Multim. Tools Appl.
  doi: 10.1007/s11042-020-09038-7
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  end-page: 25
  ident: CR24
  article-title: A novel method for image and video compression based on two-level DCT with hexadata coding
  publication-title: Sens. Imag.
– year: 2020
  ident: CR18
  article-title: Content adaptive pre-filtering for video compression
  publication-title: Signal, Image Video Process.
  doi: 10.1007/s11760-019-01625-y
– year: 2020
  ident: CR3
  article-title: Overview of research in the field of video compression using deep neural networks
  publication-title: Multim. Tool Appl.
  doi: 10.1007/s11042-019-08572-3
– volume: 29
  start-page: 275
  issue: 1
  year: 2018
  end-page: 280
  ident: CR25
  article-title: Video compression based on spatio-temporal resolution adaptation
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2878952
– volume: 335
  start-page: 215
  year: 2018
  end-page: 237
  ident: CR1
  article-title: A survey on video compression fast block matching algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.060
– volume: 79
  start-page: 3519
  issue: 5
  year: 2020
  end-page: 3541
  ident: CR5
  article-title: Development of video compression using EWNS linear transformation and un-repetition simulated contrary based resurgence procedure
  publication-title: Multim. Tool Appl.
  doi: 10.1007/s11042-018-6008-3
– year: 2020
  ident: CR10
  article-title: A novel lossless compression encoding framework for SAR remote sensing images
  publication-title: Signal, Image Video Process.
  doi: 10.1007/s11760-020-01763-8
– volume: 100
  start-page: 41
  year: 2017
  end-page: 45
  ident: CR14
  article-title: An improved lossless group compression algorithm for seismic data in SEG-Y and MiniSEED file formats
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.11.017
– volume: 22
  start-page: 3911
  issue: 2
  year: 2019
  end-page: 3916
  ident: CR11
  article-title: Improved image compression using effective lossless compression technique
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-018-2508-1
– volume: 7
  start-page: 129966
  year: 2019
  end-page: 129974
  ident: CR2
  article-title: Deep compression: a compression technology for apron surveillance video
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940252
– volume: 411
  start-page: 428
  year: 2020
  end-page: 441
  ident: CR16
  article-title: A quality enhancement framework with noise distribution characteristics for high efficiency video coding
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.048
– year: 2019
  ident: CR6
  article-title: Image and video compression with neural networks: a review
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2910119
– volume: 37
  start-page: 3537
  issue: 8
  year: 2018
  end-page: 3557
  ident: CR20
  article-title: Block matching video compression based on sparse representation and dictionary learning
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-017-0720-5
– year: 2020
  ident: CR22
  article-title: PixoComp: a novel video compression scheme utilizing temporal pixograms
  publication-title: Multim. Tools Appl.
  doi: 10.1007/s11042-020-08660-9
– ident: CR13
– volume: 77
  start-page: 1093
  issue: 1
  year: 2019
  end-page: 1113
  ident: CR19
  article-title: Selective intra prediction in HEVC planar and angular modes for efficient near-lossless video compression
  publication-title: Multim. Tools Appl.
  doi: 10.1007/s11042-016-4309-y
– volume: 29
  start-page: 1725
  year: 2019
  end-page: 1737
  ident: CR17
  article-title: Deep non-local kalman network for video compression artifact reduction
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 2039
  issue: 7
  year: 2018
  end-page: 2054
  ident: CR15
  article-title: Enhancing quality for HEVC compressed videos
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2867568
– year: 2020
  ident: CR7
  article-title: Metaheuristic-based vector quantization approach: a new paradigm for neural network-based video compression
  publication-title: Multim. Tool Appl.
  doi: 10.1007/s11042-020-10003-7
– volume: 37
  start-page: 1609
  issue: 4
  year: 2018
  end-page: 1624
  ident: CR23
  article-title: A pattern-based artificial bee colony algorithm for motion estimation in video compression techniques
  publication-title: Circ, Syst, Signal Process.
  doi: 10.1007/s00034-017-0613-7
– volume: 153
  start-page: 152
  year: 2020
  end-page: 158
  ident: CR8
  article-title: Efficient video compression and improving quality of video in communication for computer endcoding applications
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.11.026
– volume: 12
  start-page: 825
  issue: 5
  year: 2018
  end-page: 839
  ident: CR4
  article-title: Large-scale video compression: recent advances and challenges
  publication-title: Front. Comp. Sci.
  doi: 10.1007/s11704-018-7304-9
– year: 2020
  ident: 1109_CR21
  publication-title: J. Visual Commun. Image Represent
  doi: 10.1016/j.jvcir.2020.102813
– year: 2020
  ident: 1109_CR18
  publication-title: Signal, Image Video Process.
  doi: 10.1007/s11760-019-01625-y
– year: 2020
  ident: 1109_CR22
  publication-title: Multim. Tools Appl.
  doi: 10.1007/s11042-020-08660-9
– volume: 76
  start-page: 1639
  issue: 2
  year: 2017
  ident: 1109_CR9
  publication-title: Multim. Tool Appl
  doi: 10.1007/s11042-015-3138-8
– volume: 79
  start-page: 3519
  issue: 5
  year: 2020
  ident: 1109_CR5
  publication-title: Multim. Tool Appl.
  doi: 10.1007/s11042-018-6008-3
– volume: 29
  start-page: 1725
  year: 2019
  ident: 1109_CR17
  publication-title: IEEE Trans. Image Process.
– year: 2020
  ident: 1109_CR10
  publication-title: Signal, Image Video Process.
  doi: 10.1007/s11760-020-01763-8
– volume: 411
  start-page: 428
  year: 2020
  ident: 1109_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.048
– year: 2020
  ident: 1109_CR7
  publication-title: Multim. Tool Appl.
  doi: 10.1007/s11042-020-10003-7
– volume: 37
  start-page: 1609
  issue: 4
  year: 2018
  ident: 1109_CR23
  publication-title: Circ, Syst, Signal Process.
  doi: 10.1007/s00034-017-0613-7
– year: 2020
  ident: 1109_CR3
  publication-title: Multim. Tool Appl.
  doi: 10.1007/s11042-019-08572-3
– volume: 12
  start-page: 825
  issue: 5
  year: 2018
  ident: 1109_CR4
  publication-title: Front. Comp. Sci.
  doi: 10.1007/s11704-018-7304-9
– volume: 100
  start-page: 41
  year: 2017
  ident: 1109_CR14
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.11.017
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 1109_CR24
  publication-title: Sens. Imag.
  doi: 10.1007/s11220-019-0262-y
– volume: 80
  start-page: 367
  issue: 1
  year: 2020
  ident: 1109_CR12
  publication-title: Multim. Tools Appl.
  doi: 10.1007/s11042-020-09038-7
– volume: 77
  start-page: 1093
  issue: 1
  year: 2019
  ident: 1109_CR19
  publication-title: Multim. Tools Appl.
  doi: 10.1007/s11042-016-4309-y
– ident: 1109_CR13
  doi: 10.1109/ICECCT.2017.8117850
– volume: 37
  start-page: 3537
  issue: 8
  year: 2018
  ident: 1109_CR20
  publication-title: Circ. Syst. Signal Process.
  doi: 10.1007/s00034-017-0720-5
– year: 2019
  ident: 1109_CR6
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2910119
– volume: 22
  start-page: 3911
  issue: 2
  year: 2019
  ident: 1109_CR11
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-018-2508-1
– volume: 7
  start-page: 129966
  year: 2019
  ident: 1109_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940252
– volume: 335
  start-page: 215
  year: 2018
  ident: 1109_CR1
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.060
– volume: 29
  start-page: 2039
  issue: 7
  year: 2018
  ident: 1109_CR15
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2867568
– volume: 29
  start-page: 275
  issue: 1
  year: 2018
  ident: 1109_CR25
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2878952
– volume: 153
  start-page: 152
  year: 2020
  ident: 1109_CR8
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.11.026
SSID ssj0056202
Score 2.4027224
Snippet Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video...
Abstract Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos....
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 15
SubjectTerms Algorithms
Block motion
Coding
Compression ratio
Data compression
Engineering
Frames (data processing)
Kalman filters
Kernel-based deep Elman neural network (KDENN)
Methods
Neural networks
Quantum Information Technology
Run length-based ASCII Huffman (RLAH) encoding
Signal,Image and Speech Processing
Spintronics
Venture capital
Video compression
Video transmission
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD76oLBfmAxAGsJn7nhBZoVQm0KgikiovlxHaLRLNlE_j9zDgOBVVw4ZpE8cjz-GbseRDy1PvEo44dA1_DMCkS6JzALPMqAnoG7VPV5mETZrWyx8fNUTlwG0pa5WwTs6EO6w7PyPc4xBUSpynxl-ffGE6NwtvVMkLjKrlWc_D1QZ6P1OfZEgO0TzmH2uZSOD4XzVi9N9RCC8kAoRgiYMPEH8CU-_dfttKXrkszCh3c_l_675Bbxf-ky0lg7pIrsb9Hbv7WlfA-eb_saexPc2oAxTK9NcXE8ylhtqdzF3JaRvzQD--WhxT7YSIMUt8H-vbN_mpF_dcTIGA8PRsekE8H-x9fH7IyeYF1sm5GJjvRtD6KprYm1gDiBjbXhiTbSrYdD5VSSUrfGhmVjVUdWgjEYtAp2qSA32KbbPXrPu4QqqUSyoaolPcymtoH3ulWeWV99ODsLMjzedvd-dRgw-XAxGo3MckBk1xmkhML8go58-tLbI6dH6w3J67omsOrv9BY09qUpKp9EyIEWUFz07TWGFjyGfLVoQqPG9_5UokABGMzLLc0FrsICQXL7c7MdEW3B3fByQV5MYvDxeu_E__w3397RG5wlMecK7NLtsbN9_iYXO9-jF-GzZMs2T8BMxr7ww
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELagcKAHdtRXCvIBiQNEJPGa46O0qgR6AgRSb5Ydj9tKkIeSwO9nxklYVPUA1yyyNYs_j2bmG8aeeZ9q0NAWeNcwhRQJfU5QlXkJiJ5R-1SGPGzCbDb29LR5PzeFDUu1-5KSzCd1dmurXw2V0EIWiCkFYVZTiOvshqqsoZDrkHocpvMXAZ1qdvav_u8vCMpM_ZfP40uJ0Yw3x3f-b6d32e35fsnXk0HcY9egu892_2AdfMA-rDsO3XlO_XNqw9tyKiyfCmI7vrCM83mED__4bn3Cie-SYI77LvK3b442G-6_nG37i_H86_CQfT4--nR4UsyTFYpWVs1YyFY0wYNoUHxQIUgbDJRsTDKUMrR1LJVKUvpgJCgLZRUDBloQdQKbFOpTPGI73baDPca1VELZCEp5L8FUPtatDsor68HjZWbFXizCdt8mAg2XAw-r3SQoh4JyWVBOrNhr0sevL4n8Oj_Y9mdu9iVHqb3YWBNsSlJVvomAQVTUtWkCmgMu-Zy06chFx963fu40wA0T2ZVbG0ssQULhcgeLwt3su4OrMYKVNLerXrGXi4J_v7568_v_9vljdqsmG8m1MQdsZ-y_wxN2s_0xXgz902zTPwG2Ce80
  priority: 102
  providerName: Springer Nature
Title An enhanced video compression approach through RLAH encoding and KDENN algorithms
URI https://link.springer.com/article/10.1186/s13634-024-01109-3
https://www.proquest.com/docview/2917421722
https://doaj.org/article/5169d987b8ff451a9de428d6279b8775
Volume 2024
WOSCitedRecordID wos001152350500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6180
  databaseCode: C24
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1B4QAHxKe6UFY-IHEAq0n8meO23aqoEIUKpMLFsmOnrVSyaDfw-zt2EiiqEBcuPiSRMppn-83I4zcAr6xtiyBDQzHWUJSzFtcci1XmWUD29NK2mUvNJlRV6dPTsr7W6ivWhA3ywIPjduM5jsfE2Om25SK3pQ8YMXtZqNJppZJ6aabKKZka9mAk9Vi3M1yR0XJ3kzPJOEU-opHvSsr-oKGk1n9zT75xOJo45_AhPBiDRbIYjHwEt0L3GO5fkxB8Ah8XHQndeTrHJ_FO3YrEKvGhurUjk2Q4GfvxkJP3iyMSxSsjZxHbeXJ8sKwqYi_PVuuL_vzb5il8Plx-2j-iY5sE2vC87ClvWOlsYGWuVciRcRVmPdq33GXcNYXPhGg5t07xIHTIcu8wawpetkG3AsFhz2CrW3VhG4jkggntgxDW8qBy64tGOmGFtsFiZDKDN5PXzPdBDcOkLEJLM_jYoI9N8rFhM9iLjv31ZVSyTg8QXzPia_6F7wxeR1hMXG_92jZ2vDaABkflKrNQOkr-MIG_25mQM-NC3JgC01Eem3AVM3g7ofn79d-Nf_4_jH8B94o46VL5yw5s9esf4SXcbX72F5v1HO7sLav6ZA639ws-TxMYx2NFcazFV3xfv_tQf7kCIKPw9A
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIOvFEXCvgA4gBRE79zQGihrbbaZVVQkapejBM7bSXIlk0A8af4jcw4CQVVcOuBaxLZcfzNfDPxPAh57FzFggplAraGTgSvQOY4RpmnAdjTK1elRWw2oedzs7-f766QH0MuDIZVDjoxKmq_KPEf-QYDv0JgNyX28uRzgl2j8HR1aKHRwWIavn8Dl615sbMJ-_uEse2tvdeTpO8qkJQiy9tElDwvXOB5ZnTIgKA0OAnGV6JIRVEyn0pZCeEKLYI0Ic18AU5G8KoKppKwFg7jXiAXwYzIURHsyoNB84Mp0cU4KhNT79iQpGPURpNxxUUCjJgg4-YJ_4MIY7-As6xw5ng2st729f_te90g13r7mo47gbhJVkJ9i1z9reribfJ2XNNQH8XQB4ppiAuKgfVdQHBNhyrrtG9hRN_NxhOK9T6R5qmrPZ1ubs3n1H08hAW3R5-aO-T9uazpLlmtF3VYI1QJyaXxQUrnRNCZ86xUhXTSuODAmBuRZ8M225OugIiNjpdRtgOFBVDYCArLR-QVIuHXk1j8O15YLA9tr0ssHm363OjCVJWQmct9ACfSK6bzwmgNUz5FHFlUUe3Sla7PtIAXxmJfdqwNVkniEqZbH8Bje93V2FPkjMjzAX6nt__-8vf-Pdojcnmy92ZmZzvz6X1yhaEsxLigdbLaLr-EB-RS-bU9bpYPo1RR8uG8YfkTVBJYgg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFiE48EZdKOADiANEm_idA0IL21VXW1YLAqk9GSe220qQLZsA4q_x6xg7CQVVcOuBaxLZcfzNK_5mBqFHxnjihCsT8DVkwqgHmaOBZZ46sJ5WGJ8WsdmEXCzU_n6-3EA_-lyYQKvsdWJU1HZVhn_kIwJxBQvdlMjId7SI5WT64uRzEjpIhZPWvp1GC5G5-_4Nwrf6-WwCe_2YkOnOu1e7SddhIClZljcJK2leGEfzTEmXgbGSEDAo61mRsqIkNuXcM2YKyRxXLs1sAQGHs8I75Tmsi8K4F9AmuOSEDdDmcvZ6edDbAXAsWsajUDERj_QpO0qM6owKyhKwj0mwv3lC_zCLsXvAWRtx5rA22sDptf_5611HVzvPG49bUbmBNlx1E135rR7jLfRmXGFXHUVSBA4JiiscKPctVbjCff113DU3wm_3xrs4VAINDgA2lcXzyc5igc3HQ1hwc_Spvo3en8ua7qBBtarcFsKCccqVdZwbw5zMjCWlKLjhyjgDbt4QPe23XJ-0pUV0DMmU0C1ANABER4BoOkQvAyp-PRnKgscLq_Wh7rSMDoeeNleyUN4znpncOggvrSAyL5SUMOWTgCkdlFezNqXpcjDghUMZMD2WKtRPohym2-6BpDutVutTFA3Rsx6Kp7f__vJ3_z3aQ3QJ0Kj3Zov5PXSZBLGIhKFtNGjWX9x9dLH82hzX6wediGH04bxx-ROE72Kp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+video+compression+approach+through+RLAH+encoding+and+KDENN+algorithms&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Manjunatha%2C+D.+V&rft.au=Dattathreya&rft.au=Khan%2C+Umair&rft.au=Siddesh%2C+G.+K&rft.date=2024-12-01&rft.pub=Springer&rft.issn=1687-6180&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-024-01109-3&rft.externalDocID=A780171353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon