An enhanced video compression approach through RLAH encoding and KDENN algorithms
Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However,...
Uloženo v:
| Vydáno v: | EURASIP journal on advances in signal processing Ročník 2024; číslo 1; s. 15 - 19 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2024
Springer Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1687-6180, 1687-6172, 1687-6180 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However, the VC often falls short to maintain a good quality of compression if motion discontinuities are present in the video frames (VF). To trounce this challenge, this paper proposes an enhanced VC approach via run length-based ASCII Huffman (RLAH) encoding, Kernel-based deep Elman neural network (KDENN), together with modified Kalman filters (MKF) algorithms. Initially, the video is transmuted into frames, and the frame's color space model (CSM) is changed as of RGB to YC
b
C
r
. Next, the frames are bifurcated into [8 × 8] blocks, and the significant features are extracted as of every block. On account of these features, the KDENN identifies the motion of every block. Those blocks directly undergo a compression process in case of a single motion. Otherwise, MFK smoothens those blocks in order to eradicate the jitters and undesired movements, and then, it goes through compression. After that, RLAH encoding compresses the VF. Then, on the other side, the RLAH decoding algorithm decomposes the video. The results exhibit that the proposed work renders good quality videos with high PSNR value and also it trounces the prevailing compression techniques concerning compression ratio (CR). |
|---|---|
| AbstractList | Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However, the VC often falls short to maintain a good quality of compression if motion discontinuities are present in the video frames (VF). To trounce this challenge, this paper proposes an enhanced VC approach via run length-based ASCII Huffman (RLAH) encoding, Kernel-based deep Elman neural network (KDENN), together with modified Kalman filters (MKF) algorithms. Initially, the video is transmuted into frames, and the frame's color space model (CSM) is changed as of RGB to YCbCr. Next, the frames are bifurcated into [8 × 8] blocks, and the significant features are extracted as of every block. On account of these features, the KDENN identifies the motion of every block. Those blocks directly undergo a compression process in case of a single motion. Otherwise, MFK smoothens those blocks in order to eradicate the jitters and undesired movements, and then, it goes through compression. After that, RLAH encoding compresses the VF. Then, on the other side, the RLAH decoding algorithm decomposes the video. The results exhibit that the proposed work renders good quality videos with high PSNR value and also it trounces the prevailing compression techniques concerning compression ratio (CR). Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However, the VC often falls short to maintain a good quality of compression if motion discontinuities are present in the video frames (VF). To trounce this challenge, this paper proposes an enhanced VC approach via run length-based ASCII Huffman (RLAH) encoding, Kernel-based deep Elman neural network (KDENN), together with modified Kalman filters (MKF) algorithms. Initially, the video is transmuted into frames, and the frame's color space model (CSM) is changed as of RGB to YC b C r . Next, the frames are bifurcated into [8 × 8] blocks, and the significant features are extracted as of every block. On account of these features, the KDENN identifies the motion of every block. Those blocks directly undergo a compression process in case of a single motion. Otherwise, MFK smoothens those blocks in order to eradicate the jitters and undesired movements, and then, it goes through compression. After that, RLAH encoding compresses the VF. Then, on the other side, the RLAH decoding algorithm decomposes the video. The results exhibit that the proposed work renders good quality videos with high PSNR value and also it trounces the prevailing compression techniques concerning compression ratio (CR). Abstract Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However, the VC often falls short to maintain a good quality of compression if motion discontinuities are present in the video frames (VF). To trounce this challenge, this paper proposes an enhanced VC approach via run length-based ASCII Huffman (RLAH) encoding, Kernel-based deep Elman neural network (KDENN), together with modified Kalman filters (MKF) algorithms. Initially, the video is transmuted into frames, and the frame's color space model (CSM) is changed as of RGB to YCbCr. Next, the frames are bifurcated into [8 × 8] blocks, and the significant features are extracted as of every block. On account of these features, the KDENN identifies the motion of every block. Those blocks directly undergo a compression process in case of a single motion. Otherwise, MFK smoothens those blocks in order to eradicate the jitters and undesired movements, and then, it goes through compression. After that, RLAH encoding compresses the VF. Then, on the other side, the RLAH decoding algorithm decomposes the video. The results exhibit that the proposed work renders good quality videos with high PSNR value and also it trounces the prevailing compression techniques concerning compression ratio (CR). Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video compression (VC) techniques are introduced, which try to eradicate various sorts of redundancies within or betwixt video sequences. However, the VC often falls short to maintain a good quality of compression if motion discontinuities are present in the video frames (VF). To trounce this challenge, this paper proposes an enhanced VC approach via run length-based ASCII Huffman (RLAH) encoding, Kernel-based deep Elman neural network (KDENN), together with modified Kalman filters (MKF) algorithms. Initially, the video is transmuted into frames, and the frame's color space model (CSM) is changed as of RGB to YC.sub.bC.sub.r. Next, the frames are bifurcated into [8 x 8] blocks, and the significant features are extracted as of every block. On account of these features, the KDENN identifies the motion of every block. Those blocks directly undergo a compression process in case of a single motion. Otherwise, MFK smoothens those blocks in order to eradicate the jitters and undesired movements, and then, it goes through compression. After that, RLAH encoding compresses the VF. Then, on the other side, the RLAH decoding algorithm decomposes the video. The results exhibit that the proposed work renders good quality videos with high PSNR value and also it trounces the prevailing compression techniques concerning compression ratio (CR). |
| ArticleNumber | 15 |
| Audience | Academic |
| Author | Prabhakar, S. V. Manjunatha, D. V. Khan, Umair Dattathreya Siddesh, G. K. Sreenivasa, B. R. Muhammad, Taseer Hassan, Ahmed M. |
| Author_xml | – sequence: 1 givenname: D. V. surname: Manjunatha fullname: Manjunatha, D. V. organization: Department of Electronics & Communication Engineering, Alva’s Institute of Engineering & Technology – sequence: 2 surname: Dattathreya fullname: Dattathreya organization: Department of Electronics & Communication Engineering, Alva’s Institute of Engineering & Technology – sequence: 3 givenname: Umair orcidid: 0000-0002-2034-1211 surname: Khan fullname: Khan, Umair email: umair.khan@lau.edu.lb organization: Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Department of Mathematics, Faculty of Science, Sakarya University, Department of Computer Science and Mathematics, Lebanese American University – sequence: 4 givenname: G. K. surname: Siddesh fullname: Siddesh, G. K. organization: Department of Electronics & Communication Engineering, Alva’s Institute of Engineering & Technology – sequence: 5 givenname: S. V. surname: Prabhakar fullname: Prabhakar, S. V. organization: Department of Electronics, Maharani’s Science College for Women (Autonomous) – sequence: 6 givenname: B. R. surname: Sreenivasa fullname: Sreenivasa, B. R. organization: Department of Information Science and Engineering, Bapuji Institute of Engineering and Technology – sequence: 7 givenname: Taseer surname: Muhammad fullname: Muhammad, Taseer organization: Department of Mathematics, College of Science, King Khalid University – sequence: 8 givenname: Ahmed M. surname: Hassan fullname: Hassan, Ahmed M. organization: Mechanical Engineering, Future University in Egypt |
| BookMark | eNp9kV1rFDEUhoNUsK3-Aa8GvJ6ak2TycbnUaotLRdHrkMnHTJbdZE1mBf-92Y6oVxIOCYfzvHkP7xW6SDl5hF4DvgGQ_G0FyinrMWkFgFVPn6FL4FL0HCS--Of9Al3VusN44ASTS_R5kzqfZpOsd92P6HzubD4ci6815tSZ47FkY-dumUs-TXP3Zbu5b4DNLqapM8l1H9_dPT52Zj_lEpf5UF-i58Hsq3_1-75G397ffb2977efPjzcbra9ZaCWnlmqRuOpAik8MMIFMCVdYCNmoyUOD0NgzIyC-UF6DG4kHLzjwcsw0EDoNXpYdV02O30s8WDKT51N1E-NXCZtyhLt3usBuHJKilGGwAYwynlGpONEqFEKMTStN6tW2_b7yddF7_KppGZfEwWCERDk_OPNOjWZJhpTyEsxth3nD9G2QEJs_Y2QGATQgTaArIAtudbiwx-bgPU5N73mpltu-ik3fYboCtU2nCZf_nr5D_UL7uqaYw |
| Cites_doi | 10.1016/j.jvcir.2020.102813 10.1007/s11042-015-3138-8 10.1007/s11042-020-09038-7 10.1007/s11760-019-01625-y 10.1007/s11042-019-08572-3 10.1109/TCSVT.2018.2878952 10.1016/j.neucom.2018.10.060 10.1007/s11042-018-6008-3 10.1007/s11760-020-01763-8 10.1016/j.cageo.2016.11.017 10.1007/s10586-018-2508-1 10.1109/ACCESS.2019.2940252 10.1016/j.neucom.2020.06.048 10.1109/TCSVT.2019.2910119 10.1007/s00034-017-0720-5 10.1007/s11042-020-08660-9 10.1007/s11042-016-4309-y 10.1109/TCSVT.2018.2867568 10.1007/s11042-020-10003-7 10.1007/s00034-017-0613-7 10.1016/j.comcom.2019.11.026 10.1007/s11704-018-7304-9 10.1007/s11220-019-0262-y 10.1109/ICECCT.2017.8117850 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U DOA |
| DOI | 10.1186/s13634-024-01109-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection (LUT) ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1687-6180 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_5169d987b8ff451a9de428d6279b8775 A780171353 10_1186_s13634_024_01109_3 |
| GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABEEZ ABUWG ACACY ACGFO ACGFS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ARCSS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DU5 DWQXO E3Z EBLON EBS EDO F5P GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 M0N M~E OK1 P62 PIMPY PQQKQ PROAC Q2X RHU RHW RNS RSV SEG SOJ TUS U2A AASML AAYXX CITATION OVT 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U |
| ID | FETCH-LOGICAL-c419t-4c39bae39187e142671498df4b04bc2d055f44ab74e58e01db261ed6fe8f53f23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001152350500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-6180 1687-6172 |
| IngestDate | Fri Oct 03 12:45:48 EDT 2025 Sat Oct 11 05:44:37 EDT 2025 Mon Oct 20 17:07:01 EDT 2025 Sat Nov 29 03:12:13 EST 2025 Fri Feb 21 02:41:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Video compression Compression ratio Block motion Run length-based ASCII Huffman (RLAH) encoding Kernel-based deep Elman neural network (KDENN) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-4c39bae39187e142671498df4b04bc2d055f44ab74e58e01db261ed6fe8f53f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2034-1211 |
| OpenAccessLink | https://doaj.org/article/5169d987b8ff451a9de428d6279b8775 |
| PQID | 2917421722 |
| PQPubID | 237299 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5169d987b8ff451a9de428d6279b8775 proquest_journals_2917421722 gale_infotracacademiconefile_A780171353 crossref_primary_10_1186_s13634_024_01109_3 springer_journals_10_1186_s13634_024_01109_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP journal on advances in signal processing |
| PublicationTitleAbbrev | EURASIP J. Adv. Signal Process |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | Raghavendra, Sivasubramanian, Kumaravel (CR11) 2019; 22 Darwish, Almajtomi (CR7) 2020 Yang, Mai, Liu, Wang, Guan (CR15) 2018; 29 Jude-Hemanth, Anitha (CR23) 2018; 37 Hussain, Ahmed (CR1) 2018; 335 CR13 Ma, Zhang, Jia, Zhao, Wang, Wanga (CR6) 2019 Pal, Bit (CR21) 2020 Karthik, Kanthavel, Dhaya (CR5) 2020; 79 Rabie, Baziyad (CR22) 2020 Li, Tuo, Shen, Henderson, Courtois, Yan (CR14) 2017; 100 Tian, Wang (CR4) 2018; 12 Siva Kumar, Sasi Kumar, Mohan Kumar (CR8) 2020; 153 Alshehri (CR12) 2020; 80 Saeedi, Ivanovic, Stolarczyk, Amer, Sines (CR18) 2020 Antony, Sreelekha (CR19) 2019; 77 Chunxiao, Zhou, Lu, Hai (CR10) 2020 Zonglei, Xianhong (CR2) 2019; 7 Guo, Zhang, Ouyang, Dong, Chen, Gao (CR17) 2019; 29 Irannejad, Mahdavi-Nasab (CR20) 2018; 37 Siddeq, Rodrigues (CR24) 2020; 21 Sun, He, Chen, Sheriff, Xiong (CR16) 2020; 411 Antony, Sreelekha (CR9) 2017; 76 Birman, Segal, Hadar (CR3) 2020 Afonso, Zhang, Bull (CR25) 2018; 29 S Ma (1109_CR6) 2019 M Saeedi (1109_CR18) 2020 T Tian (1109_CR4) 2018; 12 D Jude-Hemanth (1109_CR23) 2018; 37 R Birman (1109_CR3) 2020 M Afonso (1109_CR25) 2018; 29 MM Siddeq (1109_CR24) 2020; 21 GR Karthik (1109_CR5) 2020; 79 1109_CR13 Lu Zonglei (1109_CR2) 2019; 7 A Antony (1109_CR19) 2019; 77 AJ Hussain (1109_CR1) 2018; 335 K Siva Kumar (1109_CR8) 2020; 153 T Pal (1109_CR21) 2020 SM Darwish (1109_CR7) 2020 F Chunxiao (1109_CR10) 2020 SA Alshehri (1109_CR12) 2020; 80 C Raghavendra (1109_CR11) 2019; 22 Lu Guo (1109_CR17) 2019; 29 T Rabie (1109_CR22) 2020 R Yang (1109_CR15) 2018; 29 A Antony (1109_CR9) 2017; 76 M Irannejad (1109_CR20) 2018; 37 H Li (1109_CR14) 2017; 100 W Sun (1109_CR16) 2020; 411 |
| References_xml | – year: 2020 ident: CR21 article-title: Low overhead spatiotemporal video compression over smartphone based Delay Tolerant Network publication-title: J. Visual Commun. Image Represent doi: 10.1016/j.jvcir.2020.102813 – volume: 76 start-page: 1639 issue: 2 year: 2017 end-page: 1658 ident: CR9 article-title: HEVC-based lossless intra coding for efficient still image compression publication-title: Multim. Tool Appl doi: 10.1007/s11042-015-3138-8 – volume: 80 start-page: 367 issue: 1 year: 2020 end-page: 381 ident: CR12 article-title: Video compression using frame redundancy elimination and discrete cosine transform coefficient reduction publication-title: Multim. Tools Appl. doi: 10.1007/s11042-020-09038-7 – volume: 21 start-page: 1 issue: 1 year: 2020 end-page: 25 ident: CR24 article-title: A novel method for image and video compression based on two-level DCT with hexadata coding publication-title: Sens. Imag. – year: 2020 ident: CR18 article-title: Content adaptive pre-filtering for video compression publication-title: Signal, Image Video Process. doi: 10.1007/s11760-019-01625-y – year: 2020 ident: CR3 article-title: Overview of research in the field of video compression using deep neural networks publication-title: Multim. Tool Appl. doi: 10.1007/s11042-019-08572-3 – volume: 29 start-page: 275 issue: 1 year: 2018 end-page: 280 ident: CR25 article-title: Video compression based on spatio-temporal resolution adaptation publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2018.2878952 – volume: 335 start-page: 215 year: 2018 end-page: 237 ident: CR1 article-title: A survey on video compression fast block matching algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.060 – volume: 79 start-page: 3519 issue: 5 year: 2020 end-page: 3541 ident: CR5 article-title: Development of video compression using EWNS linear transformation and un-repetition simulated contrary based resurgence procedure publication-title: Multim. Tool Appl. doi: 10.1007/s11042-018-6008-3 – year: 2020 ident: CR10 article-title: A novel lossless compression encoding framework for SAR remote sensing images publication-title: Signal, Image Video Process. doi: 10.1007/s11760-020-01763-8 – volume: 100 start-page: 41 year: 2017 end-page: 45 ident: CR14 article-title: An improved lossless group compression algorithm for seismic data in SEG-Y and MiniSEED file formats publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2016.11.017 – volume: 22 start-page: 3911 issue: 2 year: 2019 end-page: 3916 ident: CR11 article-title: Improved image compression using effective lossless compression technique publication-title: Clust. Comput. doi: 10.1007/s10586-018-2508-1 – volume: 7 start-page: 129966 year: 2019 end-page: 129974 ident: CR2 article-title: Deep compression: a compression technology for apron surveillance video publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940252 – volume: 411 start-page: 428 year: 2020 end-page: 441 ident: CR16 article-title: A quality enhancement framework with noise distribution characteristics for high efficiency video coding publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.048 – year: 2019 ident: CR6 article-title: Image and video compression with neural networks: a review publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2910119 – volume: 37 start-page: 3537 issue: 8 year: 2018 end-page: 3557 ident: CR20 article-title: Block matching video compression based on sparse representation and dictionary learning publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-017-0720-5 – year: 2020 ident: CR22 article-title: PixoComp: a novel video compression scheme utilizing temporal pixograms publication-title: Multim. Tools Appl. doi: 10.1007/s11042-020-08660-9 – ident: CR13 – volume: 77 start-page: 1093 issue: 1 year: 2019 end-page: 1113 ident: CR19 article-title: Selective intra prediction in HEVC planar and angular modes for efficient near-lossless video compression publication-title: Multim. Tools Appl. doi: 10.1007/s11042-016-4309-y – volume: 29 start-page: 1725 year: 2019 end-page: 1737 ident: CR17 article-title: Deep non-local kalman network for video compression artifact reduction publication-title: IEEE Trans. Image Process. – volume: 29 start-page: 2039 issue: 7 year: 2018 end-page: 2054 ident: CR15 article-title: Enhancing quality for HEVC compressed videos publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2018.2867568 – year: 2020 ident: CR7 article-title: Metaheuristic-based vector quantization approach: a new paradigm for neural network-based video compression publication-title: Multim. Tool Appl. doi: 10.1007/s11042-020-10003-7 – volume: 37 start-page: 1609 issue: 4 year: 2018 end-page: 1624 ident: CR23 article-title: A pattern-based artificial bee colony algorithm for motion estimation in video compression techniques publication-title: Circ, Syst, Signal Process. doi: 10.1007/s00034-017-0613-7 – volume: 153 start-page: 152 year: 2020 end-page: 158 ident: CR8 article-title: Efficient video compression and improving quality of video in communication for computer endcoding applications publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.11.026 – volume: 12 start-page: 825 issue: 5 year: 2018 end-page: 839 ident: CR4 article-title: Large-scale video compression: recent advances and challenges publication-title: Front. Comp. Sci. doi: 10.1007/s11704-018-7304-9 – year: 2020 ident: 1109_CR21 publication-title: J. Visual Commun. Image Represent doi: 10.1016/j.jvcir.2020.102813 – year: 2020 ident: 1109_CR18 publication-title: Signal, Image Video Process. doi: 10.1007/s11760-019-01625-y – year: 2020 ident: 1109_CR22 publication-title: Multim. Tools Appl. doi: 10.1007/s11042-020-08660-9 – volume: 76 start-page: 1639 issue: 2 year: 2017 ident: 1109_CR9 publication-title: Multim. Tool Appl doi: 10.1007/s11042-015-3138-8 – volume: 79 start-page: 3519 issue: 5 year: 2020 ident: 1109_CR5 publication-title: Multim. Tool Appl. doi: 10.1007/s11042-018-6008-3 – volume: 29 start-page: 1725 year: 2019 ident: 1109_CR17 publication-title: IEEE Trans. Image Process. – year: 2020 ident: 1109_CR10 publication-title: Signal, Image Video Process. doi: 10.1007/s11760-020-01763-8 – volume: 411 start-page: 428 year: 2020 ident: 1109_CR16 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.048 – year: 2020 ident: 1109_CR7 publication-title: Multim. Tool Appl. doi: 10.1007/s11042-020-10003-7 – volume: 37 start-page: 1609 issue: 4 year: 2018 ident: 1109_CR23 publication-title: Circ, Syst, Signal Process. doi: 10.1007/s00034-017-0613-7 – year: 2020 ident: 1109_CR3 publication-title: Multim. Tool Appl. doi: 10.1007/s11042-019-08572-3 – volume: 12 start-page: 825 issue: 5 year: 2018 ident: 1109_CR4 publication-title: Front. Comp. Sci. doi: 10.1007/s11704-018-7304-9 – volume: 100 start-page: 41 year: 2017 ident: 1109_CR14 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2016.11.017 – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 1109_CR24 publication-title: Sens. Imag. doi: 10.1007/s11220-019-0262-y – volume: 80 start-page: 367 issue: 1 year: 2020 ident: 1109_CR12 publication-title: Multim. Tools Appl. doi: 10.1007/s11042-020-09038-7 – volume: 77 start-page: 1093 issue: 1 year: 2019 ident: 1109_CR19 publication-title: Multim. Tools Appl. doi: 10.1007/s11042-016-4309-y – ident: 1109_CR13 doi: 10.1109/ICECCT.2017.8117850 – volume: 37 start-page: 3537 issue: 8 year: 2018 ident: 1109_CR20 publication-title: Circ. Syst. Signal Process. doi: 10.1007/s00034-017-0720-5 – year: 2019 ident: 1109_CR6 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2910119 – volume: 22 start-page: 3911 issue: 2 year: 2019 ident: 1109_CR11 publication-title: Clust. Comput. doi: 10.1007/s10586-018-2508-1 – volume: 7 start-page: 129966 year: 2019 ident: 1109_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940252 – volume: 335 start-page: 215 year: 2018 ident: 1109_CR1 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.060 – volume: 29 start-page: 2039 issue: 7 year: 2018 ident: 1109_CR15 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2018.2867568 – volume: 29 start-page: 275 issue: 1 year: 2018 ident: 1109_CR25 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2018.2878952 – volume: 153 start-page: 152 year: 2020 ident: 1109_CR8 publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.11.026 |
| SSID | ssj0056202 |
| Score | 2.4027224 |
| Snippet | Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos. Thus, video... Abstract Recently, video transmission is going through many failures because of the limited size of the top-notch technique for storing large volume videos.... |
| SourceID | doaj proquest gale crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 15 |
| SubjectTerms | Algorithms Block motion Coding Compression ratio Data compression Engineering Frames (data processing) Kalman filters Kernel-based deep Elman neural network (KDENN) Methods Neural networks Quantum Information Technology Run length-based ASCII Huffman (RLAH) encoding Signal,Image and Speech Processing Spintronics Venture capital Video compression Video transmission |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD76oLBfmAxAGsJn7nhBZoVQm0KgikiovlxHaLRLNlE_j9zDgOBVVw4ZpE8cjz-GbseRDy1PvEo44dA1_DMCkS6JzALPMqAnoG7VPV5mETZrWyx8fNUTlwG0pa5WwTs6EO6w7PyPc4xBUSpynxl-ffGE6NwtvVMkLjKrlWc_D1QZ6P1OfZEgO0TzmH2uZSOD4XzVi9N9RCC8kAoRgiYMPEH8CU-_dfttKXrkszCh3c_l_675Bbxf-ky0lg7pIrsb9Hbv7WlfA-eb_saexPc2oAxTK9NcXE8ylhtqdzF3JaRvzQD--WhxT7YSIMUt8H-vbN_mpF_dcTIGA8PRsekE8H-x9fH7IyeYF1sm5GJjvRtD6KprYm1gDiBjbXhiTbSrYdD5VSSUrfGhmVjVUdWgjEYtAp2qSA32KbbPXrPu4QqqUSyoaolPcymtoH3ulWeWV99ODsLMjzedvd-dRgw-XAxGo3MckBk1xmkhML8go58-tLbI6dH6w3J67omsOrv9BY09qUpKp9EyIEWUFz07TWGFjyGfLVoQqPG9_5UokABGMzLLc0FrsICQXL7c7MdEW3B3fByQV5MYvDxeu_E__w3397RG5wlMecK7NLtsbN9_iYXO9-jF-GzZMs2T8BMxr7ww priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELagcKAHdtRXCvIBiQNEJPGa46O0qgR6AgRSb5Ydj9tKkIeSwO9nxklYVPUA1yyyNYs_j2bmG8aeeZ9q0NAWeNcwhRQJfU5QlXkJiJ5R-1SGPGzCbDb29LR5PzeFDUu1-5KSzCd1dmurXw2V0EIWiCkFYVZTiOvshqqsoZDrkHocpvMXAZ1qdvav_u8vCMpM_ZfP40uJ0Yw3x3f-b6d32e35fsnXk0HcY9egu892_2AdfMA-rDsO3XlO_XNqw9tyKiyfCmI7vrCM83mED__4bn3Cie-SYI77LvK3b442G-6_nG37i_H86_CQfT4--nR4UsyTFYpWVs1YyFY0wYNoUHxQIUgbDJRsTDKUMrR1LJVKUvpgJCgLZRUDBloQdQKbFOpTPGI73baDPca1VELZCEp5L8FUPtatDsor68HjZWbFXizCdt8mAg2XAw-r3SQoh4JyWVBOrNhr0sevL4n8Oj_Y9mdu9iVHqb3YWBNsSlJVvomAQVTUtWkCmgMu-Zy06chFx963fu40wA0T2ZVbG0ssQULhcgeLwt3su4OrMYKVNLerXrGXi4J_v7568_v_9vljdqsmG8m1MQdsZ-y_wxN2s_0xXgz902zTPwG2Ce80 priority: 102 providerName: Springer Nature |
| Title | An enhanced video compression approach through RLAH encoding and KDENN algorithms |
| URI | https://link.springer.com/article/10.1186/s13634-024-01109-3 https://www.proquest.com/docview/2917421722 https://doaj.org/article/5169d987b8ff451a9de428d6279b8775 |
| Volume | 2024 |
| WOSCitedRecordID | wos001152350500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6180 databaseCode: C24 dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1B4QAHxKe6UFY-IHEAq0n8meO23aqoEIUKpMLFsmOnrVSyaDfw-zt2EiiqEBcuPiSRMppn-83I4zcAr6xtiyBDQzHWUJSzFtcci1XmWUD29NK2mUvNJlRV6dPTsr7W6ivWhA3ywIPjduM5jsfE2Om25SK3pQ8YMXtZqNJppZJ6aabKKZka9mAk9Vi3M1yR0XJ3kzPJOEU-opHvSsr-oKGk1n9zT75xOJo45_AhPBiDRbIYjHwEt0L3GO5fkxB8Ah8XHQndeTrHJ_FO3YrEKvGhurUjk2Q4GfvxkJP3iyMSxSsjZxHbeXJ8sKwqYi_PVuuL_vzb5il8Plx-2j-iY5sE2vC87ClvWOlsYGWuVciRcRVmPdq33GXcNYXPhGg5t07xIHTIcu8wawpetkG3AsFhz2CrW3VhG4jkggntgxDW8qBy64tGOmGFtsFiZDKDN5PXzPdBDcOkLEJLM_jYoI9N8rFhM9iLjv31ZVSyTg8QXzPia_6F7wxeR1hMXG_92jZ2vDaABkflKrNQOkr-MIG_25mQM-NC3JgC01Eem3AVM3g7ofn79d-Nf_4_jH8B94o46VL5yw5s9esf4SXcbX72F5v1HO7sLav6ZA639ws-TxMYx2NFcazFV3xfv_tQf7kCIKPw9A |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIOvFEXCvgA4gBRE79zQGihrbbaZVVQkapejBM7bSXIlk0A8af4jcw4CQVVcOuBaxLZcfzNfDPxPAh57FzFggplAraGTgSvQOY4RpmnAdjTK1elRWw2oedzs7-f766QH0MuDIZVDjoxKmq_KPEf-QYDv0JgNyX28uRzgl2j8HR1aKHRwWIavn8Dl615sbMJ-_uEse2tvdeTpO8qkJQiy9tElDwvXOB5ZnTIgKA0OAnGV6JIRVEyn0pZCeEKLYI0Ic18AU5G8KoKppKwFg7jXiAXwYzIURHsyoNB84Mp0cU4KhNT79iQpGPURpNxxUUCjJgg4-YJ_4MIY7-As6xw5ng2st729f_te90g13r7mo47gbhJVkJ9i1z9reribfJ2XNNQH8XQB4ppiAuKgfVdQHBNhyrrtG9hRN_NxhOK9T6R5qmrPZ1ubs3n1H08hAW3R5-aO-T9uazpLlmtF3VYI1QJyaXxQUrnRNCZ86xUhXTSuODAmBuRZ8M225OugIiNjpdRtgOFBVDYCArLR-QVIuHXk1j8O15YLA9tr0ssHm363OjCVJWQmct9ACfSK6bzwmgNUz5FHFlUUe3Sla7PtIAXxmJfdqwNVkniEqZbH8Bje93V2FPkjMjzAX6nt__-8vf-Pdojcnmy92ZmZzvz6X1yhaEsxLigdbLaLr-EB-RS-bU9bpYPo1RR8uG8YfkTVBJYgg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFiE48EZdKOADiANEm_idA0IL21VXW1YLAqk9GSe220qQLZsA4q_x6xg7CQVVcOuBaxLZcfzNK_5mBqFHxnjihCsT8DVkwqgHmaOBZZ46sJ5WGJ8WsdmEXCzU_n6-3EA_-lyYQKvsdWJU1HZVhn_kIwJxBQvdlMjId7SI5WT64uRzEjpIhZPWvp1GC5G5-_4Nwrf6-WwCe_2YkOnOu1e7SddhIClZljcJK2leGEfzTEmXgbGSEDAo61mRsqIkNuXcM2YKyRxXLs1sAQGHs8I75Tmsi8K4F9AmuOSEDdDmcvZ6edDbAXAsWsajUDERj_QpO0qM6owKyhKwj0mwv3lC_zCLsXvAWRtx5rA22sDptf_5611HVzvPG49bUbmBNlx1E135rR7jLfRmXGFXHUVSBA4JiiscKPctVbjCff113DU3wm_3xrs4VAINDgA2lcXzyc5igc3HQ1hwc_Spvo3en8ua7qBBtarcFsKCccqVdZwbw5zMjCWlKLjhyjgDbt4QPe23XJ-0pUV0DMmU0C1ANABER4BoOkQvAyp-PRnKgscLq_Wh7rSMDoeeNleyUN4znpncOggvrSAyL5SUMOWTgCkdlFezNqXpcjDghUMZMD2WKtRPohym2-6BpDutVutTFA3Rsx6Kp7f__vJ3_z3aQ3QJ0Kj3Zov5PXSZBLGIhKFtNGjWX9x9dLH82hzX6wediGH04bxx-ROE72Kp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+video+compression+approach+through+RLAH+encoding+and+KDENN+algorithms&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Manjunatha%2C+D.+V&rft.au=Dattathreya&rft.au=Khan%2C+Umair&rft.au=Siddesh%2C+G.+K&rft.date=2024-12-01&rft.pub=Springer&rft.issn=1687-6180&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-024-01109-3&rft.externalDocID=A780171353 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon |