Therapeutic potential of mesenchymal stem cell-derived microvesicles
Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cel...
Saved in:
| Published in: | Nephrology, dialysis, transplantation Vol. 27; no. 8; p. 3037 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
01.08.2012
|
| Subjects: | |
| ISSN: | 1460-2385, 1460-2385 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy. |
|---|---|
| AbstractList | Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy.Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy. Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy. |
| Author | Biancone, Luigi Deregibus, Maria Chiara Tetta, Ciro Bruno, Stefania Camussi, Giovanni |
| Author_xml | – sequence: 1 givenname: Luigi surname: Biancone fullname: Biancone, Luigi organization: Department of Internal Medicine and Molecular Biotechnology Center, Torino, Italy – sequence: 2 givenname: Stefania surname: Bruno fullname: Bruno, Stefania – sequence: 3 givenname: Maria Chiara surname: Deregibus fullname: Deregibus, Maria Chiara – sequence: 4 givenname: Ciro surname: Tetta fullname: Tetta, Ciro – sequence: 5 givenname: Giovanni surname: Camussi fullname: Camussi, Giovanni |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22851627$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj8tOwzAQRS1URB-w4QNQlmxC_UgcZ4nKU6rEpqwjxx5To9gJtlOpf08QRWJ1Z0ZHo3OXaOZ7DwhdE3xHcM3WXqf1h4mEizO0IAXHOWWinP2b52gZ4yfGuKZVdYHmlIqScFot0MNuD0EOMCarsqFP4JOVXdabzEEEr_ZHN60xgcsUdF2uIdgD6MxZFfoDRKs6iJfo3MguwtUpV-j96XG3ecm3b8-vm_ttrgpSp7yQYvI1vALDFZu0SGnatqg5lsRogYFLVbea45ZywqjkoEBSpmohtabTZYVuf_8Oof8aIabG2fijJT30Y2wIZlhURAgxoTcndGwd6GYI1slwbP6a02--EV0S |
| CitedBy_id | crossref_primary_10_1186_s13287_020_01887_1 crossref_primary_10_1002_stem_2551 crossref_primary_10_2174_1381612826666200420144805 crossref_primary_10_1371_journal_pone_0220756 crossref_primary_10_3389_fendo_2018_00524 crossref_primary_10_1007_s12038_020_00068_9 crossref_primary_10_1155_2023_3602962 crossref_primary_10_1111_prd_12561 crossref_primary_10_1016_j_jpedsurg_2025_162670 crossref_primary_10_1016_j_lfs_2020_117447 crossref_primary_10_1186_s12931_017_0704_9 crossref_primary_10_3390_biom12050663 crossref_primary_10_3892_mmr_2019_10286 crossref_primary_10_1016_j_canlet_2025_218034 crossref_primary_10_1155_2016_8102478 crossref_primary_10_1093_ndt_gfs556 crossref_primary_10_1155_2015_362562 crossref_primary_10_1038_nrneph_2017_98 crossref_primary_10_1002_jcb_26726 crossref_primary_10_1155_2016_7653489 crossref_primary_10_3389_fnins_2019_01070 crossref_primary_10_1016_j_intimp_2021_107694 crossref_primary_10_3389_fbioe_2022_850303 crossref_primary_10_1002_stem_2541 crossref_primary_10_1155_2018_3891404 crossref_primary_10_3389_fcell_2020_00737 crossref_primary_10_1172_JCI81129 crossref_primary_10_1155_2016_3409169 crossref_primary_10_1515_ejnm_2015_0052 crossref_primary_10_1111_jcmm_13744 crossref_primary_10_1097_CM9_0000000000002118 crossref_primary_10_1016_j_retram_2021_103286 crossref_primary_10_3390_jcm8050675 crossref_primary_10_1371_journal_pone_0096836 crossref_primary_10_1002_sctm_16_0337 crossref_primary_10_1007_s12015_019_09932_0 crossref_primary_10_1002_pmic_201300389 crossref_primary_10_1080_17474124_2018_1505499 crossref_primary_10_1007_s12098_015_1739_x crossref_primary_10_3389_fonc_2022_1047907 crossref_primary_10_1155_2014_470983 crossref_primary_10_1007_s13346_023_01291_1 crossref_primary_10_1016_j_kint_2019_12_019 crossref_primary_10_1016_j_bbcan_2020_188426 crossref_primary_10_1517_14712598_2016_1170804 crossref_primary_10_3390_ijms20153827 crossref_primary_10_1002_btm2_10059 crossref_primary_10_1002_cbin_11313 crossref_primary_10_3390_cells9122663 crossref_primary_10_5966_sctm_2015_0367 crossref_primary_10_1186_s13287_025_04515_y crossref_primary_10_1007_s12195_013_0293_8 crossref_primary_10_4252_wjsc_v12_i7_688 crossref_primary_10_3390_jcm8071025 crossref_primary_10_3389_fimmu_2014_00518 crossref_primary_10_5966_sctm_2015_0006 crossref_primary_10_1007_s00441_020_03406_3 crossref_primary_10_1016_j_bcp_2018_02_004 crossref_primary_10_1016_j_prp_2023_154758 crossref_primary_10_3390_ijms242015494 crossref_primary_10_1097_ALN_0000000000000446 crossref_primary_10_1089_scd_2012_0631 crossref_primary_10_1038_mt_2015_44 crossref_primary_10_1152_ajprenal_00601_2018 crossref_primary_10_1517_14712598_2015_997706 crossref_primary_10_1016_j_jneuroim_2015_09_006 crossref_primary_10_3390_ijms20102589 crossref_primary_10_1002_jcp_29940 crossref_primary_10_1002_advs_202101562 crossref_primary_10_1016_j_biopha_2022_113482 crossref_primary_10_1136_thoraxjnl_2018_211576 crossref_primary_10_4103_1110_7782_155824 crossref_primary_10_1016_j_stem_2013_09_006 crossref_primary_10_1007_s12015_020_10085_8 crossref_primary_10_1186_s13287_019_1516_2 crossref_primary_10_3892_etm_2018_5993 crossref_primary_10_3390_ijms18102140 crossref_primary_10_1089_scd_2014_0091 crossref_primary_10_1155_2018_4357865 crossref_primary_10_1016_j_biocel_2017_01_016 crossref_primary_10_1089_scd_2015_0348 crossref_primary_10_18621_eurj_1527408 crossref_primary_10_1038_mtna_2013_60 crossref_primary_10_1093_carcin_bgt210 crossref_primary_10_1038_icb_2012_67 crossref_primary_10_3390_jcm2040302 crossref_primary_10_3390_ijms14035338 crossref_primary_10_1007_s12015_020_10035_4 crossref_primary_10_1007_s11033_019_04588_y crossref_primary_10_1186_s13287_015_0214_y crossref_primary_10_3389_fsurg_2022_988843 crossref_primary_10_5966_sctm_2015_0348 crossref_primary_10_1155_2016_4285938 crossref_primary_10_1007_s12033_016_9985_3 crossref_primary_10_1155_2015_602597 crossref_primary_10_3390_cells9020369 crossref_primary_10_3390_molecules29174281 crossref_primary_10_3402_jev_v4_27575 crossref_primary_10_3389_fimmu_2017_00881 crossref_primary_10_3892_ol_2017_5824 crossref_primary_10_1186_s13287_016_0398_9 crossref_primary_10_1186_s13287_020_02025_7 crossref_primary_10_1186_s12917_019_1789_9 crossref_primary_10_3727_096368915X687543 crossref_primary_10_1016_j_biocel_2019_05_010 crossref_primary_10_1186_s40824_016_0068_0 crossref_primary_10_1186_s12951_024_02633_y crossref_primary_10_1016_j_xphs_2022_08_016 crossref_primary_10_1186_s12967_024_05575_z crossref_primary_10_1016_j_lfs_2021_120156 crossref_primary_10_1097_QAD_0b013e32836010f7 crossref_primary_10_1038_nrd3978 crossref_primary_10_3390_diagnostics10120999 crossref_primary_10_1016_j_cca_2025_120506 crossref_primary_10_14814_phy2_14172 crossref_primary_10_3389_fimmu_2014_00525 crossref_primary_10_3389_fphys_2015_00123 crossref_primary_10_1016_j_intimp_2022_109426 crossref_primary_10_1155_2022_7842296 crossref_primary_10_3389_fcvm_2018_00086 crossref_primary_10_1155_2015_659890 crossref_primary_10_1007_s12020_012_9839_0 crossref_primary_10_1016_j_mri_2020_02_001 crossref_primary_10_1155_2016_5029619 crossref_primary_10_1097_TP_0000000000002123 crossref_primary_10_1111_trf_14838 crossref_primary_10_1016_j_transci_2021_103237 crossref_primary_10_1016_j_bbrc_2013_01_015 crossref_primary_10_1096_fj_202400359R crossref_primary_10_3109_15368378_2016_1149860 crossref_primary_10_3389_fphar_2021_630419 crossref_primary_10_1016_j_biopha_2023_114961 crossref_primary_10_1002_cyto_a_23242 crossref_primary_10_1016_j_biopha_2021_111401 crossref_primary_10_4252_wjsc_v13_i7_914 crossref_primary_10_3389_fmed_2018_00179 crossref_primary_10_1186_s13287_018_0850_0 crossref_primary_10_1016_j_placenta_2021_12_005 crossref_primary_10_1053_j_gastro_2017_09_049 crossref_primary_10_1007_s00210_024_03357_4 crossref_primary_10_1089_scd_2020_0079 crossref_primary_10_1155_2015_379093 crossref_primary_10_1177_0394632017722332 crossref_primary_10_1007_s12195_015_0402_y crossref_primary_10_1002_jev2_12152 crossref_primary_10_1007_s00467_017_3816_z crossref_primary_10_1161_STROKEAHA_116_015204 crossref_primary_10_3390_cells10102617 crossref_primary_10_3389_fonc_2016_00125 crossref_primary_10_3390_cells10071729 crossref_primary_10_3389_fncel_2017_00080 crossref_primary_10_3389_fcell_2022_928510 crossref_primary_10_1080_21691401_2018_1489821 crossref_primary_10_1155_2015_675103 crossref_primary_10_1002_iid3_1325 crossref_primary_10_1530_REP_17_0032 crossref_primary_10_1186_s12964_015_0124_8 crossref_primary_10_1155_2015_309169 crossref_primary_10_3389_fcell_2015_00065 crossref_primary_10_1371_journal_pone_0102521 crossref_primary_10_1007_s12015_013_9461_4 crossref_primary_10_1097_MOT_0b013e32835f0771 crossref_primary_10_1016_j_lfs_2020_118932 crossref_primary_10_1016_j_tice_2017_01_003 crossref_primary_10_1002_bit_27729 crossref_primary_10_1371_journal_pone_0073304 crossref_primary_10_1016_j_freeradbiomed_2022_02_024 crossref_primary_10_1016_j_jff_2020_103822 crossref_primary_10_1002_wnan_1395 crossref_primary_10_1186_s13287_016_0316_1 crossref_primary_10_1186_s13287_019_1534_0 crossref_primary_10_1007_s40139_016_0115_5 crossref_primary_10_3389_fchem_2014_00022 crossref_primary_10_1096_fj_201700524R crossref_primary_10_1016_j_jcyt_2017_11_002 crossref_primary_10_15171_apb_2018_034 crossref_primary_10_3390_toxins9110376 crossref_primary_10_1155_2019_1523140 crossref_primary_10_1186_s40364_024_00639_0 crossref_primary_10_4103_0366_6999_176088 crossref_primary_10_3389_fcvm_2021_750510 crossref_primary_10_1016_j_ejphar_2016_07_037 crossref_primary_10_3390_ijms20020236 crossref_primary_10_1182_blood_2013_04_495119 crossref_primary_10_3389_fnins_2019_00163 crossref_primary_10_1093_stcltm_szac075 crossref_primary_10_3390_polym8090320 crossref_primary_10_1155_2015_632902 crossref_primary_10_1007_s12668_016_0348_0 crossref_primary_10_3390_ijms15021719 crossref_primary_10_1155_2021_8483668 crossref_primary_10_1155_2016_1859567 crossref_primary_10_1186_s12917_019_2023_5 crossref_primary_10_1016_j_biochi_2013_04_017 crossref_primary_10_12677_OJNS_2021_91014 crossref_primary_10_3390_genes14071367 crossref_primary_10_1038_s41598_017_18288_9 crossref_primary_10_4252_wjsc_v10_i5_43 crossref_primary_10_1186_s13287_016_0317_0 crossref_primary_10_3389_fimmu_2020_591065 crossref_primary_10_1038_srep30263 crossref_primary_10_1155_2016_9313425 crossref_primary_10_1155_2016_9521629 crossref_primary_10_1016_j_jcyt_2016_05_004 crossref_primary_10_1155_2018_7053623 crossref_primary_10_1186_s13287_019_1512_6 crossref_primary_10_3389_fimmu_2019_02663 crossref_primary_10_1016_j_arcmed_2017_03_007 crossref_primary_10_1371_journal_pone_0059020 crossref_primary_10_1590_0001_3765201520140619 crossref_primary_10_1007_s10753_021_01460_9 crossref_primary_10_1080_20013078_2017_1265291 crossref_primary_10_1155_2016_9756973 crossref_primary_10_1016_j_jconrel_2017_07_023 crossref_primary_10_1111_ans_12864 crossref_primary_10_1089_scd_2015_0278 crossref_primary_10_1016_j_cyto_2018_10_019 crossref_primary_10_3390_cosmetics12050191 crossref_primary_10_1371_journal_pone_0067474 crossref_primary_10_1016_j_cca_2019_10_022 crossref_primary_10_3390_bioengineering5020048 crossref_primary_10_1371_journal_pone_0178011 crossref_primary_10_2217_rme_2021_0069 crossref_primary_10_3390_cells13040336 crossref_primary_10_1016_j_jcyt_2019_02_010 crossref_primary_10_1089_rej_2015_1723 crossref_primary_10_1016_j_jconrel_2016_01_003 crossref_primary_10_1186_s13287_021_02296_8 crossref_primary_10_1002_sctm_20_0161 crossref_primary_10_1038_pr_2013_176 crossref_primary_10_1007_s11626_014_9828_0 crossref_primary_10_1111_nep_12005 crossref_primary_10_1080_03602559_2016_1163586 crossref_primary_10_1016_j_ygeno_2016_02_006 crossref_primary_10_1155_2017_1758139 crossref_primary_10_3389_fncel_2016_00109 crossref_primary_10_1097_HP_0000000000001264 crossref_primary_10_3390_biology11070980 crossref_primary_10_1155_2016_2152435 crossref_primary_10_3390_polym14061218 crossref_primary_10_5966_sctm_2016_0111 crossref_primary_10_1080_08923973_2021_1955920 crossref_primary_10_1016_j_jcyt_2015_10_008 crossref_primary_10_1155_2019_3673857 crossref_primary_10_3390_ijms22031375 crossref_primary_10_3390_jcm8010023 crossref_primary_10_1155_2015_985814 crossref_primary_10_1113_JP272182 crossref_primary_10_3390_polym8100339 crossref_primary_10_1089_cell_2020_0026 crossref_primary_10_3389_fimmu_2018_02538 crossref_primary_10_1097_HCO_0000000000000138 crossref_primary_10_1016_j_biochi_2013_06_020 crossref_primary_10_1186_s13287_016_0429_6 crossref_primary_10_1002_iid3_70189 crossref_primary_10_1155_2020_7593402 crossref_primary_10_1038_leu_2016_107 crossref_primary_10_1089_scd_2016_0349 crossref_primary_10_1155_2017_9717353 crossref_primary_10_1186_s13287_019_1535_z crossref_primary_10_1002_jcp_29601 crossref_primary_10_1038_s41598_018_19211_6 crossref_primary_10_3390_ijms22084194 crossref_primary_10_1016_j_actbio_2017_07_001 crossref_primary_10_1186_1479_5876_10_172 crossref_primary_10_1371_journal_pone_0242276 crossref_primary_10_1016_j_cryobiol_2014_01_014 crossref_primary_10_1016_j_intimp_2024_111845 crossref_primary_10_1007_s40610_016_0034_6 crossref_primary_10_1002_jat_3362 crossref_primary_10_1007_s10561_023_10095_z crossref_primary_10_1371_journal_pone_0068451 crossref_primary_10_1038_s41598_019_39650_z crossref_primary_10_1016_j_critrevonc_2024_104341 crossref_primary_10_1186_s13287_019_1227_8 crossref_primary_10_1007_s12015_020_09994_5 crossref_primary_10_1016_j_transci_2016_04_013 crossref_primary_10_3390_cells7080110 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/ndt/gfs168 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1460-2385 |
| ExternalDocumentID | 22851627 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- -E4 .2P .55 .GJ .I3 .XZ .ZR 0R~ 123 18M 1TH 29M 2WC 4.4 482 48X 53G 5RE 5VS 5WA 5WD 70D AABZA AACZT AAHTB AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT ABDFA ABEJV ABEUO ABGNP ABIXL ABKDP ABNGD ABNHQ ABNKS ABOCM ABPEJ ABPQP ABPTD ABQLI ABQNK ABQTQ ABSMQ ABVGC ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEHUL AEJOX AEKPW AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFQV AFFZL AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIAGR AIJHB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APJGH APWMN AQDSO AQKUS ASPBG ATGXG ATTQO AVNTJ AVWKF AXUDD AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM BZKNY C45 CAG CDBKE CGR COF CS3 CUY CVF CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS ECM EE~ EIF EIHJH EJD ENERS F5P F9B FECEO FEDTE FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z M49 MBLQV MHKGH ML0 N9A NGC NOMLY NOYVH NPM NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P P6G PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SDH TCURE TEORI TJX TMA TR2 W8F WH7 WOQ X7H X7M YAYTL YKOAZ YXANX ZGI ZKX ZXP ~91 7X8 AJBYB |
| ID | FETCH-LOGICAL-c419t-4a8109f67ef6c338515fbb4960a1fd80e6ac9bd60b26132a6ecea23c98add2132 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 333 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307173000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1460-2385 |
| IngestDate | Sat Sep 27 23:47:07 EDT 2025 Thu Apr 03 06:56:54 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-4a8109f67ef6c338515fbb4960a1fd80e6ac9bd60b26132a6ecea23c98add2132 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://academic.oup.com/ndt/article-pdf/27/8/3037/7639498/gfs168.pdf |
| PMID | 22851627 |
| PQID | 1030871888 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1030871888 pubmed_primary_22851627 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-08-01 |
| PublicationDateYYYYMMDD | 2012-08-01 |
| PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Nephrology, dialysis, transplantation |
| PublicationTitleAlternate | Nephrol Dial Transplant |
| PublicationYear | 2012 |
| SSID | ssj0009277 |
| Score | 2.5383065 |
| SecondaryResourceType | review_article |
| Snippet | Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 3037 |
| SubjectTerms | Acute Kidney Injury - therapy Animals Cell-Derived Microparticles - physiology Exosomes - physiology Humans Mesenchymal Stem Cell Transplantation Mesenchymal Stromal Cells - physiology Mesenchymal Stromal Cells - ultrastructure Paracrine Communication Regeneration - physiology Renal Insufficiency, Chronic - therapy |
| Title | Therapeutic potential of mesenchymal stem cell-derived microvesicles |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22851627 https://www.proquest.com/docview/1030871888 |
| Volume | 27 |
| WOSCitedRecordID | wos000307173000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Uinjx_agvInhdmt2kye5JRC1eWnqo0FvYp3po0ppY8N87m6T0JAheAoEsO5mdndd-OwNwx9CrUBx3mlO8T2I0GUSomJFYonFxzKDFNXWziXQ04tOpGLcJt7KFVa50Yq2oTaF9jrxH69p1FAO2-_mC-K5R_nS1baGxCZ0IJ_WQrnS6rhYuWN15EZVBSNA09VflSUXUy03Ve3MlTfjvrmVtYgb7_yXuAPZa5zJ4aKThEDZsfgQ7w_b4_BieJuvbVsG8qDxSCL8vXDDzl5D0-_cMX31p58An9IlB8VxaE8w8am9pyxpCdwKvg-fJ4wtp2ygQHVNRIds5_rJLUusSjREpejBOqRhDF0md4aFNpBbKJKHCaCpiMrHaShZpwVH34VqyU9jKi9yeQyBMzCQ13PUli1MMlqiVIpXWMJVKFdIu3K74k6GYelJlbouvMltzqAtnDZOzeVNPI2MMaUpYevGH0Zewiy4LayB4V9BxuEntNWzrZfVRft7U64_P0Xj4A5xyu50 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Therapeutic+potential+of+mesenchymal+stem+cell-derived+microvesicles&rft.jtitle=Nephrology%2C+dialysis%2C+transplantation&rft.au=Biancone%2C+Luigi&rft.au=Bruno%2C+Stefania&rft.au=Deregibus%2C+Maria+Chiara&rft.au=Tetta%2C+Ciro&rft.date=2012-08-01&rft.eissn=1460-2385&rft.volume=27&rft.issue=8&rft.spage=3037&rft_id=info:doi/10.1093%2Fndt%2Fgfs168&rft_id=info%3Apmid%2F22851627&rft_id=info%3Apmid%2F22851627&rft.externalDocID=22851627 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2385&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2385&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2385&client=summon |