Cooperative Differential Evolution With Multiple Populations for Multiobjective Optimization

This paper presents a cooperative differential evolution (DE) with multiple populations for multiobjective optimization. The proposed algorithm has M single-objective optimization subpopulations and an archive population for an M-objective optimization problem. An adaptive DE is applied to each subp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 46; no. 12; pp. 2848 - 2861
Main Authors: Wang, Jiahai, Zhang, Weiwei, Zhang, Jun
Format: Journal Article
Language:English
Published: United States IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a cooperative differential evolution (DE) with multiple populations for multiobjective optimization. The proposed algorithm has M single-objective optimization subpopulations and an archive population for an M-objective optimization problem. An adaptive DE is applied to each subpopulation to optimize the corresponding objective of the multiobjective optimization problem (MOP). The archive population is also optimized by an adaptive DE. The archive population is used not only to maintain all nondominated solutions found so far but also to guide each subpopulation to search along the whole Pareto front. These (M + 1) populations cooperate to optimize all objectives of the MOP by using adaptive DEs. Simulation results on benchmark problems with two, three, and many objectives show that the proposed algorithm is better than some state-of-the-art multiobjective DE algorithms and other popular multiobjective evolutionary algorithms. The online search behavior and parameter sensitivity of the proposed algorithm are also investigated.
AbstractList This paper presents a cooperative differential evolution (DE) with multiple populations for multiobjective optimization. The proposed algorithm has M single-objective optimization subpopulations and an archive population for an M-objective optimization problem. An adaptive DE is applied to each subpopulation to optimize the corresponding objective of the multiobjective optimization problem (MOP). The archive population is also optimized by an adaptive DE. The archive population is used not only to maintain all nondominated solutions found so far but also to guide each subpopulation to search along the whole Pareto front. These (M + 1) populations cooperate to optimize all objectives of the MOP by using adaptive DEs. Simulation results on benchmark problems with two, three, and many objectives show that the proposed algorithm is better than some state-of-the-art multiobjective DE algorithms and other popular multiobjective evolutionary algorithms. The online search behavior and parameter sensitivity of the proposed algorithm are also investigated.
This paper presents a cooperative differential evolution (DE) with multiple populations for multiobjective optimization. The proposed algorithm has M single-objective optimization subpopulations and an archive population for an M -objective optimization problem. An adaptive DE is applied to each subpopulation to optimize the corresponding objective of the multiobjective optimization problem (MOP). The archive population is also optimized by an adaptive DE. The archive population is used not only to maintain all nondominated solutions found so far but also to guide each subpopulation to search along the whole Pareto front. These (M+1) populations cooperate to optimize all objectives of the MOP by using adaptive DEs. Simulation results on benchmark problems with two, three, and many objectives show that the proposed algorithm is better than some state-of-the-art multiobjective DE algorithms and other popular multiobjective evolutionary algorithms. The online search behavior and parameter sensitivity of the proposed algorithm are also investigated.This paper presents a cooperative differential evolution (DE) with multiple populations for multiobjective optimization. The proposed algorithm has M single-objective optimization subpopulations and an archive population for an M -objective optimization problem. An adaptive DE is applied to each subpopulation to optimize the corresponding objective of the multiobjective optimization problem (MOP). The archive population is also optimized by an adaptive DE. The archive population is used not only to maintain all nondominated solutions found so far but also to guide each subpopulation to search along the whole Pareto front. These (M+1) populations cooperate to optimize all objectives of the MOP by using adaptive DEs. Simulation results on benchmark problems with two, three, and many objectives show that the proposed algorithm is better than some state-of-the-art multiobjective DE algorithms and other popular multiobjective evolutionary algorithms. The online search behavior and parameter sensitivity of the proposed algorithm are also investigated.
This paper presents a cooperative differential evolution (DE) with multiple populations for multiobjective optimization. The proposed algorithm has [Formula Omitted] single-objective optimization subpopulations and an archive population for an [Formula Omitted]-objective optimization problem. An adaptive DE is applied to each subpopulation to optimize the corresponding objective of the multiobjective optimization problem (MOP). The archive population is also optimized by an adaptive DE. The archive population is used not only to maintain all nondominated solutions found so far but also to guide each subpopulation to search along the whole Pareto front. These [Formula Omitted] populations cooperate to optimize all objectives of the MOP by using adaptive DEs. Simulation results on benchmark problems with two, three, and many objectives show that the proposed algorithm is better than some state-of-the-art multiobjective DE algorithms and other popular multiobjective evolutionary algorithms. The online search behavior and parameter sensitivity of the proposed algorithm are also investigated.
Author Jun Zhang
Weiwei Zhang
Jiahai Wang
Author_xml – sequence: 1
  givenname: Jiahai
  surname: Wang
  fullname: Wang, Jiahai
– sequence: 2
  givenname: Weiwei
  surname: Zhang
  fullname: Zhang, Weiwei
– sequence: 3
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26552101$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rFTEUxYNUbK39ACLIgBs375mbZJKZpT7bKlTqoiKCMGSSG8wjbzJNMgX99M7741t0YTY35P7OyeWe5-RkiAMS8hLoEoC27-5WPz4sGYV6yURLpWyfkDMGslkwpuqT412qU3KR85rOp5mf2uYZOWWyrhlQOCM_VzGOmHTxD1h99M5hwqF4HarLhxim4uNQffflV_VlCsWPAauvcZyC3jZy5WLaN2K_RrPzuB2L3_g_O-AFeep0yHhxqOfk29Xl3erT4ub2-vPq_c3CCGjLAqRprGAAzAltem21aK2yWglGlaUtqNoY2yvKHbdaC0cFgoVaWN1b7pCfk7d73zHF-wlz6TY-GwxBDxin3EHDpORMNWpG3zxC13FKwzzdTAnGgEMjZ-r1gZr6DdpuTH6j0-_u395mAPaASTHnhO6IAO228XTbeLptPN0hnlmjHmmML7s9laR9-K_y1V7pEfH4k-IgWi74XxRSnaU
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TFUZZ_2024_3397728
crossref_primary_10_1109_ACCESS_2024_3419849
crossref_primary_10_1109_TEVC_2017_2767023
crossref_primary_10_1016_j_ins_2023_02_043
crossref_primary_10_1109_TNNLS_2020_3027298
crossref_primary_10_1109_ACCESS_2019_2911087
crossref_primary_10_1016_j_energy_2021_123083
crossref_primary_10_1109_TCYB_2018_2834466
crossref_primary_10_1109_ACCESS_2018_2852640
crossref_primary_10_1109_TFUZZ_2018_2872125
crossref_primary_10_1016_j_ins_2017_11_030
crossref_primary_10_1007_s12065_021_00567_0
crossref_primary_10_1109_TEVC_2022_3225632
crossref_primary_10_1016_j_swevo_2019_05_007
crossref_primary_10_1109_TCYB_2018_2866527
crossref_primary_10_1007_s12293_021_00336_7
crossref_primary_10_1109_ACCESS_2023_3300590
crossref_primary_10_1109_TSMC_2023_3298690
crossref_primary_10_1016_j_neucom_2018_02_038
crossref_primary_10_3233_ICA_180594
crossref_primary_10_1109_TII_2019_2961340
crossref_primary_10_1587_nolta_15_404
crossref_primary_10_3390_ma18051159
crossref_primary_10_1016_j_asoc_2025_113762
crossref_primary_10_1002_cpe_8221
crossref_primary_10_1109_TSMC_2016_2631479
crossref_primary_10_1109_TSMC_2023_3298804
crossref_primary_10_1109_TCYB_2018_2868493
crossref_primary_10_1109_TSMC_2020_2964797
crossref_primary_10_1007_s10489_020_01733_0
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1016_j_swevo_2018_02_011
crossref_primary_10_1109_TEVC_2021_3131124
crossref_primary_10_1007_s00202_023_01988_z
crossref_primary_10_1016_j_asoc_2021_108297
crossref_primary_10_1016_j_swevo_2022_101142
crossref_primary_10_1007_s00500_019_03934_3
crossref_primary_10_1007_s10710_017_9305_0
crossref_primary_10_1016_j_swevo_2020_100697
crossref_primary_10_1038_s41598_024_76877_x
crossref_primary_10_1109_TCYB_2017_2780274
crossref_primary_10_1109_TCYB_2018_2819208
crossref_primary_10_1109_TSMC_2018_2875043
crossref_primary_10_1016_j_cie_2021_107367
crossref_primary_10_1016_j_engappai_2020_103479
crossref_primary_10_1016_j_jocs_2022_101746
crossref_primary_10_1016_j_swevo_2019_02_004
crossref_primary_10_1016_j_knosys_2018_01_028
crossref_primary_10_1109_TCYB_2018_2811761
crossref_primary_10_1109_TBDATA_2017_2685581
crossref_primary_10_1007_s00500_019_04328_1
crossref_primary_10_1109_TCYB_2018_2849343
crossref_primary_10_1016_j_eswa_2025_128163
crossref_primary_10_1109_ACCESS_2021_3100483
crossref_primary_10_1016_j_ins_2024_120185
crossref_primary_10_1016_j_jpowsour_2021_230473
crossref_primary_10_1016_j_cor_2021_105543
crossref_primary_10_1109_TCYB_2019_2935762
crossref_primary_10_1109_TFUZZ_2022_3163909
crossref_primary_10_1016_j_ins_2019_06_051
crossref_primary_10_1109_TSMC_2018_2861879
crossref_primary_10_1016_j_ijepes_2023_109584
crossref_primary_10_1016_j_swevo_2024_101771
crossref_primary_10_1109_TII_2018_2884951
crossref_primary_10_1016_j_swevo_2021_100960
crossref_primary_10_1016_j_future_2017_10_015
crossref_primary_10_1016_j_ins_2020_11_030
crossref_primary_10_1016_j_asoc_2018_08_020
crossref_primary_10_3390_pr12071531
crossref_primary_10_1109_TSMC_2019_2956121
crossref_primary_10_1109_TCYB_2017_2685944
crossref_primary_10_1109_TII_2019_2952565
crossref_primary_10_1109_ACCESS_2017_2702561
crossref_primary_10_1016_j_ins_2018_11_015
crossref_primary_10_1016_j_ins_2020_02_027
crossref_primary_10_1016_j_future_2019_02_030
crossref_primary_10_1016_j_ins_2025_122671
crossref_primary_10_3390_app12115524
crossref_primary_10_1093_jcde_qwac127
crossref_primary_10_1016_j_seta_2021_101938
crossref_primary_10_1109_TEVC_2016_2606577
crossref_primary_10_1016_j_asoc_2020_106393
crossref_primary_10_1016_j_asoc_2017_09_039
crossref_primary_10_1109_TCYB_2022_3180214
crossref_primary_10_3390_sym14102037
crossref_primary_10_1109_TEVC_2024_3365814
crossref_primary_10_3233_JIFS_202810
crossref_primary_10_1016_j_ins_2018_06_063
Cites_doi 10.1109/TSMCC.2008.923864
10.1109/TEVC.2005.860762
10.1109/TEVC.2015.2424251
10.1007/s00500-012-0816-6
10.1109/TSMCB.2012.2209115
10.1016/j.swevo.2011.03.001
10.1109/TEVC.2007.892759
10.1109/TEVC.2008.920671
10.1007/978-3-540-68830-3_7
10.1109/4235.996017
10.1016/S0893-6080(02)00095-3
10.1109/TEVC.2008.925798
10.1007/s00500-008-0394-9
10.1016/j.asoc.2014.06.011
10.1109/TEVC.2013.2281543
10.1109/TEVC.2010.2059031
10.1109/TSMCC.2011.2160941
10.1023/A:1008202821328
10.1016/j.ins.2015.05.026
10.1109/TEVC.2005.851274
10.1109/TSMCB.2008.925757
10.1016/j.ejor.2009.05.005
10.1109/TCYB.2014.2316552
10.1007/s10462-009-9137-2
10.1016/j.asoc.2015.04.061
10.1109/CEC.2001.934295
10.1109/SDE.2013.6601435
10.1109/CEC.2003.1299614
10.1109/TEVC.2006.872133
10.1007/s10462-012-9378-3
10.1109/TEVC.2010.2058120
10.1016/j.ins.2013.06.011
10.1109/TCYB.2014.2334692
10.1109/TEVC.2013.2281535
10.1109/TEVC.2013.2262178
10.1109/TEVC.2009.2014613
10.1109/CEC.2013.6557903
10.1109/TEVC.2005.861417
10.1016/j.swevo.2011.02.002
10.1007/s00500-008-0323-y
10.1109/TEVC.2003.810758
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2015.2490669
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
EISSN 2168-2275
EndPage 2861
ExternalDocumentID 26552101
10_1109_TCYB_2015_2490669
7314934
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China for Distinguished Young Scholars
  grantid: 61125205
  funderid: 10.13039/501100001809
– fundername: National High-Technology Research and Development Program (863 Program) of China
  grantid: 2013AA01A212
– fundername: National Natural Science Foundation of China
  grantid: 61332002; 61300044
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c419t-16c8d42112f4acbada49d7da74207d09175ccdb703f3daa4f04e1d154dabd3fe3
IEDL.DBID RIE
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388923100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 11:52:56 EDT 2025
Sun Jun 29 15:41:52 EDT 2025
Thu Apr 03 07:02:56 EDT 2025
Tue Nov 18 21:46:37 EST 2025
Sat Nov 29 06:48:31 EST 2025
Tue Aug 26 16:43:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-16c8d42112f4acbada49d7da74207d09175ccdb703f3daa4f04e1d154dabd3fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://ieeexplore.ieee.org/document/7314934
PMID 26552101
PQID 1842213186
PQPubID 85422
PageCount 14
ParticipantIDs proquest_miscellaneous_1826632787
ieee_primary_7314934
proquest_journals_1842213186
crossref_primary_10_1109_TCYB_2015_2490669
pubmed_primary_26552101
crossref_citationtrail_10_1109_TCYB_2015_2490669
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
zitzler (ref37) 2002
ref17
ref16
ref19
ref18
zhang (ref39) 2009
ref50
knowles (ref42) 2006
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref40
dorronsoro (ref31) 2011; 362
ref36
ref30
ref33
ref32
ref2
ref1
ref38
cheng (ref5) 2013; 1
chiang (ref15) 2013
parsopoulos (ref35) 2004
ali (ref8) 2012; 217
ref24
ref23
iorio (ref27) 2004
ref26
ref25
ref20
schaffer (ref34) 1985
ref22
ref21
ref28
goh (ref29) 2009; 13
References_xml – ident: ref22
  doi: 10.1109/TSMCC.2008.923864
– ident: ref28
  doi: 10.1109/TEVC.2005.860762
– ident: ref47
  doi: 10.1109/TEVC.2015.2424251
– start-page: 1
  year: 2009
  ident: ref39
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref11
  doi: 10.1007/s00500-012-0816-6
– ident: ref12
  doi: 10.1109/TSMCB.2012.2209115
– start-page: 537
  year: 2004
  ident: ref27
  publication-title: A Cooperative Coevolutionary Multiobjective Algorithm Using Non-Dominated Sorting
– start-page: 93
  year: 1985
  ident: ref34
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
  publication-title: Proc 1st Int Conf Genet Algorithms
– ident: ref1
  doi: 10.1016/j.swevo.2011.03.001
– ident: ref3
  doi: 10.1109/TEVC.2007.892759
– volume: 1
  start-page: 1
  year: 2013
  ident: ref5
  article-title: Multi-objective differential evolution: A recent survey
  publication-title: Applied Soft Computing
– volume: 13
  start-page: 103
  year: 2009
  ident: ref29
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.920671
– ident: ref4
  doi: 10.1007/978-3-540-68830-3_7
– ident: ref2
  doi: 10.1109/4235.996017
– ident: ref25
  doi: 10.1016/S0893-6080(02)00095-3
– ident: ref10
  doi: 10.1109/TEVC.2008.925798
– ident: ref9
  doi: 10.1007/s00500-008-0394-9
– ident: ref32
  doi: 10.1016/j.asoc.2014.06.011
– start-page: 823
  year: 2004
  ident: ref35
  article-title: Multiobjective optimization using parallel vector evaluated particle swarm optimization
  publication-title: Proc IASTED Int Conf Artif Intell Appl
– ident: ref50
  doi: 10.1109/TEVC.2013.2281543
– ident: ref13
  doi: 10.1109/TEVC.2010.2059031
– ident: ref21
  doi: 10.1109/TSMCC.2011.2160941
– ident: ref6
  doi: 10.1023/A:1008202821328
– ident: ref19
  doi: 10.1016/j.ins.2015.05.026
– ident: ref43
  doi: 10.1109/TEVC.2005.851274
– ident: ref46
  doi: 10.1109/TSMCB.2008.925757
– ident: ref30
  doi: 10.1016/j.ejor.2009.05.005
– ident: ref18
  doi: 10.1109/TCYB.2014.2316552
– ident: ref14
  doi: 10.1007/s10462-009-9137-2
– volume: 217
  start-page: 404
  year: 2012
  ident: ref8
  article-title: An efficient differential evolution based algorithm for solving multi-objective optimization problems
  publication-title: Eur J Oper Res
– ident: ref24
  doi: 10.1016/j.asoc.2015.04.061
– ident: ref7
  doi: 10.1109/CEC.2001.934295
– start-page: 1
  year: 2013
  ident: ref15
  article-title: Parameter control mechanisms in differential evolution: A tutorial review and taxonomy
  publication-title: Proc IEEE Symp Differ Evol (SDE)
  doi: 10.1109/SDE.2013.6601435
– ident: ref26
  doi: 10.1109/CEC.2003.1299614
– ident: ref17
  doi: 10.1109/TEVC.2006.872133
– ident: ref23
  doi: 10.1007/s10462-012-9378-3
– ident: ref48
  doi: 10.1109/TEVC.2010.2058120
– volume: 362
  start-page: 49
  year: 2011
  ident: ref31
  publication-title: Multi-Objective Cooperative Coevolutionary Evolutionary Algorithms for Continuous and Combinatorial Optimization
– ident: ref20
  doi: 10.1016/j.ins.2013.06.011
– ident: ref49
  doi: 10.1109/TCYB.2014.2334692
– year: 2006
  ident: ref42
  article-title: A tutorial on the performance assessment of stochastic multiobjective optimizers
– ident: ref38
  doi: 10.1109/TEVC.2013.2281535
– ident: ref36
  doi: 10.1109/TEVC.2013.2262178
– ident: ref16
  doi: 10.1109/TEVC.2009.2014613
– ident: ref33
  doi: 10.1109/CEC.2013.6557903
– start-page: 95
  year: 2002
  ident: ref37
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems
– ident: ref40
  doi: 10.1109/TEVC.2005.861417
– ident: ref44
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref45
  doi: 10.1007/s00500-008-0323-y
– ident: ref41
  doi: 10.1109/TEVC.2003.810758
SSID ssj0000816898
Score 2.4573624
Snippet This paper presents a cooperative differential evolution (DE) with multiple populations for multiobjective optimization. The proposed algorithm has M...
This paper presents a cooperative differential evolution (DE) with multiple populations for multiobjective optimization. The proposed algorithm has [Formula...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2848
SubjectTerms Algorithms
Approximation methods
Archive search
Archives & records
Computer simulation
cooperative populations
Customer relationship management
differential evolution (DE)
Estimation
Evolutionary algorithms
Evolutionary computation
Frequency modulation
many-objective optimization
Mathematical programming
multiobjective optimization
Multiple objective analysis
Optimization
Parameter sensitivity
Pareto optimization
Populations
Sociology
Statistics
Title Cooperative Differential Evolution With Multiple Populations for Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/7314934
https://www.ncbi.nlm.nih.gov/pubmed/26552101
https://www.proquest.com/docview/1842213186
https://www.proquest.com/docview/1826632787
Volume 46
WOSCitedRecordID wos000388923100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC0B4sBl2IewySNxgBGBLE4cH6EBcRiWA4hGQoq8RYCgg-huvp_y0jkNSNyc2EmsVLnqlZdXADulRh9VUR5beqqYpkrGXGptL4Vo8F5mHGX-P3Z5WfX7_HoK9ruzMMYYt_nMHNiiW8vXrRrbqbJDliOez-k0TDNW-rNa3XyKSyDhUt9mWIgRVbCwiJkm_PCmd39s93EVBxhuoJe1ZKFZWaDvCtlgJh7JpVj5Gm06r3M2_7P-LsCvgC7JkVeHRZgygyVYDON3SHYDyfTeEsxZlOlJmpfhode2b8ZzgJOTkDIFh_4LOf0IqknunkaP5CJsPyTXXd6vIUHY6yta-ezNJ7lCQ_QaTniuwO3Z6U3vPA5pF2JFUz6K01JVmmJgmDVUKCm0oFwzLTCITphGfMEKpbREU9HkWgjaJNSkGqGYFlLnjclXYWbQDswaEEvtk3OaiqYwVMqEG5aXqdSVsMuBRRZBMvn1tQqc5DY1xkvtYpOE11ZwtRVcHQQXwd_ukTdPyPFd42Urla5hEEgEmxP51mHIDmsMdbMsRRNXRvCnq8bBZldQxMC0Y9sG8UyeoZGL4LfXi-7dE3Va__83N2AOe1b6nTCbMDN6H5stmFUfKOv3bdTofrXtNPoTiIvvpQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RilQutDxa0vIwUg9QEUgcJ1kfywICsWw5LCpISJFfESDYIHaX39_xY3OiSNyc2EmszHjmGz--AfhZaPRRHcZjS08Vs1TJmEut7aUQNd6jxlHm98p-v3N1xS9mYLc9C2OMcZvPzJ4turV83aiJnSrbLzPE8xn7AB9zxmjiT2u1MyouhYRLfkuxECOuKMMyZprw_UH3-sDu5Mr3MOBAP2vpQmmRo_cK-WCmPsklWfk_3nR-5_jz-3r8BRYCviS_vUIswowZLsFiGMEjsh1opneWYN7iTE_TvAw33aZ5Mp4FnByGpCk4-B_I0UtQTvL3bnxLzsMGRHLRZv4aEQS-vqKR996Akj9oih7DGc8VuDw-GnRP4pB4IVYs5eM4LVRHMwwNac2EkkILxnWpBYbRSakRYZS5UlqisagzLQSrE2ZSjWBMC6mz2mRfYXbYDM0qEEvuk3GWijo3TMqEmzIrUqk7wi4I5jSCZPrrKxVYyW1yjIfKRScJr6zgKiu4Kggugl_tI0-ekuOtxstWKm3DIJAI1qbyrcKgHVUY7FKaopErIthqq3G42TUUMTTNxLZBRJNRNHMRfPN60b57qk7fX__mJnw6GZz3qt5p_-wHzGMvC78vZg1mx88Tsw5z6gXl_rzh9PoffTXyBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Differential+Evolution+With+Multiple+Populations+for+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wang%2C+Jiahai&rft.au=Zhang%2C+Weiwei&rft.au=Zhang%2C+Jun&rft.date=2016-12-01&rft.eissn=2168-2275&rft.volume=46&rft.issue=12&rft.spage=2848&rft_id=info:doi/10.1109%2FTCYB.2015.2490669&rft_id=info%3Apmid%2F26552101&rft.externalDocID=26552101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon