Crystal Structure of the Bacteriophage Qβ Coat Protein in Complex with the RNA Operator of the Replicase Gene
The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidati...
Uložené v:
| Vydané v: | Journal of molecular biology Ročník 426; číslo 5; s. 1039 - 1049 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier Ltd
06.03.2014
|
| Predmet: | |
| ISSN: | 0022-2836, 1089-8638, 1089-8638 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein–RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA.
[Display omitted]
•The 2.4-Å structure of Qβ coat protein bound to the RNA operator of the replicase gene.•A novel mechanism for accommodating a bulged nucleotide in the operator stem.•Only one RNA base makes sequence-specific contacts with the protein.•The structure suggests a recognition mechanism that relies on RNA backbone orientation. |
|---|---|
| AbstractList | The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein–RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA. The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein-RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA.The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein-RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA. The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein–RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA. [Display omitted] •The 2.4-Å structure of Qβ coat protein bound to the RNA operator of the replicase gene.•A novel mechanism for accommodating a bulged nucleotide in the operator stem.•Only one RNA base makes sequence-specific contacts with the protein.•The structure suggests a recognition mechanism that relies on RNA backbone orientation. The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein-RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Q beta bound to its cognate translational operator. The RNA binding mode of Q beta coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Q beta coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between beta strands E and F of Q beta coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Q beta coat protein recognizes and discriminates in favor of its cognate RNA. |
| Author | Tars, Kaspars Rumnieks, Janis |
| Author_xml | – sequence: 1 givenname: Janis surname: Rumnieks fullname: Rumnieks, Janis – sequence: 2 givenname: Kaspars surname: Tars fullname: Tars, Kaspars email: kaspars@biomed.lu.lv |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24035813$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkcFu1DAURS1URKcDH8AGeckm4dmOE0esSlQKUkWhwNpynBfGo0wcbAfob_VD-k2kTGfDoiA96W3OuYt7T8jR6Eck5DmDnAErX23z7a7NOTCRg8qBy0dkxUDVmSqFOiIrAM4zrkR5TE5i3AKAFIV6Qo55AUIqJlZkbMJ1TGagn1OYbZoDUt_TtEH6xtiEwflpY74h_XR7QxtvEv0YfEI30uUav5sG_EV_urT5o1x9OKWXEwaTfDjEXOE0OGsi0nMc8Sl53Jsh4rP7vyZf3559ad5lF5fn75vTi8wWrE4Z68GoAlrose3qjnWVFFZKWxXc9AZqoWxrF6YXgjHRMtuXouhqKevC9CUzYk1e7nOn4L_PGJPeuWhxGMyIfo6aL11wKJSs_okyyUGUsq7Ff6AAFYBYhDV5cY_O7Q47PQW3M-FaH5pfgGoP2OBjDNhr65JJzo8pGDdoBvpuY73Vy8b6bmMNSi8bLyb7yzyEP-S83ju4lP7DYdDROhwtdi6gTbrz7gH7N7wAvcg |
| CitedBy_id | crossref_primary_10_1016_j_jbc_2023_105460 crossref_primary_10_1038_s41467_025_55957_0 crossref_primary_10_1016_j_jmb_2016_08_025 crossref_primary_10_1186_s12951_019_0497_8 crossref_primary_10_1128_AEM_01674_20 crossref_primary_10_1073_pnas_1609482113 crossref_primary_10_1016_j_str_2015_06_028 crossref_primary_10_1016_j_pbiomolbio_2020_07_011 crossref_primary_10_1159_000449503 crossref_primary_10_3390_pathogens8020080 crossref_primary_10_1073_pnas_1707102114 crossref_primary_10_3390_v12060638 crossref_primary_10_1016_j_ijbiomac_2025_144641 crossref_primary_10_1128_AEM_02319_20 crossref_primary_10_3389_fchem_2017_00012 |
| Cites_doi | 10.1093/nar/gkf552 10.1107/S0907444909042073 10.1107/S0907444995016477 10.1038/345036a0 10.1021/bi00280a002 10.1038/2946 10.1107/S0907444994003112 10.1016/S0003-9861(02)00334-X 10.1093/nar/25.14.2808 10.1016/0022-2836(81)90411-3 10.1016/j.jmb.2009.06.047 10.1038/248204a0 10.1038/371623a0 10.1128/JVI.02256-10 10.1016/j.str.2005.12.006 10.1107/S0021889897006766 10.1093/nar/gkf371 10.1016/S0969-2126(96)00060-3 10.1016/0022-2836(69)90317-9 10.1074/jbc.271.50.31839 10.1038/nsb0298-133 10.1099/0022-1317-83-6-1523 10.1038/nsmb1327 10.1107/S0907444912047464 10.1016/0022-2836(88)90053-8 10.1073/pnas.69.10.3033 10.1016/0005-2787(81)90179-9 10.1016/j.jmb.2007.05.022 10.1107/S0907444910007493 10.1107/S0907444996012255 10.1080/07391102.1983.10507460 10.1006/jmbi.1997.1144 10.1021/bi00380a011 10.1016/0005-2787(76)90067-8 10.1093/nar/26.5.1345 10.1021/bi00427a011 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2013. |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2013. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T7 7TM 7U9 8FD C1K FR3 H94 P64 RC3 7S9 L.6 |
| DOI | 10.1016/j.jmb.2013.08.025 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic Genetics Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| EISSN | 1089-8638 |
| EndPage | 1049 |
| ExternalDocumentID | 24035813 10_1016_j_jmb_2013_08_025 S0022283613005615 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -DZ -ET -~X .~1 0R~ 186 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABPPZ ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GX1 HLW HMG IH2 IHE J1W K-O KOM LG5 LUGTX LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPCBC SSI SSU SSZ T5K TWZ VQA WH7 XPP YQT ZMT ZU3 ~G- .55 .GJ 29L 3O- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABUFD ABWVN ACKIV ACLOT ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AGRDE AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FEDTE FGOYB G-2 HVGLF HX~ HZ~ H~9 MVM NEJ R2- SBG SEW SIN UQL VH1 WUQ X7M XOL Y6R YYP ZGI ZKB ~HD ~KM AGCQF AGRNS CGR CUY CVF ECM EIF NPM SSH 7X8 7T7 7TM 7U9 8FD C1K FR3 H94 P64 RC3 7S9 L.6 |
| ID | FETCH-LOGICAL-c419t-1f0a840b0febd9d1d753c55c742afa0938cbcf0af33113b1cf634d95594af61a3 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332909300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-2836 1089-8638 |
| IngestDate | Thu Oct 02 08:25:24 EDT 2025 Tue Oct 07 09:55:58 EDT 2025 Sun Nov 09 13:19:17 EST 2025 Mon Jul 21 05:56:34 EDT 2025 Sat Nov 29 05:57:43 EST 2025 Tue Nov 18 22:11:28 EST 2025 Fri Feb 23 02:26:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | RNA recognition Leviviridae translational repression protein–RNA interaction allolevivirus |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 2013. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c419t-1f0a840b0febd9d1d753c55c742afa0938cbcf0af33113b1cf634d95594af61a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24035813 |
| PQID | 1500700320 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2000204857 proquest_miscellaneous_1520365993 proquest_miscellaneous_1500700320 pubmed_primary_24035813 crossref_citationtrail_10_1016_j_jmb_2013_08_025 crossref_primary_10_1016_j_jmb_2013_08_025 elsevier_sciencedirect_doi_10_1016_j_jmb_2013_08_025 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-03-06 |
| PublicationDateYYYYMMDD | 2014-03-06 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of molecular biology |
| PublicationTitleAlternate | J Mol Biol |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Valegård, Murray, Stockley, Stonehouse, Liljas (bb0065) 1994; 371 Grahn, Moss, Helgstrand, Fridborg, Sundaram, Tars (bb0080) 2001; 7 Nathans, Oeschger, Polmar, Eggen (bb0040) 1969; 39 Romaniuk, Lowary, Wu, Stormo, Uhlenbeck (bb0060) 1987; 26 Carey, Cameron, De Haseth, Uhlenbeck (bb0050) 1983; 22 Beckett, Wu, Uhlenbeck (bb0045) 1988; 204 Chen, Arendall, Headd, Keedy, Immormino, Kapral (bb0195) 2010; 66 Schrödinger (bb0210) 2012 Rowsell, Stonehouse, Convery, Adams, Ellington, Hirao (bb0135) 1998; 5 Plevka, Kazaks, Voronkova, Kotelovica, Dishlers, Liljas (bb0155) 2009; 391 Meyer, Weber, Weissmann (bb0020) 1981; 153 Convery, Rowsell, Stonehouse, Ellington, Hirao, Murray (bb0140) 1998; 5 Shiba, Suzuki (bb0010) 1981; 654 Murshudov, Vagin, Dodson (bb0185) 1997; 53 Horn, Tars, Grahn, Helgstrand, Baron, Lago (bb0125) 2006; 14 Lim, Peabody (bb0120) 2002; 30 Leslie (bb0165) 1992; 26 Weber (bb0035) 1976; 418 Spingola, Lim, Peabody (bb0130) 2002; 405 Kleywegt (bb0205) 1996; 52 Valegård, Murray, Stonehouse, Van den Worm, Stockley, Liljas (bb0070) 1997; 270 Bernardi, Spahr (bb0015) 1972; 69 Krissinel, Henrick (bb0200) 2007; 372 Spingola, Peabody (bb0115) 1997; 25 Lim, Spingola, Peabody (bb0105) 1996; 271 Klovins, Overbeek, Van den Worm, Ackermann, Van Duin (bb0145) 2002; 83 Evans (bb0170) 1997; 33 Helgstrand, Grahn, Moss, Stonehouse, Tars, Stockley (bb0085) 2002; 30 Persson, Tars, Liljas (bb0090) 2013; 69 Emsley, Lohkamp, Scott, Cowtan (bb0190) 2010; 66 Witherell, Uhlenbeck (bb0100) 1989; 28 Kazaks, Voronkova, Rumnieks, Dishlers, Tars (bb0150) 2011; 85 Valegård, Liljas, Fridborg, Unge (bb0025) 1990; 345 Gralla, Steitz, Crothers (bb0030) 1974; 248 (bb0175) 1994; 50 van den Worm, Stonehouse, Valegård, Murray, Walton, Fridborg (bb0075) 1998; 26 Golmohammadi, Fridborg, Bundule, Valegård, Liljas (bb0110) 1996; 4 Uhlenbeck, Carey, Romaniuk, Lowary, Beckett (bb0055) 1983; 1 Gasteiger, Hoogland, Gattiker, Duvaud, Wilkins, Appel (bb0160) 2005 van Duin, Tsareva (bb0005) 2006 Vagin, Teplyakov (bb0180) 1997; 30 Chao, Patskovsky, Almo, Singer (bb0095) 2008; 15 Vagin (10.1016/j.jmb.2013.08.025_bb0180) 1997; 30 Shiba (10.1016/j.jmb.2013.08.025_bb0010) 1981; 654 Meyer (10.1016/j.jmb.2013.08.025_bb0020) 1981; 153 Valegård (10.1016/j.jmb.2013.08.025_bb0065) 1994; 371 van Duin (10.1016/j.jmb.2013.08.025_bb0005) 2006 Plevka (10.1016/j.jmb.2013.08.025_bb0155) 2009; 391 Chao (10.1016/j.jmb.2013.08.025_bb0095) 2008; 15 Valegård (10.1016/j.jmb.2013.08.025_bb0025) 1990; 345 Kleywegt (10.1016/j.jmb.2013.08.025_bb0205) 1996; 52 (10.1016/j.jmb.2013.08.025_bb0175) 1994; 50 Spingola (10.1016/j.jmb.2013.08.025_bb0115) 1997; 25 Krissinel (10.1016/j.jmb.2013.08.025_bb0200) 2007; 372 Nathans (10.1016/j.jmb.2013.08.025_bb0040) 1969; 39 Golmohammadi (10.1016/j.jmb.2013.08.025_bb0110) 1996; 4 Witherell (10.1016/j.jmb.2013.08.025_bb0100) 1989; 28 Schrödinger (10.1016/j.jmb.2013.08.025_bb0210) Gasteiger (10.1016/j.jmb.2013.08.025_bb0160) 2005 Carey (10.1016/j.jmb.2013.08.025_bb0050) 1983; 22 Chen (10.1016/j.jmb.2013.08.025_bb0195) 2010; 66 van den Worm (10.1016/j.jmb.2013.08.025_bb0075) 1998; 26 Leslie (10.1016/j.jmb.2013.08.025_bb0165) 1992; 26 Beckett (10.1016/j.jmb.2013.08.025_bb0045) 1988; 204 Uhlenbeck (10.1016/j.jmb.2013.08.025_bb0055) 1983; 1 Convery (10.1016/j.jmb.2013.08.025_bb0140) 1998; 5 Klovins (10.1016/j.jmb.2013.08.025_bb0145) 2002; 83 Helgstrand (10.1016/j.jmb.2013.08.025_bb0085) 2002; 30 Persson (10.1016/j.jmb.2013.08.025_bb0090) 2013; 69 Horn (10.1016/j.jmb.2013.08.025_bb0125) 2006; 14 Bernardi (10.1016/j.jmb.2013.08.025_bb0015) 1972; 69 Emsley (10.1016/j.jmb.2013.08.025_bb0190) 2010; 66 Spingola (10.1016/j.jmb.2013.08.025_bb0130) 2002; 405 Lim (10.1016/j.jmb.2013.08.025_bb0120) 2002; 30 Grahn (10.1016/j.jmb.2013.08.025_bb0080) 2001; 7 Rowsell (10.1016/j.jmb.2013.08.025_bb0135) 1998; 5 Murshudov (10.1016/j.jmb.2013.08.025_bb0185) 1997; 53 Valegård (10.1016/j.jmb.2013.08.025_bb0070) 1997; 270 Evans (10.1016/j.jmb.2013.08.025_bb0170) 1997; 33 Weber (10.1016/j.jmb.2013.08.025_bb0035) 1976; 418 Romaniuk (10.1016/j.jmb.2013.08.025_bb0060) 1987; 26 Kazaks (10.1016/j.jmb.2013.08.025_bb0150) 2011; 85 Gralla (10.1016/j.jmb.2013.08.025_bb0030) 1974; 248 Lim (10.1016/j.jmb.2013.08.025_bb0105) 1996; 271 |
| References_xml | – volume: 371 start-page: 623 year: 1994 end-page: 626 ident: bb0065 article-title: Crystal structure of an RNA bacteriophage coat protein–operator complex publication-title: Nature – year: 2012 ident: bb0210 article-title: The PyMOL Molecular Graphics System, version 1.5.0.1 – start-page: 175 year: 2006 end-page: 196 ident: bb0005 article-title: Single-stranded RNA phages publication-title: The Bacteriophages – volume: 4 start-page: 343 year: 1996 end-page: 354 ident: bb0110 article-title: The crystal structure of bacteriophage Qβ at 3.5 publication-title: Structure – volume: 204 start-page: 939 year: 1988 end-page: 947 ident: bb0045 article-title: Roles of operator and non-operator RNA sequences in bacteriophage R17 capsid assembly publication-title: J Mol Biol – volume: 83 start-page: 1523 year: 2002 end-page: 1533 ident: bb0145 article-title: Nucleotide sequence of a ssRNA phage from publication-title: J Gen Virol – volume: 270 start-page: 724 year: 1997 end-page: 738 ident: bb0070 article-title: The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein–RNA interactions publication-title: J Mol Biol – volume: 50 start-page: 760 year: 1994 end-page: 763 ident: bb0175 article-title: The CCP4 suite: programs for protein crystallography publication-title: Acta Crystallogr Sect D Biol Crystallogr – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: bb0200 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J Mol Biol – volume: 30 start-page: 1022 year: 1997 end-page: 1025 ident: bb0180 article-title: MOLREP: an automated program for molecular replacement publication-title: J Appl Crystallogr – volume: 69 start-page: 367 year: 2013 end-page: 372 ident: bb0090 article-title: PRR1 coat protein binding to its RNA translational operator publication-title: Acta Crystallogr Sect D Biol Crystallogr – volume: 391 start-page: 635 year: 2009 end-page: 647 ident: bb0155 article-title: The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly publication-title: J Mol Biol – start-page: 571 year: 2005 end-page: 607 ident: bb0160 article-title: Protein identification and analysis tools on the ExPASy server publication-title: The Proteomics Protocols Handbook – volume: 85 start-page: 4628 year: 2011 end-page: 4631 ident: bb0150 article-title: Genome structure of caulobacter phage phiCb5 publication-title: J Virol – volume: 248 start-page: 204 year: 1974 end-page: 208 ident: bb0030 article-title: Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA publication-title: Nature – volume: 22 start-page: 2601 year: 1983 end-page: 2610 ident: bb0050 article-title: Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site publication-title: Biochemistry – volume: 28 start-page: 71 year: 1989 end-page: 76 ident: bb0100 article-title: Specific RNA binding by Qβ coat protein publication-title: Biochemistry – volume: 654 start-page: 249 year: 1981 end-page: 255 ident: bb0010 article-title: Localization of A protein in the RNA-A protein complex of RNA phage MS2 publication-title: Biochim Biophys Acta – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: bb0195 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr Sect D Biol Crystallogr – volume: 271 start-page: 31839 year: 1996 end-page: 31845 ident: bb0105 article-title: The RNA-binding site of bacteriophage Qβ coat protein publication-title: J Biol Chem – volume: 7 start-page: 1616 year: 2001 end-page: 1627 ident: bb0080 article-title: Structural basis of pyrimidine specificity in the MS2 RNA hairpin-coat-protein complex publication-title: RNA – volume: 39 start-page: 279 year: 1969 end-page: 292 ident: bb0040 article-title: Regulation of protein synthesis directed by coliphage MS2 RNA. I. Phage protein and RNA synthesis in cells infected with suppressible mutants publication-title: J Mol Biol – volume: 153 start-page: 631 year: 1981 end-page: 660 ident: bb0020 article-title: Interactions of Qβ replicase with Qβ RNA publication-title: J Mol Biol – volume: 69 start-page: 3033 year: 1972 end-page: 3037 ident: bb0015 article-title: Nucleotide sequence at the binding site for coat protein on RNA of bacteriophage R17 publication-title: Proc Natl Acad Sci USA – volume: 26 start-page: 1345 year: 1998 end-page: 1351 ident: bb0075 article-title: Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments publication-title: Nucleic Acids Res – volume: 345 start-page: 36 year: 1990 end-page: 41 ident: bb0025 article-title: The three-dimensional structure of the bacterial virus MS2 publication-title: Nature – volume: 26 start-page: 1563 year: 1987 end-page: 1568 ident: bb0060 article-title: RNA binding site of R17 coat protein publication-title: Biochemistry – volume: 5 start-page: 970 year: 1998 end-page: 975 ident: bb0135 article-title: Crystal structures of a series of RNA aptamers complexed to the same protein target publication-title: Nat Struct Biol – volume: 52 start-page: 842 year: 1996 end-page: 857 ident: bb0205 article-title: Use of non-crystallographic symmetry in protein structure refinement publication-title: Acta Crystallogr Sect D Biol Crystallogr – volume: 14 start-page: 487 year: 2006 end-page: 495 ident: bb0125 article-title: Structural basis of RNA binding discrimination between bacteriophages Qβ and MS2 publication-title: Structure – volume: 53 start-page: 240 year: 1997 end-page: 255 ident: bb0185 article-title: Refinement of macromolecular structures by the maximum-likelihood method publication-title: Acta Crystallogr Sect D Biol Crystallogr – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bb0190 article-title: Features and development of Coot publication-title: Acta Crystallogr Sect D Biol Crystallogr – volume: 5 start-page: 133 year: 1998 end-page: 139 ident: bb0140 article-title: Crystal structure of an RNA aptamer–protein complex at 2.8 publication-title: Nat Struct Biol – volume: 30 start-page: 4138 year: 2002 end-page: 4144 ident: bb0120 article-title: RNA recognition site of PP7 coat protein publication-title: Nucleic Acids Res – volume: 405 start-page: 122 year: 2002 end-page: 129 ident: bb0130 article-title: Recognition of diverse RNAs by a single protein structural framework publication-title: Arch Biochem Biophys – volume: 33 start-page: 22 year: 1997 end-page: 24 ident: bb0170 article-title: Scala publication-title: Joint CCP4 – volume: 418 start-page: 175 year: 1976 end-page: 183 ident: bb0035 article-title: The binding site for coat protein on bacteriophage Qβ RNA publication-title: Biochim Biophys Acta – volume: 1 start-page: 539 year: 1983 end-page: 552 ident: bb0055 article-title: Interaction of R17 coat protein with its RNA binding site for translational repression publication-title: J Biomol Struct Dyn – volume: 15 start-page: 103 year: 2008 end-page: 105 ident: bb0095 article-title: Structural basis for the coevolution of a viral RNA–protein complex publication-title: Nat Struct Mol Biol – volume: 25 start-page: 2808 year: 1997 end-page: 2815 ident: bb0115 article-title: MS2 coat protein mutants which bind Qβ RNA publication-title: Nucleic Acids Res – volume: 30 start-page: 2678 year: 2002 end-page: 2685 ident: bb0085 article-title: Investigating the structural basis of purine specificity in the structures of MS2 coat protein RNA translational operator hairpins publication-title: Nucleic Acids Res – volume: 26 year: 1992 ident: bb0165 article-title: Recent changes to the MOSFLM package for processing film and image plate data publication-title: Joint CCP4 – volume: 30 start-page: 4138 year: 2002 ident: 10.1016/j.jmb.2013.08.025_bb0120 article-title: RNA recognition site of PP7 coat protein publication-title: Nucleic Acids Res doi: 10.1093/nar/gkf552 – volume: 66 start-page: 12 year: 2010 ident: 10.1016/j.jmb.2013.08.025_bb0195 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr Sect D Biol Crystallogr doi: 10.1107/S0907444909042073 – volume: 52 start-page: 842 year: 1996 ident: 10.1016/j.jmb.2013.08.025_bb0205 article-title: Use of non-crystallographic symmetry in protein structure refinement publication-title: Acta Crystallogr Sect D Biol Crystallogr doi: 10.1107/S0907444995016477 – volume: 345 start-page: 36 year: 1990 ident: 10.1016/j.jmb.2013.08.025_bb0025 article-title: The three-dimensional structure of the bacterial virus MS2 publication-title: Nature doi: 10.1038/345036a0 – volume: 22 start-page: 2601 year: 1983 ident: 10.1016/j.jmb.2013.08.025_bb0050 article-title: Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site publication-title: Biochemistry doi: 10.1021/bi00280a002 – volume: 5 start-page: 970 year: 1998 ident: 10.1016/j.jmb.2013.08.025_bb0135 article-title: Crystal structures of a series of RNA aptamers complexed to the same protein target publication-title: Nat Struct Biol doi: 10.1038/2946 – volume: 50 start-page: 760 year: 1994 ident: 10.1016/j.jmb.2013.08.025_bb0175 article-title: The CCP4 suite: programs for protein crystallography publication-title: Acta Crystallogr Sect D Biol Crystallogr doi: 10.1107/S0907444994003112 – volume: 7 start-page: 1616 year: 2001 ident: 10.1016/j.jmb.2013.08.025_bb0080 article-title: Structural basis of pyrimidine specificity in the MS2 RNA hairpin-coat-protein complex publication-title: RNA – volume: 405 start-page: 122 year: 2002 ident: 10.1016/j.jmb.2013.08.025_bb0130 article-title: Recognition of diverse RNAs by a single protein structural framework publication-title: Arch Biochem Biophys doi: 10.1016/S0003-9861(02)00334-X – volume: 25 start-page: 2808 year: 1997 ident: 10.1016/j.jmb.2013.08.025_bb0115 article-title: MS2 coat protein mutants which bind Qβ RNA publication-title: Nucleic Acids Res doi: 10.1093/nar/25.14.2808 – volume: 153 start-page: 631 year: 1981 ident: 10.1016/j.jmb.2013.08.025_bb0020 article-title: Interactions of Qβ replicase with Qβ RNA publication-title: J Mol Biol doi: 10.1016/0022-2836(81)90411-3 – volume: 391 start-page: 635 year: 2009 ident: 10.1016/j.jmb.2013.08.025_bb0155 article-title: The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly publication-title: J Mol Biol doi: 10.1016/j.jmb.2009.06.047 – volume: 248 start-page: 204 year: 1974 ident: 10.1016/j.jmb.2013.08.025_bb0030 article-title: Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA publication-title: Nature doi: 10.1038/248204a0 – volume: 371 start-page: 623 year: 1994 ident: 10.1016/j.jmb.2013.08.025_bb0065 article-title: Crystal structure of an RNA bacteriophage coat protein–operator complex publication-title: Nature doi: 10.1038/371623a0 – volume: 85 start-page: 4628 year: 2011 ident: 10.1016/j.jmb.2013.08.025_bb0150 article-title: Genome structure of caulobacter phage phiCb5 publication-title: J Virol doi: 10.1128/JVI.02256-10 – volume: 14 start-page: 487 year: 2006 ident: 10.1016/j.jmb.2013.08.025_bb0125 article-title: Structural basis of RNA binding discrimination between bacteriophages Qβ and MS2 publication-title: Structure doi: 10.1016/j.str.2005.12.006 – ident: 10.1016/j.jmb.2013.08.025_bb0210 – volume: 30 start-page: 1022 year: 1997 ident: 10.1016/j.jmb.2013.08.025_bb0180 article-title: MOLREP: an automated program for molecular replacement publication-title: J Appl Crystallogr doi: 10.1107/S0021889897006766 – volume: 30 start-page: 2678 year: 2002 ident: 10.1016/j.jmb.2013.08.025_bb0085 article-title: Investigating the structural basis of purine specificity in the structures of MS2 coat protein RNA translational operator hairpins publication-title: Nucleic Acids Res doi: 10.1093/nar/gkf371 – volume: 4 start-page: 343 year: 1996 ident: 10.1016/j.jmb.2013.08.025_bb0110 article-title: The crystal structure of bacteriophage Qβ at 3.5Å resolution publication-title: Structure doi: 10.1016/S0969-2126(96)00060-3 – volume: 39 start-page: 279 year: 1969 ident: 10.1016/j.jmb.2013.08.025_bb0040 article-title: Regulation of protein synthesis directed by coliphage MS2 RNA. I. Phage protein and RNA synthesis in cells infected with suppressible mutants publication-title: J Mol Biol doi: 10.1016/0022-2836(69)90317-9 – volume: 271 start-page: 31839 year: 1996 ident: 10.1016/j.jmb.2013.08.025_bb0105 article-title: The RNA-binding site of bacteriophage Qβ coat protein publication-title: J Biol Chem doi: 10.1074/jbc.271.50.31839 – volume: 5 start-page: 133 year: 1998 ident: 10.1016/j.jmb.2013.08.025_bb0140 article-title: Crystal structure of an RNA aptamer–protein complex at 2.8Å resolution publication-title: Nat Struct Biol doi: 10.1038/nsb0298-133 – start-page: 571 year: 2005 ident: 10.1016/j.jmb.2013.08.025_bb0160 article-title: Protein identification and analysis tools on the ExPASy server – volume: 83 start-page: 1523 year: 2002 ident: 10.1016/j.jmb.2013.08.025_bb0145 article-title: Nucleotide sequence of a ssRNA phage from Acinetobacter: kinship to coliphages publication-title: J Gen Virol doi: 10.1099/0022-1317-83-6-1523 – volume: 33 start-page: 22 year: 1997 ident: 10.1016/j.jmb.2013.08.025_bb0170 article-title: Scala – volume: 15 start-page: 103 year: 2008 ident: 10.1016/j.jmb.2013.08.025_bb0095 article-title: Structural basis for the coevolution of a viral RNA–protein complex publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1327 – volume: 69 start-page: 367 year: 2013 ident: 10.1016/j.jmb.2013.08.025_bb0090 article-title: PRR1 coat protein binding to its RNA translational operator publication-title: Acta Crystallogr Sect D Biol Crystallogr doi: 10.1107/S0907444912047464 – volume: 204 start-page: 939 year: 1988 ident: 10.1016/j.jmb.2013.08.025_bb0045 article-title: Roles of operator and non-operator RNA sequences in bacteriophage R17 capsid assembly publication-title: J Mol Biol doi: 10.1016/0022-2836(88)90053-8 – volume: 69 start-page: 3033 year: 1972 ident: 10.1016/j.jmb.2013.08.025_bb0015 article-title: Nucleotide sequence at the binding site for coat protein on RNA of bacteriophage R17 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.69.10.3033 – volume: 654 start-page: 249 year: 1981 ident: 10.1016/j.jmb.2013.08.025_bb0010 article-title: Localization of A protein in the RNA-A protein complex of RNA phage MS2 publication-title: Biochim Biophys Acta doi: 10.1016/0005-2787(81)90179-9 – volume: 372 start-page: 774 year: 2007 ident: 10.1016/j.jmb.2013.08.025_bb0200 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.05.022 – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.jmb.2013.08.025_bb0190 article-title: Features and development of Coot publication-title: Acta Crystallogr Sect D Biol Crystallogr doi: 10.1107/S0907444910007493 – volume: 53 start-page: 240 year: 1997 ident: 10.1016/j.jmb.2013.08.025_bb0185 article-title: Refinement of macromolecular structures by the maximum-likelihood method publication-title: Acta Crystallogr Sect D Biol Crystallogr doi: 10.1107/S0907444996012255 – volume: 1 start-page: 539 year: 1983 ident: 10.1016/j.jmb.2013.08.025_bb0055 article-title: Interaction of R17 coat protein with its RNA binding site for translational repression publication-title: J Biomol Struct Dyn doi: 10.1080/07391102.1983.10507460 – volume: 270 start-page: 724 year: 1997 ident: 10.1016/j.jmb.2013.08.025_bb0070 article-title: The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein–RNA interactions publication-title: J Mol Biol doi: 10.1006/jmbi.1997.1144 – volume: 26 year: 1992 ident: 10.1016/j.jmb.2013.08.025_bb0165 article-title: Recent changes to the MOSFLM package for processing film and image plate data – volume: 26 start-page: 1563 year: 1987 ident: 10.1016/j.jmb.2013.08.025_bb0060 article-title: RNA binding site of R17 coat protein publication-title: Biochemistry doi: 10.1021/bi00380a011 – start-page: 175 year: 2006 ident: 10.1016/j.jmb.2013.08.025_bb0005 article-title: Single-stranded RNA phages – volume: 418 start-page: 175 year: 1976 ident: 10.1016/j.jmb.2013.08.025_bb0035 article-title: The binding site for coat protein on bacteriophage Qβ RNA publication-title: Biochim Biophys Acta doi: 10.1016/0005-2787(76)90067-8 – volume: 26 start-page: 1345 year: 1998 ident: 10.1016/j.jmb.2013.08.025_bb0075 article-title: Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments publication-title: Nucleic Acids Res doi: 10.1093/nar/26.5.1345 – volume: 28 start-page: 71 year: 1989 ident: 10.1016/j.jmb.2013.08.025_bb0100 article-title: Specific RNA binding by Qβ coat protein publication-title: Biochemistry doi: 10.1021/bi00427a011 |
| SSID | ssj0005348 |
| Score | 2.2575524 |
| Snippet | The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1039 |
| SubjectTerms | adenine allolevivirus Bacteria bacteriophages binding proteins Capsid Proteins - chemistry Capsid Proteins - genetics Capsid Proteins - metabolism coat proteins coevolution crystal structure Crystallography, X-Ray genes Leviviridae Models, Molecular Nucleic Acid Conformation Operator Regions, Genetic - genetics Phage MS2 Protein Binding Protein Conformation protein–RNA interaction RNA RNA recognition RNA Replicase - chemistry RNA Replicase - genetics RNA Replicase - metabolism RNA, Viral - chemistry RNA, Viral - genetics RNA, Viral - metabolism translational repression tyrosine |
| Title | Crystal Structure of the Bacteriophage Qβ Coat Protein in Complex with the RNA Operator of the Replicase Gene |
| URI | https://dx.doi.org/10.1016/j.jmb.2013.08.025 https://www.ncbi.nlm.nih.gov/pubmed/24035813 https://www.proquest.com/docview/1500700320 https://www.proquest.com/docview/1520365993 https://www.proquest.com/docview/2000204857 |
| Volume | 426 |
| WOSCitedRecordID | wos000332909300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1089-8638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005348 issn: 0022-2836 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB7cXUVfRNdbvSwjuC-WLJNM0pk81lLxAsWVFfoWZpIJttok9CLdv-UP8Td55pZuF1v0QSihZC6l-b6enplz5jsIveKsKCQjJGCFkEEswYeT4JkGihdhKVWPhYqYYhNsNOLjcfrJ5aouTDkBVlV8vU6b_wo13AOw9dHZf4C7nRRuwHsAHa4AO1z_CvjB_HKxtKdAVjY-4NIApBVmrpuvOk_n_HQwPH0TdfNaLLtGrWFikh5Njrlauw1aGPZ51O_WjTLheD_VXJmw90LpCszbyUQbB3fmK-92ndJTG9xZzaqJ-mYZJKy0ids-sAXbPgqwc_OtHYkwNilZTs_aWlHC04D3rGyLN7OxPRnv-JRcMZo6Gv1Ha243FqZn05nUSXjUiK3ac9JXgGxmBkktLJhwe7D1moS2bzpARxFLUjB-R_33w_GHTS4QjbkPeZvkv2ufqCWj3Ry7_Jdd6xPjp1zcQ3fd88d9S4z76IaqjtEtW3L08hjdHvgKfw9Q5aiCW6rgusSAL96iCj7_9RNrmmBHEwwvRxOsaWKGAE2wp4mfpqUJ1jR5iL68HV4M3gWu_kaQx2G6DMKSCFj_S1IqWaRFWMDSNk-SnMWRKAVJKc9lDn1KSsOQyjAvezQutKRhLMpeKOgjdFjVlXqCcBkVOaEc_EEJjangXNKIMlhPCNkjgnQQ8U81y504va6R8j3zWYjTDDDJNCaZrpsaJR30uh3SWGWWfZ1jD1XmXEvrMmbAtX3DXnpYM8BGx9JEperVIoN1FPxZEhqRfX10lB_4Rnf3iUwuQMwT1kGPLW_ab-Mp93RnyzN0Z_MDfI4OgS3qBbqZ_1hOFvMTdMDG_MRx_Tdc0cG2 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+structure+of+the+bacteriophage+Q%CE%B2+coat+protein+in+complex+with+the+RNA+operator+of+the+replicase+gene&rft.jtitle=Journal+of+molecular+biology&rft.au=Rumnieks%2C+Janis&rft.au=Tars%2C+Kaspars&rft.date=2014-03-06&rft.eissn=1089-8638&rft.volume=426&rft.issue=5&rft.spage=1039&rft_id=info:doi/10.1016%2Fj.jmb.2013.08.025&rft_id=info%3Apmid%2F24035813&rft.externalDocID=24035813 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon |