Crystal Structure of the Bacteriophage Qβ Coat Protein in Complex with the RNA Operator of the Replicase Gene

The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of molecular biology Ročník 426; číslo 5; s. 1039 - 1049
Hlavní autori: Rumnieks, Janis, Tars, Kaspars
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 06.03.2014
Predmet:
ISSN:0022-2836, 1089-8638, 1089-8638
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein–RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA. [Display omitted] •The 2.4-Å structure of Qβ coat protein bound to the RNA operator of the replicase gene.•A novel mechanism for accommodating a bulged nucleotide in the operator stem.•Only one RNA base makes sequence-specific contacts with the protein.•The structure suggests a recognition mechanism that relies on RNA backbone orientation.
AbstractList The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein–RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA.
The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein-RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA.The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein-RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA.
The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein–RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA. [Display omitted] •The 2.4-Å structure of Qβ coat protein bound to the RNA operator of the replicase gene.•A novel mechanism for accommodating a bulged nucleotide in the operator stem.•Only one RNA base makes sequence-specific contacts with the protein.•The structure suggests a recognition mechanism that relies on RNA backbone orientation.
The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein-RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Q beta bound to its cognate translational operator. The RNA binding mode of Q beta coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Q beta coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between beta strands E and F of Q beta coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Q beta coat protein recognizes and discriminates in favor of its cognate RNA.
Author Tars, Kaspars
Rumnieks, Janis
Author_xml – sequence: 1
  givenname: Janis
  surname: Rumnieks
  fullname: Rumnieks, Janis
– sequence: 2
  givenname: Kaspars
  surname: Tars
  fullname: Tars, Kaspars
  email: kaspars@biomed.lu.lv
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24035813$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAURS1URKcDH8AGeckm4dmOE0esSlQKUkWhwNpynBfGo0wcbAfob_VD-k2kTGfDoiA96W3OuYt7T8jR6Eck5DmDnAErX23z7a7NOTCRg8qBy0dkxUDVmSqFOiIrAM4zrkR5TE5i3AKAFIV6Qo55AUIqJlZkbMJ1TGagn1OYbZoDUt_TtEH6xtiEwflpY74h_XR7QxtvEv0YfEI30uUav5sG_EV_urT5o1x9OKWXEwaTfDjEXOE0OGsi0nMc8Sl53Jsh4rP7vyZf3559ad5lF5fn75vTi8wWrE4Z68GoAlrose3qjnWVFFZKWxXc9AZqoWxrF6YXgjHRMtuXouhqKevC9CUzYk1e7nOn4L_PGJPeuWhxGMyIfo6aL11wKJSs_okyyUGUsq7Ff6AAFYBYhDV5cY_O7Q47PQW3M-FaH5pfgGoP2OBjDNhr65JJzo8pGDdoBvpuY73Vy8b6bmMNSi8bLyb7yzyEP-S83ju4lP7DYdDROhwtdi6gTbrz7gH7N7wAvcg
CitedBy_id crossref_primary_10_1016_j_jbc_2023_105460
crossref_primary_10_1038_s41467_025_55957_0
crossref_primary_10_1016_j_jmb_2016_08_025
crossref_primary_10_1186_s12951_019_0497_8
crossref_primary_10_1128_AEM_01674_20
crossref_primary_10_1073_pnas_1609482113
crossref_primary_10_1016_j_str_2015_06_028
crossref_primary_10_1016_j_pbiomolbio_2020_07_011
crossref_primary_10_1159_000449503
crossref_primary_10_3390_pathogens8020080
crossref_primary_10_1073_pnas_1707102114
crossref_primary_10_3390_v12060638
crossref_primary_10_1016_j_ijbiomac_2025_144641
crossref_primary_10_1128_AEM_02319_20
crossref_primary_10_3389_fchem_2017_00012
Cites_doi 10.1093/nar/gkf552
10.1107/S0907444909042073
10.1107/S0907444995016477
10.1038/345036a0
10.1021/bi00280a002
10.1038/2946
10.1107/S0907444994003112
10.1016/S0003-9861(02)00334-X
10.1093/nar/25.14.2808
10.1016/0022-2836(81)90411-3
10.1016/j.jmb.2009.06.047
10.1038/248204a0
10.1038/371623a0
10.1128/JVI.02256-10
10.1016/j.str.2005.12.006
10.1107/S0021889897006766
10.1093/nar/gkf371
10.1016/S0969-2126(96)00060-3
10.1016/0022-2836(69)90317-9
10.1074/jbc.271.50.31839
10.1038/nsb0298-133
10.1099/0022-1317-83-6-1523
10.1038/nsmb1327
10.1107/S0907444912047464
10.1016/0022-2836(88)90053-8
10.1073/pnas.69.10.3033
10.1016/0005-2787(81)90179-9
10.1016/j.jmb.2007.05.022
10.1107/S0907444910007493
10.1107/S0907444996012255
10.1080/07391102.1983.10507460
10.1006/jmbi.1997.1144
10.1021/bi00380a011
10.1016/0005-2787(76)90067-8
10.1093/nar/26.5.1345
10.1021/bi00427a011
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2013.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2013.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T7
7TM
7U9
8FD
C1K
FR3
H94
P64
RC3
7S9
L.6
DOI 10.1016/j.jmb.2013.08.025
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1089-8638
EndPage 1049
ExternalDocumentID 24035813
10_1016_j_jmb_2013_08_025
S0022283613005615
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-ET
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
85S
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABPPZ
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CJTIS
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GX1
HLW
HMG
IH2
IHE
J1W
K-O
KOM
LG5
LUGTX
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSI
SSU
SSZ
T5K
TWZ
VQA
WH7
XPP
YQT
ZMT
ZU3
~G-
.55
.GJ
29L
3O-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABUFD
ABWVN
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HX~
HZ~
H~9
MVM
NEJ
R2-
SBG
SEW
SIN
UQL
VH1
WUQ
X7M
XOL
Y6R
YYP
ZGI
ZKB
~HD
~KM
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7T7
7TM
7U9
8FD
C1K
FR3
H94
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c419t-1f0a840b0febd9d1d753c55c742afa0938cbcf0af33113b1cf634d95594af61a3
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332909300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-2836
1089-8638
IngestDate Thu Oct 02 08:25:24 EDT 2025
Tue Oct 07 09:55:58 EDT 2025
Sun Nov 09 13:19:17 EST 2025
Mon Jul 21 05:56:34 EDT 2025
Sat Nov 29 05:57:43 EST 2025
Tue Nov 18 22:11:28 EST 2025
Fri Feb 23 02:26:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords RNA recognition
Leviviridae
translational repression
protein–RNA interaction
allolevivirus
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
2013.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c419t-1f0a840b0febd9d1d753c55c742afa0938cbcf0af33113b1cf634d95594af61a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24035813
PQID 1500700320
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2000204857
proquest_miscellaneous_1520365993
proquest_miscellaneous_1500700320
pubmed_primary_24035813
crossref_citationtrail_10_1016_j_jmb_2013_08_025
crossref_primary_10_1016_j_jmb_2013_08_025
elsevier_sciencedirect_doi_10_1016_j_jmb_2013_08_025
PublicationCentury 2000
PublicationDate 2014-03-06
PublicationDateYYYYMMDD 2014-03-06
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-06
  day: 06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of molecular biology
PublicationTitleAlternate J Mol Biol
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Valegård, Murray, Stockley, Stonehouse, Liljas (bb0065) 1994; 371
Grahn, Moss, Helgstrand, Fridborg, Sundaram, Tars (bb0080) 2001; 7
Nathans, Oeschger, Polmar, Eggen (bb0040) 1969; 39
Romaniuk, Lowary, Wu, Stormo, Uhlenbeck (bb0060) 1987; 26
Carey, Cameron, De Haseth, Uhlenbeck (bb0050) 1983; 22
Beckett, Wu, Uhlenbeck (bb0045) 1988; 204
Chen, Arendall, Headd, Keedy, Immormino, Kapral (bb0195) 2010; 66
Schrödinger (bb0210) 2012
Rowsell, Stonehouse, Convery, Adams, Ellington, Hirao (bb0135) 1998; 5
Plevka, Kazaks, Voronkova, Kotelovica, Dishlers, Liljas (bb0155) 2009; 391
Meyer, Weber, Weissmann (bb0020) 1981; 153
Convery, Rowsell, Stonehouse, Ellington, Hirao, Murray (bb0140) 1998; 5
Shiba, Suzuki (bb0010) 1981; 654
Murshudov, Vagin, Dodson (bb0185) 1997; 53
Horn, Tars, Grahn, Helgstrand, Baron, Lago (bb0125) 2006; 14
Lim, Peabody (bb0120) 2002; 30
Leslie (bb0165) 1992; 26
Weber (bb0035) 1976; 418
Spingola, Lim, Peabody (bb0130) 2002; 405
Kleywegt (bb0205) 1996; 52
Valegård, Murray, Stonehouse, Van den Worm, Stockley, Liljas (bb0070) 1997; 270
Bernardi, Spahr (bb0015) 1972; 69
Krissinel, Henrick (bb0200) 2007; 372
Spingola, Peabody (bb0115) 1997; 25
Lim, Spingola, Peabody (bb0105) 1996; 271
Klovins, Overbeek, Van den Worm, Ackermann, Van Duin (bb0145) 2002; 83
Evans (bb0170) 1997; 33
Helgstrand, Grahn, Moss, Stonehouse, Tars, Stockley (bb0085) 2002; 30
Persson, Tars, Liljas (bb0090) 2013; 69
Emsley, Lohkamp, Scott, Cowtan (bb0190) 2010; 66
Witherell, Uhlenbeck (bb0100) 1989; 28
Kazaks, Voronkova, Rumnieks, Dishlers, Tars (bb0150) 2011; 85
Valegård, Liljas, Fridborg, Unge (bb0025) 1990; 345
Gralla, Steitz, Crothers (bb0030) 1974; 248
(bb0175) 1994; 50
van den Worm, Stonehouse, Valegård, Murray, Walton, Fridborg (bb0075) 1998; 26
Golmohammadi, Fridborg, Bundule, Valegård, Liljas (bb0110) 1996; 4
Uhlenbeck, Carey, Romaniuk, Lowary, Beckett (bb0055) 1983; 1
Gasteiger, Hoogland, Gattiker, Duvaud, Wilkins, Appel (bb0160) 2005
van Duin, Tsareva (bb0005) 2006
Vagin, Teplyakov (bb0180) 1997; 30
Chao, Patskovsky, Almo, Singer (bb0095) 2008; 15
Vagin (10.1016/j.jmb.2013.08.025_bb0180) 1997; 30
Shiba (10.1016/j.jmb.2013.08.025_bb0010) 1981; 654
Meyer (10.1016/j.jmb.2013.08.025_bb0020) 1981; 153
Valegård (10.1016/j.jmb.2013.08.025_bb0065) 1994; 371
van Duin (10.1016/j.jmb.2013.08.025_bb0005) 2006
Plevka (10.1016/j.jmb.2013.08.025_bb0155) 2009; 391
Chao (10.1016/j.jmb.2013.08.025_bb0095) 2008; 15
Valegård (10.1016/j.jmb.2013.08.025_bb0025) 1990; 345
Kleywegt (10.1016/j.jmb.2013.08.025_bb0205) 1996; 52
(10.1016/j.jmb.2013.08.025_bb0175) 1994; 50
Spingola (10.1016/j.jmb.2013.08.025_bb0115) 1997; 25
Krissinel (10.1016/j.jmb.2013.08.025_bb0200) 2007; 372
Nathans (10.1016/j.jmb.2013.08.025_bb0040) 1969; 39
Golmohammadi (10.1016/j.jmb.2013.08.025_bb0110) 1996; 4
Witherell (10.1016/j.jmb.2013.08.025_bb0100) 1989; 28
Schrödinger (10.1016/j.jmb.2013.08.025_bb0210)
Gasteiger (10.1016/j.jmb.2013.08.025_bb0160) 2005
Carey (10.1016/j.jmb.2013.08.025_bb0050) 1983; 22
Chen (10.1016/j.jmb.2013.08.025_bb0195) 2010; 66
van den Worm (10.1016/j.jmb.2013.08.025_bb0075) 1998; 26
Leslie (10.1016/j.jmb.2013.08.025_bb0165) 1992; 26
Beckett (10.1016/j.jmb.2013.08.025_bb0045) 1988; 204
Uhlenbeck (10.1016/j.jmb.2013.08.025_bb0055) 1983; 1
Convery (10.1016/j.jmb.2013.08.025_bb0140) 1998; 5
Klovins (10.1016/j.jmb.2013.08.025_bb0145) 2002; 83
Helgstrand (10.1016/j.jmb.2013.08.025_bb0085) 2002; 30
Persson (10.1016/j.jmb.2013.08.025_bb0090) 2013; 69
Horn (10.1016/j.jmb.2013.08.025_bb0125) 2006; 14
Bernardi (10.1016/j.jmb.2013.08.025_bb0015) 1972; 69
Emsley (10.1016/j.jmb.2013.08.025_bb0190) 2010; 66
Spingola (10.1016/j.jmb.2013.08.025_bb0130) 2002; 405
Lim (10.1016/j.jmb.2013.08.025_bb0120) 2002; 30
Grahn (10.1016/j.jmb.2013.08.025_bb0080) 2001; 7
Rowsell (10.1016/j.jmb.2013.08.025_bb0135) 1998; 5
Murshudov (10.1016/j.jmb.2013.08.025_bb0185) 1997; 53
Valegård (10.1016/j.jmb.2013.08.025_bb0070) 1997; 270
Evans (10.1016/j.jmb.2013.08.025_bb0170) 1997; 33
Weber (10.1016/j.jmb.2013.08.025_bb0035) 1976; 418
Romaniuk (10.1016/j.jmb.2013.08.025_bb0060) 1987; 26
Kazaks (10.1016/j.jmb.2013.08.025_bb0150) 2011; 85
Gralla (10.1016/j.jmb.2013.08.025_bb0030) 1974; 248
Lim (10.1016/j.jmb.2013.08.025_bb0105) 1996; 271
References_xml – volume: 371
  start-page: 623
  year: 1994
  end-page: 626
  ident: bb0065
  article-title: Crystal structure of an RNA bacteriophage coat protein–operator complex
  publication-title: Nature
– year: 2012
  ident: bb0210
  article-title: The PyMOL Molecular Graphics System, version 1.5.0.1
– start-page: 175
  year: 2006
  end-page: 196
  ident: bb0005
  article-title: Single-stranded RNA phages
  publication-title: The Bacteriophages
– volume: 4
  start-page: 343
  year: 1996
  end-page: 354
  ident: bb0110
  article-title: The crystal structure of bacteriophage Qβ at 3.5
  publication-title: Structure
– volume: 204
  start-page: 939
  year: 1988
  end-page: 947
  ident: bb0045
  article-title: Roles of operator and non-operator RNA sequences in bacteriophage R17 capsid assembly
  publication-title: J Mol Biol
– volume: 83
  start-page: 1523
  year: 2002
  end-page: 1533
  ident: bb0145
  article-title: Nucleotide sequence of a ssRNA phage from
  publication-title: J Gen Virol
– volume: 270
  start-page: 724
  year: 1997
  end-page: 738
  ident: bb0070
  article-title: The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein–RNA interactions
  publication-title: J Mol Biol
– volume: 50
  start-page: 760
  year: 1994
  end-page: 763
  ident: bb0175
  article-title: The CCP4 suite: programs for protein crystallography
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
– volume: 372
  start-page: 774
  year: 2007
  end-page: 797
  ident: bb0200
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J Mol Biol
– volume: 30
  start-page: 1022
  year: 1997
  end-page: 1025
  ident: bb0180
  article-title: MOLREP: an automated program for molecular replacement
  publication-title: J Appl Crystallogr
– volume: 69
  start-page: 367
  year: 2013
  end-page: 372
  ident: bb0090
  article-title: PRR1 coat protein binding to its RNA translational operator
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
– volume: 391
  start-page: 635
  year: 2009
  end-page: 647
  ident: bb0155
  article-title: The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly
  publication-title: J Mol Biol
– start-page: 571
  year: 2005
  end-page: 607
  ident: bb0160
  article-title: Protein identification and analysis tools on the ExPASy server
  publication-title: The Proteomics Protocols Handbook
– volume: 85
  start-page: 4628
  year: 2011
  end-page: 4631
  ident: bb0150
  article-title: Genome structure of caulobacter phage phiCb5
  publication-title: J Virol
– volume: 248
  start-page: 204
  year: 1974
  end-page: 208
  ident: bb0030
  article-title: Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA
  publication-title: Nature
– volume: 22
  start-page: 2601
  year: 1983
  end-page: 2610
  ident: bb0050
  article-title: Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site
  publication-title: Biochemistry
– volume: 28
  start-page: 71
  year: 1989
  end-page: 76
  ident: bb0100
  article-title: Specific RNA binding by Qβ coat protein
  publication-title: Biochemistry
– volume: 654
  start-page: 249
  year: 1981
  end-page: 255
  ident: bb0010
  article-title: Localization of A protein in the RNA-A protein complex of RNA phage MS2
  publication-title: Biochim Biophys Acta
– volume: 66
  start-page: 12
  year: 2010
  end-page: 21
  ident: bb0195
  article-title: MolProbity: all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
– volume: 271
  start-page: 31839
  year: 1996
  end-page: 31845
  ident: bb0105
  article-title: The RNA-binding site of bacteriophage Qβ coat protein
  publication-title: J Biol Chem
– volume: 7
  start-page: 1616
  year: 2001
  end-page: 1627
  ident: bb0080
  article-title: Structural basis of pyrimidine specificity in the MS2 RNA hairpin-coat-protein complex
  publication-title: RNA
– volume: 39
  start-page: 279
  year: 1969
  end-page: 292
  ident: bb0040
  article-title: Regulation of protein synthesis directed by coliphage MS2 RNA. I. Phage protein and RNA synthesis in cells infected with suppressible mutants
  publication-title: J Mol Biol
– volume: 153
  start-page: 631
  year: 1981
  end-page: 660
  ident: bb0020
  article-title: Interactions of Qβ replicase with Qβ RNA
  publication-title: J Mol Biol
– volume: 69
  start-page: 3033
  year: 1972
  end-page: 3037
  ident: bb0015
  article-title: Nucleotide sequence at the binding site for coat protein on RNA of bacteriophage R17
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 1345
  year: 1998
  end-page: 1351
  ident: bb0075
  article-title: Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments
  publication-title: Nucleic Acids Res
– volume: 345
  start-page: 36
  year: 1990
  end-page: 41
  ident: bb0025
  article-title: The three-dimensional structure of the bacterial virus MS2
  publication-title: Nature
– volume: 26
  start-page: 1563
  year: 1987
  end-page: 1568
  ident: bb0060
  article-title: RNA binding site of R17 coat protein
  publication-title: Biochemistry
– volume: 5
  start-page: 970
  year: 1998
  end-page: 975
  ident: bb0135
  article-title: Crystal structures of a series of RNA aptamers complexed to the same protein target
  publication-title: Nat Struct Biol
– volume: 52
  start-page: 842
  year: 1996
  end-page: 857
  ident: bb0205
  article-title: Use of non-crystallographic symmetry in protein structure refinement
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
– volume: 14
  start-page: 487
  year: 2006
  end-page: 495
  ident: bb0125
  article-title: Structural basis of RNA binding discrimination between bacteriophages Qβ and MS2
  publication-title: Structure
– volume: 53
  start-page: 240
  year: 1997
  end-page: 255
  ident: bb0185
  article-title: Refinement of macromolecular structures by the maximum-likelihood method
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: bb0190
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
– volume: 5
  start-page: 133
  year: 1998
  end-page: 139
  ident: bb0140
  article-title: Crystal structure of an RNA aptamer–protein complex at 2.8
  publication-title: Nat Struct Biol
– volume: 30
  start-page: 4138
  year: 2002
  end-page: 4144
  ident: bb0120
  article-title: RNA recognition site of PP7 coat protein
  publication-title: Nucleic Acids Res
– volume: 405
  start-page: 122
  year: 2002
  end-page: 129
  ident: bb0130
  article-title: Recognition of diverse RNAs by a single protein structural framework
  publication-title: Arch Biochem Biophys
– volume: 33
  start-page: 22
  year: 1997
  end-page: 24
  ident: bb0170
  article-title: Scala
  publication-title: Joint CCP4
– volume: 418
  start-page: 175
  year: 1976
  end-page: 183
  ident: bb0035
  article-title: The binding site for coat protein on bacteriophage Qβ RNA
  publication-title: Biochim Biophys Acta
– volume: 1
  start-page: 539
  year: 1983
  end-page: 552
  ident: bb0055
  article-title: Interaction of R17 coat protein with its RNA binding site for translational repression
  publication-title: J Biomol Struct Dyn
– volume: 15
  start-page: 103
  year: 2008
  end-page: 105
  ident: bb0095
  article-title: Structural basis for the coevolution of a viral RNA–protein complex
  publication-title: Nat Struct Mol Biol
– volume: 25
  start-page: 2808
  year: 1997
  end-page: 2815
  ident: bb0115
  article-title: MS2 coat protein mutants which bind Qβ RNA
  publication-title: Nucleic Acids Res
– volume: 30
  start-page: 2678
  year: 2002
  end-page: 2685
  ident: bb0085
  article-title: Investigating the structural basis of purine specificity in the structures of MS2 coat protein RNA translational operator hairpins
  publication-title: Nucleic Acids Res
– volume: 26
  year: 1992
  ident: bb0165
  article-title: Recent changes to the MOSFLM package for processing film and image plate data
  publication-title: Joint CCP4
– volume: 30
  start-page: 4138
  year: 2002
  ident: 10.1016/j.jmb.2013.08.025_bb0120
  article-title: RNA recognition site of PP7 coat protein
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkf552
– volume: 66
  start-page: 12
  year: 2010
  ident: 10.1016/j.jmb.2013.08.025_bb0195
  article-title: MolProbity: all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
  doi: 10.1107/S0907444909042073
– volume: 52
  start-page: 842
  year: 1996
  ident: 10.1016/j.jmb.2013.08.025_bb0205
  article-title: Use of non-crystallographic symmetry in protein structure refinement
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
  doi: 10.1107/S0907444995016477
– volume: 345
  start-page: 36
  year: 1990
  ident: 10.1016/j.jmb.2013.08.025_bb0025
  article-title: The three-dimensional structure of the bacterial virus MS2
  publication-title: Nature
  doi: 10.1038/345036a0
– volume: 22
  start-page: 2601
  year: 1983
  ident: 10.1016/j.jmb.2013.08.025_bb0050
  article-title: Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site
  publication-title: Biochemistry
  doi: 10.1021/bi00280a002
– volume: 5
  start-page: 970
  year: 1998
  ident: 10.1016/j.jmb.2013.08.025_bb0135
  article-title: Crystal structures of a series of RNA aptamers complexed to the same protein target
  publication-title: Nat Struct Biol
  doi: 10.1038/2946
– volume: 50
  start-page: 760
  year: 1994
  ident: 10.1016/j.jmb.2013.08.025_bb0175
  article-title: The CCP4 suite: programs for protein crystallography
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
  doi: 10.1107/S0907444994003112
– volume: 7
  start-page: 1616
  year: 2001
  ident: 10.1016/j.jmb.2013.08.025_bb0080
  article-title: Structural basis of pyrimidine specificity in the MS2 RNA hairpin-coat-protein complex
  publication-title: RNA
– volume: 405
  start-page: 122
  year: 2002
  ident: 10.1016/j.jmb.2013.08.025_bb0130
  article-title: Recognition of diverse RNAs by a single protein structural framework
  publication-title: Arch Biochem Biophys
  doi: 10.1016/S0003-9861(02)00334-X
– volume: 25
  start-page: 2808
  year: 1997
  ident: 10.1016/j.jmb.2013.08.025_bb0115
  article-title: MS2 coat protein mutants which bind Qβ RNA
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.14.2808
– volume: 153
  start-page: 631
  year: 1981
  ident: 10.1016/j.jmb.2013.08.025_bb0020
  article-title: Interactions of Qβ replicase with Qβ RNA
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(81)90411-3
– volume: 391
  start-page: 635
  year: 2009
  ident: 10.1016/j.jmb.2013.08.025_bb0155
  article-title: The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2009.06.047
– volume: 248
  start-page: 204
  year: 1974
  ident: 10.1016/j.jmb.2013.08.025_bb0030
  article-title: Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA
  publication-title: Nature
  doi: 10.1038/248204a0
– volume: 371
  start-page: 623
  year: 1994
  ident: 10.1016/j.jmb.2013.08.025_bb0065
  article-title: Crystal structure of an RNA bacteriophage coat protein–operator complex
  publication-title: Nature
  doi: 10.1038/371623a0
– volume: 85
  start-page: 4628
  year: 2011
  ident: 10.1016/j.jmb.2013.08.025_bb0150
  article-title: Genome structure of caulobacter phage phiCb5
  publication-title: J Virol
  doi: 10.1128/JVI.02256-10
– volume: 14
  start-page: 487
  year: 2006
  ident: 10.1016/j.jmb.2013.08.025_bb0125
  article-title: Structural basis of RNA binding discrimination between bacteriophages Qβ and MS2
  publication-title: Structure
  doi: 10.1016/j.str.2005.12.006
– ident: 10.1016/j.jmb.2013.08.025_bb0210
– volume: 30
  start-page: 1022
  year: 1997
  ident: 10.1016/j.jmb.2013.08.025_bb0180
  article-title: MOLREP: an automated program for molecular replacement
  publication-title: J Appl Crystallogr
  doi: 10.1107/S0021889897006766
– volume: 30
  start-page: 2678
  year: 2002
  ident: 10.1016/j.jmb.2013.08.025_bb0085
  article-title: Investigating the structural basis of purine specificity in the structures of MS2 coat protein RNA translational operator hairpins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkf371
– volume: 4
  start-page: 343
  year: 1996
  ident: 10.1016/j.jmb.2013.08.025_bb0110
  article-title: The crystal structure of bacteriophage Qβ at 3.5Å resolution
  publication-title: Structure
  doi: 10.1016/S0969-2126(96)00060-3
– volume: 39
  start-page: 279
  year: 1969
  ident: 10.1016/j.jmb.2013.08.025_bb0040
  article-title: Regulation of protein synthesis directed by coliphage MS2 RNA. I. Phage protein and RNA synthesis in cells infected with suppressible mutants
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(69)90317-9
– volume: 271
  start-page: 31839
  year: 1996
  ident: 10.1016/j.jmb.2013.08.025_bb0105
  article-title: The RNA-binding site of bacteriophage Qβ coat protein
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.50.31839
– volume: 5
  start-page: 133
  year: 1998
  ident: 10.1016/j.jmb.2013.08.025_bb0140
  article-title: Crystal structure of an RNA aptamer–protein complex at 2.8Å resolution
  publication-title: Nat Struct Biol
  doi: 10.1038/nsb0298-133
– start-page: 571
  year: 2005
  ident: 10.1016/j.jmb.2013.08.025_bb0160
  article-title: Protein identification and analysis tools on the ExPASy server
– volume: 83
  start-page: 1523
  year: 2002
  ident: 10.1016/j.jmb.2013.08.025_bb0145
  article-title: Nucleotide sequence of a ssRNA phage from Acinetobacter: kinship to coliphages
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-83-6-1523
– volume: 33
  start-page: 22
  year: 1997
  ident: 10.1016/j.jmb.2013.08.025_bb0170
  article-title: Scala
– volume: 15
  start-page: 103
  year: 2008
  ident: 10.1016/j.jmb.2013.08.025_bb0095
  article-title: Structural basis for the coevolution of a viral RNA–protein complex
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1327
– volume: 69
  start-page: 367
  year: 2013
  ident: 10.1016/j.jmb.2013.08.025_bb0090
  article-title: PRR1 coat protein binding to its RNA translational operator
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
  doi: 10.1107/S0907444912047464
– volume: 204
  start-page: 939
  year: 1988
  ident: 10.1016/j.jmb.2013.08.025_bb0045
  article-title: Roles of operator and non-operator RNA sequences in bacteriophage R17 capsid assembly
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(88)90053-8
– volume: 69
  start-page: 3033
  year: 1972
  ident: 10.1016/j.jmb.2013.08.025_bb0015
  article-title: Nucleotide sequence at the binding site for coat protein on RNA of bacteriophage R17
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.69.10.3033
– volume: 654
  start-page: 249
  year: 1981
  ident: 10.1016/j.jmb.2013.08.025_bb0010
  article-title: Localization of A protein in the RNA-A protein complex of RNA phage MS2
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2787(81)90179-9
– volume: 372
  start-page: 774
  year: 2007
  ident: 10.1016/j.jmb.2013.08.025_bb0200
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.05.022
– volume: 66
  start-page: 486
  year: 2010
  ident: 10.1016/j.jmb.2013.08.025_bb0190
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
  doi: 10.1107/S0907444910007493
– volume: 53
  start-page: 240
  year: 1997
  ident: 10.1016/j.jmb.2013.08.025_bb0185
  article-title: Refinement of macromolecular structures by the maximum-likelihood method
  publication-title: Acta Crystallogr Sect D Biol Crystallogr
  doi: 10.1107/S0907444996012255
– volume: 1
  start-page: 539
  year: 1983
  ident: 10.1016/j.jmb.2013.08.025_bb0055
  article-title: Interaction of R17 coat protein with its RNA binding site for translational repression
  publication-title: J Biomol Struct Dyn
  doi: 10.1080/07391102.1983.10507460
– volume: 270
  start-page: 724
  year: 1997
  ident: 10.1016/j.jmb.2013.08.025_bb0070
  article-title: The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein–RNA interactions
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1997.1144
– volume: 26
  year: 1992
  ident: 10.1016/j.jmb.2013.08.025_bb0165
  article-title: Recent changes to the MOSFLM package for processing film and image plate data
– volume: 26
  start-page: 1563
  year: 1987
  ident: 10.1016/j.jmb.2013.08.025_bb0060
  article-title: RNA binding site of R17 coat protein
  publication-title: Biochemistry
  doi: 10.1021/bi00380a011
– start-page: 175
  year: 2006
  ident: 10.1016/j.jmb.2013.08.025_bb0005
  article-title: Single-stranded RNA phages
– volume: 418
  start-page: 175
  year: 1976
  ident: 10.1016/j.jmb.2013.08.025_bb0035
  article-title: The binding site for coat protein on bacteriophage Qβ RNA
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2787(76)90067-8
– volume: 26
  start-page: 1345
  year: 1998
  ident: 10.1016/j.jmb.2013.08.025_bb0075
  article-title: Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/26.5.1345
– volume: 28
  start-page: 71
  year: 1989
  ident: 10.1016/j.jmb.2013.08.025_bb0100
  article-title: Specific RNA binding by Qβ coat protein
  publication-title: Biochemistry
  doi: 10.1021/bi00427a011
SSID ssj0005348
Score 2.2575524
Snippet The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1039
SubjectTerms adenine
allolevivirus
Bacteria
bacteriophages
binding proteins
Capsid Proteins - chemistry
Capsid Proteins - genetics
Capsid Proteins - metabolism
coat proteins
coevolution
crystal structure
Crystallography, X-Ray
genes
Leviviridae
Models, Molecular
Nucleic Acid Conformation
Operator Regions, Genetic - genetics
Phage MS2
Protein Binding
Protein Conformation
protein–RNA interaction
RNA
RNA recognition
RNA Replicase - chemistry
RNA Replicase - genetics
RNA Replicase - metabolism
RNA, Viral - chemistry
RNA, Viral - genetics
RNA, Viral - metabolism
translational repression
tyrosine
Title Crystal Structure of the Bacteriophage Qβ Coat Protein in Complex with the RNA Operator of the Replicase Gene
URI https://dx.doi.org/10.1016/j.jmb.2013.08.025
https://www.ncbi.nlm.nih.gov/pubmed/24035813
https://www.proquest.com/docview/1500700320
https://www.proquest.com/docview/1520365993
https://www.proquest.com/docview/2000204857
Volume 426
WOSCitedRecordID wos000332909300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1089-8638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005348
  issn: 0022-2836
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB7cXUVfRNdbvSwjuC-WLJNM0pk81lLxAsWVFfoWZpIJttok9CLdv-UP8Td55pZuF1v0QSihZC6l-b6enplz5jsIveKsKCQjJGCFkEEswYeT4JkGihdhKVWPhYqYYhNsNOLjcfrJ5aouTDkBVlV8vU6b_wo13AOw9dHZf4C7nRRuwHsAHa4AO1z_CvjB_HKxtKdAVjY-4NIApBVmrpuvOk_n_HQwPH0TdfNaLLtGrWFikh5Njrlauw1aGPZ51O_WjTLheD_VXJmw90LpCszbyUQbB3fmK-92ndJTG9xZzaqJ-mYZJKy0ids-sAXbPgqwc_OtHYkwNilZTs_aWlHC04D3rGyLN7OxPRnv-JRcMZo6Gv1Ha243FqZn05nUSXjUiK3ac9JXgGxmBkktLJhwe7D1moS2bzpARxFLUjB-R_33w_GHTS4QjbkPeZvkv2ufqCWj3Ry7_Jdd6xPjp1zcQ3fd88d9S4z76IaqjtEtW3L08hjdHvgKfw9Q5aiCW6rgusSAL96iCj7_9RNrmmBHEwwvRxOsaWKGAE2wp4mfpqUJ1jR5iL68HV4M3gWu_kaQx2G6DMKSCFj_S1IqWaRFWMDSNk-SnMWRKAVJKc9lDn1KSsOQyjAvezQutKRhLMpeKOgjdFjVlXqCcBkVOaEc_EEJjangXNKIMlhPCNkjgnQQ8U81y504va6R8j3zWYjTDDDJNCaZrpsaJR30uh3SWGWWfZ1jD1XmXEvrMmbAtX3DXnpYM8BGx9JEperVIoN1FPxZEhqRfX10lB_4Rnf3iUwuQMwT1kGPLW_ab-Mp93RnyzN0Z_MDfI4OgS3qBbqZ_1hOFvMTdMDG_MRx_Tdc0cG2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+structure+of+the+bacteriophage+Q%CE%B2+coat+protein+in+complex+with+the+RNA+operator+of+the+replicase+gene&rft.jtitle=Journal+of+molecular+biology&rft.au=Rumnieks%2C+Janis&rft.au=Tars%2C+Kaspars&rft.date=2014-03-06&rft.eissn=1089-8638&rft.volume=426&rft.issue=5&rft.spage=1039&rft_id=info:doi/10.1016%2Fj.jmb.2013.08.025&rft_id=info%3Apmid%2F24035813&rft.externalDocID=24035813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon