Therapeutic potential of mesenchymal stem cell-derived microvesicles

Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cel...

Full description

Saved in:
Bibliographic Details
Published in:Nephrology, dialysis, transplantation Vol. 27; no. 8; p. 3037
Main Authors: Biancone, Luigi, Bruno, Stefania, Deregibus, Maria Chiara, Tetta, Ciro, Camussi, Giovanni
Format: Journal Article
Language:English
Published: England 01.08.2012
Subjects:
ISSN:1460-2385, 1460-2385
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy.
AbstractList Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy.Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy.
Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy.
Author Biancone, Luigi
Deregibus, Maria Chiara
Tetta, Ciro
Bruno, Stefania
Camussi, Giovanni
Author_xml – sequence: 1
  givenname: Luigi
  surname: Biancone
  fullname: Biancone, Luigi
  organization: Department of Internal Medicine and Molecular Biotechnology Center, Torino, Italy
– sequence: 2
  givenname: Stefania
  surname: Bruno
  fullname: Bruno, Stefania
– sequence: 3
  givenname: Maria Chiara
  surname: Deregibus
  fullname: Deregibus, Maria Chiara
– sequence: 4
  givenname: Ciro
  surname: Tetta
  fullname: Tetta, Ciro
– sequence: 5
  givenname: Giovanni
  surname: Camussi
  fullname: Camussi, Giovanni
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22851627$$D View this record in MEDLINE/PubMed
BookMark eNpNj8tOwzAQRS1URB-w4QNQlmxC_UgcZ4nKU6rEpqwjxx5To9gJtlOpf08QRWJ1Z0ZHo3OXaOZ7DwhdE3xHcM3WXqf1h4mEizO0IAXHOWWinP2b52gZ4yfGuKZVdYHmlIqScFot0MNuD0EOMCarsqFP4JOVXdabzEEEr_ZHN60xgcsUdF2uIdgD6MxZFfoDRKs6iJfo3MguwtUpV-j96XG3ecm3b8-vm_ttrgpSp7yQYvI1vALDFZu0SGnatqg5lsRogYFLVbea45ZywqjkoEBSpmohtabTZYVuf_8Oof8aIabG2fijJT30Y2wIZlhURAgxoTcndGwd6GYI1slwbP6a02--EV0S
CitedBy_id crossref_primary_10_1186_s13287_020_01887_1
crossref_primary_10_1002_stem_2551
crossref_primary_10_2174_1381612826666200420144805
crossref_primary_10_1371_journal_pone_0220756
crossref_primary_10_3389_fendo_2018_00524
crossref_primary_10_1007_s12038_020_00068_9
crossref_primary_10_1155_2023_3602962
crossref_primary_10_1111_prd_12561
crossref_primary_10_1016_j_jpedsurg_2025_162670
crossref_primary_10_1016_j_lfs_2020_117447
crossref_primary_10_1186_s12931_017_0704_9
crossref_primary_10_3390_biom12050663
crossref_primary_10_3892_mmr_2019_10286
crossref_primary_10_1016_j_canlet_2025_218034
crossref_primary_10_1155_2016_8102478
crossref_primary_10_1093_ndt_gfs556
crossref_primary_10_1155_2015_362562
crossref_primary_10_1038_nrneph_2017_98
crossref_primary_10_1002_jcb_26726
crossref_primary_10_1155_2016_7653489
crossref_primary_10_3389_fnins_2019_01070
crossref_primary_10_1016_j_intimp_2021_107694
crossref_primary_10_3389_fbioe_2022_850303
crossref_primary_10_1002_stem_2541
crossref_primary_10_1155_2018_3891404
crossref_primary_10_3389_fcell_2020_00737
crossref_primary_10_1172_JCI81129
crossref_primary_10_1155_2016_3409169
crossref_primary_10_1515_ejnm_2015_0052
crossref_primary_10_1111_jcmm_13744
crossref_primary_10_1097_CM9_0000000000002118
crossref_primary_10_1016_j_retram_2021_103286
crossref_primary_10_3390_jcm8050675
crossref_primary_10_1371_journal_pone_0096836
crossref_primary_10_1002_sctm_16_0337
crossref_primary_10_1007_s12015_019_09932_0
crossref_primary_10_1002_pmic_201300389
crossref_primary_10_1080_17474124_2018_1505499
crossref_primary_10_1007_s12098_015_1739_x
crossref_primary_10_3389_fonc_2022_1047907
crossref_primary_10_1155_2014_470983
crossref_primary_10_1007_s13346_023_01291_1
crossref_primary_10_1016_j_kint_2019_12_019
crossref_primary_10_1016_j_bbcan_2020_188426
crossref_primary_10_1517_14712598_2016_1170804
crossref_primary_10_3390_ijms20153827
crossref_primary_10_1002_btm2_10059
crossref_primary_10_1002_cbin_11313
crossref_primary_10_3390_cells9122663
crossref_primary_10_5966_sctm_2015_0367
crossref_primary_10_1186_s13287_025_04515_y
crossref_primary_10_1007_s12195_013_0293_8
crossref_primary_10_4252_wjsc_v12_i7_688
crossref_primary_10_3390_jcm8071025
crossref_primary_10_3389_fimmu_2014_00518
crossref_primary_10_5966_sctm_2015_0006
crossref_primary_10_1007_s00441_020_03406_3
crossref_primary_10_1016_j_bcp_2018_02_004
crossref_primary_10_1016_j_prp_2023_154758
crossref_primary_10_3390_ijms242015494
crossref_primary_10_1097_ALN_0000000000000446
crossref_primary_10_1089_scd_2012_0631
crossref_primary_10_1038_mt_2015_44
crossref_primary_10_1152_ajprenal_00601_2018
crossref_primary_10_1517_14712598_2015_997706
crossref_primary_10_1016_j_jneuroim_2015_09_006
crossref_primary_10_3390_ijms20102589
crossref_primary_10_1002_jcp_29940
crossref_primary_10_1002_advs_202101562
crossref_primary_10_1016_j_biopha_2022_113482
crossref_primary_10_1136_thoraxjnl_2018_211576
crossref_primary_10_4103_1110_7782_155824
crossref_primary_10_1016_j_stem_2013_09_006
crossref_primary_10_1007_s12015_020_10085_8
crossref_primary_10_1186_s13287_019_1516_2
crossref_primary_10_3892_etm_2018_5993
crossref_primary_10_3390_ijms18102140
crossref_primary_10_1089_scd_2014_0091
crossref_primary_10_1155_2018_4357865
crossref_primary_10_1016_j_biocel_2017_01_016
crossref_primary_10_1089_scd_2015_0348
crossref_primary_10_18621_eurj_1527408
crossref_primary_10_1038_mtna_2013_60
crossref_primary_10_1093_carcin_bgt210
crossref_primary_10_1038_icb_2012_67
crossref_primary_10_3390_jcm2040302
crossref_primary_10_3390_ijms14035338
crossref_primary_10_1007_s12015_020_10035_4
crossref_primary_10_1007_s11033_019_04588_y
crossref_primary_10_1186_s13287_015_0214_y
crossref_primary_10_3389_fsurg_2022_988843
crossref_primary_10_5966_sctm_2015_0348
crossref_primary_10_1155_2016_4285938
crossref_primary_10_1007_s12033_016_9985_3
crossref_primary_10_1155_2015_602597
crossref_primary_10_3390_cells9020369
crossref_primary_10_3390_molecules29174281
crossref_primary_10_3402_jev_v4_27575
crossref_primary_10_3389_fimmu_2017_00881
crossref_primary_10_3892_ol_2017_5824
crossref_primary_10_1186_s13287_016_0398_9
crossref_primary_10_1186_s13287_020_02025_7
crossref_primary_10_1186_s12917_019_1789_9
crossref_primary_10_3727_096368915X687543
crossref_primary_10_1016_j_biocel_2019_05_010
crossref_primary_10_1186_s40824_016_0068_0
crossref_primary_10_1186_s12951_024_02633_y
crossref_primary_10_1016_j_xphs_2022_08_016
crossref_primary_10_1186_s12967_024_05575_z
crossref_primary_10_1016_j_lfs_2021_120156
crossref_primary_10_1097_QAD_0b013e32836010f7
crossref_primary_10_1038_nrd3978
crossref_primary_10_3390_diagnostics10120999
crossref_primary_10_1016_j_cca_2025_120506
crossref_primary_10_14814_phy2_14172
crossref_primary_10_3389_fimmu_2014_00525
crossref_primary_10_3389_fphys_2015_00123
crossref_primary_10_1016_j_intimp_2022_109426
crossref_primary_10_1155_2022_7842296
crossref_primary_10_3389_fcvm_2018_00086
crossref_primary_10_1155_2015_659890
crossref_primary_10_1007_s12020_012_9839_0
crossref_primary_10_1016_j_mri_2020_02_001
crossref_primary_10_1155_2016_5029619
crossref_primary_10_1097_TP_0000000000002123
crossref_primary_10_1111_trf_14838
crossref_primary_10_1016_j_transci_2021_103237
crossref_primary_10_1016_j_bbrc_2013_01_015
crossref_primary_10_1096_fj_202400359R
crossref_primary_10_3109_15368378_2016_1149860
crossref_primary_10_3389_fphar_2021_630419
crossref_primary_10_1016_j_biopha_2023_114961
crossref_primary_10_1002_cyto_a_23242
crossref_primary_10_1016_j_biopha_2021_111401
crossref_primary_10_4252_wjsc_v13_i7_914
crossref_primary_10_3389_fmed_2018_00179
crossref_primary_10_1186_s13287_018_0850_0
crossref_primary_10_1016_j_placenta_2021_12_005
crossref_primary_10_1053_j_gastro_2017_09_049
crossref_primary_10_1007_s00210_024_03357_4
crossref_primary_10_1089_scd_2020_0079
crossref_primary_10_1155_2015_379093
crossref_primary_10_1177_0394632017722332
crossref_primary_10_1007_s12195_015_0402_y
crossref_primary_10_1002_jev2_12152
crossref_primary_10_1007_s00467_017_3816_z
crossref_primary_10_1161_STROKEAHA_116_015204
crossref_primary_10_3390_cells10102617
crossref_primary_10_3389_fonc_2016_00125
crossref_primary_10_3390_cells10071729
crossref_primary_10_3389_fncel_2017_00080
crossref_primary_10_3389_fcell_2022_928510
crossref_primary_10_1080_21691401_2018_1489821
crossref_primary_10_1155_2015_675103
crossref_primary_10_1002_iid3_1325
crossref_primary_10_1530_REP_17_0032
crossref_primary_10_1186_s12964_015_0124_8
crossref_primary_10_1155_2015_309169
crossref_primary_10_3389_fcell_2015_00065
crossref_primary_10_1371_journal_pone_0102521
crossref_primary_10_1007_s12015_013_9461_4
crossref_primary_10_1097_MOT_0b013e32835f0771
crossref_primary_10_1016_j_lfs_2020_118932
crossref_primary_10_1016_j_tice_2017_01_003
crossref_primary_10_1002_bit_27729
crossref_primary_10_1371_journal_pone_0073304
crossref_primary_10_1016_j_freeradbiomed_2022_02_024
crossref_primary_10_1016_j_jff_2020_103822
crossref_primary_10_1002_wnan_1395
crossref_primary_10_1186_s13287_016_0316_1
crossref_primary_10_1186_s13287_019_1534_0
crossref_primary_10_1007_s40139_016_0115_5
crossref_primary_10_3389_fchem_2014_00022
crossref_primary_10_1096_fj_201700524R
crossref_primary_10_1016_j_jcyt_2017_11_002
crossref_primary_10_15171_apb_2018_034
crossref_primary_10_3390_toxins9110376
crossref_primary_10_1155_2019_1523140
crossref_primary_10_1186_s40364_024_00639_0
crossref_primary_10_4103_0366_6999_176088
crossref_primary_10_3389_fcvm_2021_750510
crossref_primary_10_1016_j_ejphar_2016_07_037
crossref_primary_10_3390_ijms20020236
crossref_primary_10_1182_blood_2013_04_495119
crossref_primary_10_3389_fnins_2019_00163
crossref_primary_10_1093_stcltm_szac075
crossref_primary_10_3390_polym8090320
crossref_primary_10_1155_2015_632902
crossref_primary_10_1007_s12668_016_0348_0
crossref_primary_10_3390_ijms15021719
crossref_primary_10_1155_2021_8483668
crossref_primary_10_1155_2016_1859567
crossref_primary_10_1186_s12917_019_2023_5
crossref_primary_10_1016_j_biochi_2013_04_017
crossref_primary_10_12677_OJNS_2021_91014
crossref_primary_10_3390_genes14071367
crossref_primary_10_1038_s41598_017_18288_9
crossref_primary_10_4252_wjsc_v10_i5_43
crossref_primary_10_1186_s13287_016_0317_0
crossref_primary_10_3389_fimmu_2020_591065
crossref_primary_10_1038_srep30263
crossref_primary_10_1155_2016_9313425
crossref_primary_10_1155_2016_9521629
crossref_primary_10_1016_j_jcyt_2016_05_004
crossref_primary_10_1155_2018_7053623
crossref_primary_10_1186_s13287_019_1512_6
crossref_primary_10_3389_fimmu_2019_02663
crossref_primary_10_1016_j_arcmed_2017_03_007
crossref_primary_10_1371_journal_pone_0059020
crossref_primary_10_1590_0001_3765201520140619
crossref_primary_10_1007_s10753_021_01460_9
crossref_primary_10_1080_20013078_2017_1265291
crossref_primary_10_1155_2016_9756973
crossref_primary_10_1016_j_jconrel_2017_07_023
crossref_primary_10_1111_ans_12864
crossref_primary_10_1089_scd_2015_0278
crossref_primary_10_1016_j_cyto_2018_10_019
crossref_primary_10_3390_cosmetics12050191
crossref_primary_10_1371_journal_pone_0067474
crossref_primary_10_1016_j_cca_2019_10_022
crossref_primary_10_3390_bioengineering5020048
crossref_primary_10_1371_journal_pone_0178011
crossref_primary_10_2217_rme_2021_0069
crossref_primary_10_3390_cells13040336
crossref_primary_10_1016_j_jcyt_2019_02_010
crossref_primary_10_1089_rej_2015_1723
crossref_primary_10_1016_j_jconrel_2016_01_003
crossref_primary_10_1186_s13287_021_02296_8
crossref_primary_10_1002_sctm_20_0161
crossref_primary_10_1038_pr_2013_176
crossref_primary_10_1007_s11626_014_9828_0
crossref_primary_10_1111_nep_12005
crossref_primary_10_1080_03602559_2016_1163586
crossref_primary_10_1016_j_ygeno_2016_02_006
crossref_primary_10_1155_2017_1758139
crossref_primary_10_3389_fncel_2016_00109
crossref_primary_10_1097_HP_0000000000001264
crossref_primary_10_3390_biology11070980
crossref_primary_10_1155_2016_2152435
crossref_primary_10_3390_polym14061218
crossref_primary_10_5966_sctm_2016_0111
crossref_primary_10_1080_08923973_2021_1955920
crossref_primary_10_1016_j_jcyt_2015_10_008
crossref_primary_10_1155_2019_3673857
crossref_primary_10_3390_ijms22031375
crossref_primary_10_3390_jcm8010023
crossref_primary_10_1155_2015_985814
crossref_primary_10_1113_JP272182
crossref_primary_10_3390_polym8100339
crossref_primary_10_1089_cell_2020_0026
crossref_primary_10_3389_fimmu_2018_02538
crossref_primary_10_1097_HCO_0000000000000138
crossref_primary_10_1016_j_biochi_2013_06_020
crossref_primary_10_1186_s13287_016_0429_6
crossref_primary_10_1002_iid3_70189
crossref_primary_10_1155_2020_7593402
crossref_primary_10_1038_leu_2016_107
crossref_primary_10_1089_scd_2016_0349
crossref_primary_10_1155_2017_9717353
crossref_primary_10_1186_s13287_019_1535_z
crossref_primary_10_1002_jcp_29601
crossref_primary_10_1038_s41598_018_19211_6
crossref_primary_10_3390_ijms22084194
crossref_primary_10_1016_j_actbio_2017_07_001
crossref_primary_10_1186_1479_5876_10_172
crossref_primary_10_1371_journal_pone_0242276
crossref_primary_10_1016_j_cryobiol_2014_01_014
crossref_primary_10_1016_j_intimp_2024_111845
crossref_primary_10_1007_s40610_016_0034_6
crossref_primary_10_1002_jat_3362
crossref_primary_10_1007_s10561_023_10095_z
crossref_primary_10_1371_journal_pone_0068451
crossref_primary_10_1038_s41598_019_39650_z
crossref_primary_10_1016_j_critrevonc_2024_104341
crossref_primary_10_1186_s13287_019_1227_8
crossref_primary_10_1007_s12015_020_09994_5
crossref_primary_10_1016_j_transci_2016_04_013
crossref_primary_10_3390_cells7080110
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/ndt/gfs168
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2385
ExternalDocumentID 22851627
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-E4
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
123
18M
1TH
29M
2WC
4.4
482
48X
53G
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAHTB
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABKDP
ABNGD
ABNHQ
ABNKS
ABOCM
ABPEJ
ABPQP
ABPTD
ABQLI
ABQNK
ABQTQ
ABSMQ
ABVGC
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEHUL
AEJOX
AEKPW
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFQV
AFFZL
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APJGH
APWMN
AQDSO
AQKUS
ASPBG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BZKNY
C45
CAG
CDBKE
CGR
COF
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECM
EE~
EIF
EIHJH
EJD
ENERS
F5P
F9B
FECEO
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
MBLQV
MHKGH
ML0
N9A
NGC
NOMLY
NOYVH
NPM
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SDH
TCURE
TEORI
TJX
TMA
TR2
W8F
WH7
WOQ
X7H
X7M
YAYTL
YKOAZ
YXANX
ZGI
ZKX
ZXP
~91
7X8
AJBYB
ID FETCH-LOGICAL-c419t-4a8109f67ef6c338515fbb4960a1fd80e6ac9bd60b26132a6ecea23c98add2132
IEDL.DBID 7X8
ISICitedReferencesCount 333
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307173000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-2385
IngestDate Sat Sep 27 23:47:07 EDT 2025
Thu Apr 03 06:56:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-4a8109f67ef6c338515fbb4960a1fd80e6ac9bd60b26132a6ecea23c98add2132
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://academic.oup.com/ndt/article-pdf/27/8/3037/7639498/gfs168.pdf
PMID 22851627
PQID 1030871888
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1030871888
pubmed_primary_22851627
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nephrology, dialysis, transplantation
PublicationTitleAlternate Nephrol Dial Transplant
PublicationYear 2012
SSID ssj0009277
Score 2.5383065
SecondaryResourceType review_article
Snippet Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3037
SubjectTerms Acute Kidney Injury - therapy
Animals
Cell-Derived Microparticles - physiology
Exosomes - physiology
Humans
Mesenchymal Stem Cell Transplantation
Mesenchymal Stromal Cells - physiology
Mesenchymal Stromal Cells - ultrastructure
Paracrine Communication
Regeneration - physiology
Renal Insufficiency, Chronic - therapy
Title Therapeutic potential of mesenchymal stem cell-derived microvesicles
URI https://www.ncbi.nlm.nih.gov/pubmed/22851627
https://www.proquest.com/docview/1030871888
Volume 27
WOSCitedRecordID wos000307173000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Uinjx_agvInhdmt2kye5JRC1eWnqo0FvYp3po0ppY8N87m6T0JAheAoEsO5mdndd-OwNwx9CrUBx3mlO8T2I0GUSomJFYonFxzKDFNXWziXQ04tOpGLcJt7KFVa50Yq2oTaF9jrxH69p1FAO2-_mC-K5R_nS1baGxCZ0IJ_WQrnS6rhYuWN15EZVBSNA09VflSUXUy03Ve3MlTfjvrmVtYgb7_yXuAPZa5zJ4aKThEDZsfgQ7w_b4_BieJuvbVsG8qDxSCL8vXDDzl5D0-_cMX31p58An9IlB8VxaE8w8am9pyxpCdwKvg-fJ4wtp2ygQHVNRIds5_rJLUusSjREpejBOqRhDF0md4aFNpBbKJKHCaCpiMrHaShZpwVH34VqyU9jKi9yeQyBMzCQ13PUli1MMlqiVIpXWMJVKFdIu3K74k6GYelJlbouvMltzqAtnDZOzeVNPI2MMaUpYevGH0Zewiy4LayB4V9BxuEntNWzrZfVRft7U64_P0Xj4A5xyu50
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Therapeutic+potential+of+mesenchymal+stem+cell-derived+microvesicles&rft.jtitle=Nephrology%2C+dialysis%2C+transplantation&rft.au=Biancone%2C+Luigi&rft.au=Bruno%2C+Stefania&rft.au=Deregibus%2C+Maria+Chiara&rft.au=Tetta%2C+Ciro&rft.date=2012-08-01&rft.eissn=1460-2385&rft.volume=27&rft.issue=8&rft.spage=3037&rft_id=info:doi/10.1093%2Fndt%2Fgfs168&rft_id=info%3Apmid%2F22851627&rft_id=info%3Apmid%2F22851627&rft.externalDocID=22851627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2385&client=summon