Strategies to improve tumor penetration of nanomedicines through nanoparticle design

Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles...

Full description

Saved in:
Bibliographic Details
Published in:Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Vol. 11; no. 1; pp. e1519 - n/a
Main Authors: Zhang, Ya‐Ru, Lin, Run, Li, Hong‐Jun, He, Wei‐ling, Du, Jin‐Zhi, Wang, Jun
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.01.2019
Wiley Subscription Services, Inc
Subjects:
ISSN:1939-5116, 1939-0041, 1939-0041
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Advanced designing strategies can be exploited to improve tumor penetration and therapeutic efficacy of cancer nanomedicines.
AbstractList Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Advanced designing strategies can be exploited to improve tumor penetration and therapeutic efficacy of cancer nanomedicines.
Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium.This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Author Li, Hong‐Jun
Du, Jin‐Zhi
Zhang, Ya‐Ru
Wang, Jun
Lin, Run
He, Wei‐ling
Author_xml – sequence: 1
  givenname: Ya‐Ru
  surname: Zhang
  fullname: Zhang, Ya‐Ru
  organization: South China University of Technology
– sequence: 2
  givenname: Run
  surname: Lin
  fullname: Lin, Run
  organization: The First Affiliated Hospital of Sun Yat‐Sen University
– sequence: 3
  givenname: Hong‐Jun
  surname: Li
  fullname: Li, Hong‐Jun
  organization: South China University of Technology
– sequence: 4
  givenname: Wei‐ling
  surname: He
  fullname: He, Wei‐ling
  organization: The First Affiliated Hospital of Sun Yat‐Sen University
– sequence: 5
  givenname: Jin‐Zhi
  surname: Du
  fullname: Du, Jin‐Zhi
  email: djzhi@scut.edu.cn
  organization: National Engineering Research Center for Tissue Restoration and Reconstruction
– sequence: 6
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: National Engineering Research Center for Tissue Restoration and Reconstruction
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29659166$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAUha0KVH7aRV-gitQNXQzc69jOeIlQoZUQXZSqS8vj3AxGiT21kyLeHmcYNqisbNnfOb4-54jthRiIsU8IpwjAzx6CDacoUb9jh6hrvQAQuLfbS0R1wI5yvgdQQnH5nh1wraRGpQ7Z7a8x2ZHWnnI1xsoPmxT_UTVOQ0zVhgLN1z6GKnZVeSUO1Hrnw0zfpTit77anG5tG73qqWsp-HT6w_c72mT7u1mP2-_Lb7cX3xfXPqx8X59cLJ1DrhZXaQaPcEutGrBS1wAVvpANlG7XCrtUcgTtb2w7B1eCWrRJWgEPZqWVH9TE7efYtQ_-dKI9m8NlR39tAccqGA5dL4A2Kgn55hd7HKYUyneEodS0alE2hPu-oaVV-ajbJDzY9mpe8CnD2DLgUc07UGefHbUAlJ98bBDM3YuZGzNxIUXx9pXgx_R-7c3_wPT2-DZo_N-c3W8UTLsubGQ
CitedBy_id crossref_primary_10_1007_s12668_021_00841_6
crossref_primary_10_1038_s41598_020_80161_z
crossref_primary_10_1016_j_pharmthera_2022_108177
crossref_primary_10_1186_s12951_024_03005_2
crossref_primary_10_1002_wnan_1542
crossref_primary_10_1002_ibra_12087
crossref_primary_10_31083_j_fbl2910349
crossref_primary_10_3390_ijms24065474
crossref_primary_10_3389_fbioe_2019_00324
crossref_primary_10_1016_j_ejpb_2019_06_019
crossref_primary_10_1002_smll_201903323
crossref_primary_10_1080_10717544_2023_2174209
crossref_primary_10_1002_adfm_202103655
crossref_primary_10_2217_fon_2020_0198
crossref_primary_10_1007_s12274_020_2913_7
crossref_primary_10_1007_s40005_021_00523_1
crossref_primary_10_1016_j_biomaterials_2020_119840
crossref_primary_10_1002_ange_201905738
crossref_primary_10_1016_j_cej_2025_161996
crossref_primary_10_1016_j_ijpharm_2024_125156
crossref_primary_10_3390_molecules28196901
crossref_primary_10_1039_D2NR06621A
crossref_primary_10_1016_j_bioadv_2025_214439
crossref_primary_10_1073_pnas_2209260120
crossref_primary_10_3390_ijms22031429
crossref_primary_10_3390_pharmaceutics16101268
crossref_primary_10_1002_adtp_201900093
crossref_primary_10_1016_j_apsb_2024_11_012
crossref_primary_10_1016_j_jddst_2023_104540
crossref_primary_10_1063_1_5052455
crossref_primary_10_1186_s12645_020_00070_8
crossref_primary_10_1016_j_medengphy_2022_103878
crossref_primary_10_1039_D3NR00800B
crossref_primary_10_1063_5_0061530
crossref_primary_10_1002_adtp_202000120
crossref_primary_10_1002_wnan_1957
crossref_primary_10_2147_IJN_S520205
crossref_primary_10_3390_pharmaceutics15071820
crossref_primary_10_1016_j_jconrel_2020_06_024
crossref_primary_10_1080_10717544_2022_2096711
crossref_primary_10_1080_17425247_2020_1767583
crossref_primary_10_1016_j_ijpharm_2021_120493
crossref_primary_10_3390_pharmaceutics14061279
crossref_primary_10_1002_adhm_202201214
crossref_primary_10_3762_bjnano_15_98
crossref_primary_10_1016_j_ejps_2025_107246
crossref_primary_10_1016_j_biomaterials_2024_122955
crossref_primary_10_1016_j_colsurfb_2019_110407
crossref_primary_10_1007_s11094_021_02444_7
crossref_primary_10_1080_1061186X_2020_1807999
crossref_primary_10_1186_s40164_025_00656_1
crossref_primary_10_2147_IJN_S504644
crossref_primary_10_1016_j_cej_2021_128947
crossref_primary_10_1016_j_jconrel_2025_113786
crossref_primary_10_1590_1678_9199_jvatitd_1441_18
crossref_primary_10_1016_j_jtice_2021_07_011
crossref_primary_10_3892_etm_2023_12215
crossref_primary_10_1016_j_jphotobiol_2020_111901
crossref_primary_10_3390_ijms231911731
crossref_primary_10_1002_ange_202300511
crossref_primary_10_1016_j_ejpb_2020_04_009
crossref_primary_10_1186_s12951_023_01943_x
crossref_primary_10_1007_s11095_020_02852_6
crossref_primary_10_1002_bmm2_12122
crossref_primary_10_2174_1381612825666190708214240
crossref_primary_10_1016_j_mtbio_2025_102263
crossref_primary_10_1002_bmm2_70011
crossref_primary_10_3390_cells14141052
crossref_primary_10_1016_j_copbio_2020_12_024
crossref_primary_10_1016_j_ccr_2025_217118
crossref_primary_10_1016_j_actbio_2021_04_022
crossref_primary_10_1016_j_ijpharm_2025_125237
crossref_primary_10_1080_10717544_2022_2072544
crossref_primary_10_2174_1381612826666200728141601
crossref_primary_10_1016_j_jconrel_2021_10_028
crossref_primary_10_1016_j_apsb_2025_09_004
crossref_primary_10_1016_j_jconrel_2024_06_002
crossref_primary_10_3389_fmedt_2022_846065
crossref_primary_10_1016_j_addr_2023_114898
crossref_primary_10_1007_s13346_025_01935_4
crossref_primary_10_1016_j_jconrel_2023_02_009
crossref_primary_10_1016_j_biomaterials_2022_121640
crossref_primary_10_1080_09205063_2024_2381372
crossref_primary_10_1002_advs_202002797
crossref_primary_10_1186_s12951_022_01514_6
crossref_primary_10_2147_IJN_S324314
crossref_primary_10_1016_j_msec_2022_112711
crossref_primary_10_3390_nano10050916
crossref_primary_10_1002_anie_202300511
crossref_primary_10_1002_mds3_10111
crossref_primary_10_3390_polym14112287
crossref_primary_10_1016_j_jconrel_2023_01_051
crossref_primary_10_3390_pharmaceutics14020227
crossref_primary_10_1002_smll_202205787
crossref_primary_10_1088_2057_1976_ad14f0
crossref_primary_10_1038_s41578_023_00617_2
crossref_primary_10_1016_j_mattod_2020_05_023
crossref_primary_10_3389_fnut_2024_1379982
crossref_primary_10_3390_cancers13061465
crossref_primary_10_3390_ijms24043762
crossref_primary_10_1016_j_biomaterials_2020_120590
crossref_primary_10_1039_D5LP00154D
crossref_primary_10_1016_j_ijbiomac_2024_138668
crossref_primary_10_1016_j_bioadv_2022_212850
crossref_primary_10_3390_nano13152225
crossref_primary_10_1016_j_jconrel_2021_01_021
crossref_primary_10_1002_med_21644
crossref_primary_10_1208_s12249_021_01919_w
crossref_primary_10_1007_s11756_024_01620_w
crossref_primary_10_1002_adfm_202306174
crossref_primary_10_1016_j_nxnano_2025_100233
crossref_primary_10_1002_wnan_1875
crossref_primary_10_1080_10717544_2020_1809559
crossref_primary_10_1186_s12929_021_00744_4
crossref_primary_10_1016_j_jconrel_2020_08_016
crossref_primary_10_1002_adfm_202103347
crossref_primary_10_3390_ijms23169440
crossref_primary_10_1016_j_canlet_2023_216461
crossref_primary_10_2147_IJN_S402891
crossref_primary_10_1007_s11095_022_03206_0
crossref_primary_10_1016_j_bioactmat_2021_05_038
crossref_primary_10_2217_nnm_2021_0126
crossref_primary_10_3390_pharmaceutics16081086
crossref_primary_10_1016_j_jconrel_2020_08_024
crossref_primary_10_1080_17425247_2022_2042512
crossref_primary_10_1002_smll_202007494
crossref_primary_10_1016_j_xphs_2020_06_018
crossref_primary_10_3390_polym13091416
crossref_primary_10_1038_s44222_024_00154_9
crossref_primary_10_1038_s41598_020_74809_z
crossref_primary_10_1007_s13346_024_01591_0
crossref_primary_10_2147_IJN_S487303
crossref_primary_10_1016_j_xphs_2022_08_020
crossref_primary_10_3390_nano10112276
crossref_primary_10_1016_j_biomaterials_2020_120166
crossref_primary_10_1016_j_pdpdt_2022_102915
crossref_primary_10_1016_j_abb_2024_110257
crossref_primary_10_2147_IJN_S257164
crossref_primary_10_3390_pharmaceutics13122144
crossref_primary_10_1007_s12274_021_3817_x
crossref_primary_10_1016_j_bcp_2025_116928
crossref_primary_10_1002_adhm_202001415
crossref_primary_10_3390_pharmaceutics14051024
crossref_primary_10_1016_j_jiec_2022_11_043
crossref_primary_10_1016_j_bioactmat_2023_10_017
crossref_primary_10_3390_cancers14122868
crossref_primary_10_1038_s41563_024_01961_6
crossref_primary_10_1002_advs_202002589
crossref_primary_10_3389_fbioe_2024_1383930
crossref_primary_10_1080_10837450_2019_1709500
crossref_primary_10_1186_s12951_022_01335_7
crossref_primary_10_1016_j_pmatsci_2023_101170
crossref_primary_10_2147_IJN_S378217
crossref_primary_10_1016_j_addr_2021_113847
crossref_primary_10_32604_biocell_2024_054879
crossref_primary_10_1016_j_jconrel_2022_04_013
crossref_primary_10_3390_cancers11121855
crossref_primary_10_1002_adma_202203890
crossref_primary_10_1016_j_addr_2023_114854
crossref_primary_10_1080_10717544_2022_2048133
crossref_primary_10_1002_adfm_202100936
crossref_primary_10_1002_anie_201905738
crossref_primary_10_1016_j_addr_2024_115445
crossref_primary_10_1016_j_jddst_2020_102041
crossref_primary_10_1016_j_colsurfb_2022_113019
crossref_primary_10_1016_j_exer_2020_108280
crossref_primary_10_1016_j_jconrel_2020_05_014
crossref_primary_10_1039_D3NR01539D
crossref_primary_10_3390_polym14010093
crossref_primary_10_1016_j_jconrel_2020_11_003
crossref_primary_10_1016_j_addr_2020_06_030
Cites_doi 10.1016/j.devcel.2010.05.012
10.1002/wnan.1389
10.2217/17435889.2.3.265
10.1016/j.nantod.2017.06.010
10.1021/ja207150n
10.1073/pnas.0801763105
10.1021/ja211888a
10.1016/j.jconrel.2015.08.017
10.1126/science.1160809
10.2217/nnm.16.5
10.1016/j.nantod.2016.04.008
10.1021/acs.nanolett.6b00820
10.1021/acs.biomac.6b01688
10.1073/pnas.1315336110
10.1021/acsnano.6b04414
10.4161/tisb.29528
10.1016/j.bpj.2010.06.016
10.1038/nmat3819
10.1021/acsami.6b00668
10.1039/C4BM00323C
10.1016/j.jconrel.2016.09.004
10.1016/j.nantod.2015.06.004
10.1016/j.addr.2012.01.020
10.1016/j.nantod.2014.04.008
10.1021/nn406258m
10.1002/anie.201311227
10.1200/JCO.2004.08.048
10.1073/pnas.1411499111
10.1021/mp100038h
10.1002/adfm.201404484
10.1371/journal.pone.0040006
10.1002/smll.201100442
10.1039/C5RA18833D
10.1038/nrc3110
10.1021/nn502807n
10.2174/1389200217666160630203600
10.1002/wnan.1325
10.1016/S0169-409X(00)00131-9
10.1002/anie.201003142
10.1021/nn301282m
10.1002/wnan.1387
10.1073/pnas.1018382108
10.1021/acsnano.5b02017
10.1016/j.jconrel.2014.12.018
10.1093/jnci/djj070
10.1038/nrclinonc.2010.139
10.1038/nnano.2011.166
10.1517/17425247.2015.960920
10.1021/acsnano.6b02326
10.1002/anie.201104449
10.1002/anie.201308834
10.1016/j.biomaterials.2015.05.006
10.1016/j.cell.2010.03.015
10.1083/jcb.201102147
10.1016/j.jconrel.2015.07.018
10.1016/j.bpj.2009.07.009
10.1016/j.jconrel.2015.08.050
10.1073/pnas.1522080113
10.1038/nbt1340
10.1016/j.ccr.2009.10.013
10.1002/anie.200907210
10.1016/j.addr.2011.04.006
10.1126/science.1171362
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7TK
7U7
8FD
C1K
FR3
K9.
M7N
P64
RC3
7X8
DOI 10.1002/wnan.1519
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-0041
EndPage n/a
ExternalDocumentID 29659166
10_1002_wnan_1519
WNAN1519
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: The National Key R&D Program of China
  funderid: 2017YFA0205600
– fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 31771091
– fundername: Guangdong Natural Science Funds for Distinguished Young Scholar
  funderid: 2017A030306018
– fundername: Ph.D. Programs Foundation of Ministry of Education of China
  funderid: 20130171110044
GroupedDBID ---
05W
0R~
1OC
1VH
31~
33P
4.4
53G
5DZ
8-0
8-1
8UM
AAESR
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AIACR
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
DCZOG
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXMAN
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
SV3
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
XV2
ZZTAW
AAYXX
CITATION
LH4
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7TK
7U7
8FD
C1K
FR3
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4199-a59c076c81374b6ed024275c06a76b1fd92102ca3af10c30c8d64a40c15f68fe3
IEDL.DBID DRFUL
ISICitedReferencesCount 225
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454121300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-5116
1939-0041
IngestDate Sun Nov 09 10:29:55 EST 2025
Tue Oct 07 06:46:56 EDT 2025
Thu Apr 03 06:58:07 EDT 2025
Tue Nov 18 22:18:54 EST 2025
Sat Nov 29 02:10:44 EST 2025
Wed Aug 20 07:25:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords nanomedicine
drug delivery
stimuli-responsive
tumor penetration
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4199-a59c076c81374b6ed024275c06a76b1fd92102ca3af10c30c8d64a40c15f68fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 29659166
PQID 2159347157
PQPubID 2034620
PageCount 12
ParticipantIDs proquest_miscellaneous_2025802714
proquest_journals_2159347157
pubmed_primary_29659166
crossref_citationtrail_10_1002_wnan_1519
crossref_primary_10_1002_wnan_1519
wiley_primary_10_1002_wnan_1519_WNAN1519
PublicationCentury 2000
PublicationDate January/February 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January/February 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
PublicationTitleAlternate Wiley Interdiscip Rev Nanomed Nanobiotechnol
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 99
2004; 22
2010; 18
1994a; 54
2010; 141
2011; 11
2008; 105
1994b; 54
2001; 46
2012; 134
2009; 97
2014; 2
1988; 48
2016; 113
2000; 60
2013a; 110
2014; 13
2015; 219
2007; 2
2014; 9
2014; 8
2010; 7
2009; 16
2007; 25
2012; 64
2009; 324
2014; 53
2015; 12
2013b; 110
2015; 5
2015; 3
2006; 98
2015; 201
2011a; 6
2015; 10
2016; 10
2016; 244
2016; 17
2014; 111
2015; 9
2016; 16
2015; 7
2011; 133
2011; 7
2016; 11
2012; 196
2015; 25
2010; 49
2011; 108
2017; 15
2015; 60
2011b; 6
1993; 53
2011; 50
2017; 18
2012; 6
2012; 7
2016; 8
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
Curti B. D. (e_1_2_7_9_1) 1993; 53
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
Yuan F. (e_1_2_7_72_1) 1994; 54
e_1_2_7_27_1
e_1_2_7_29_1
Yuan F. (e_1_2_7_71_1) 1994; 54
Leu A. J. (e_1_2_7_32_1) 2000; 60
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Jain R. K. (e_1_2_7_24_1) 1988; 48
References_xml – volume: 2
  start-page: e29528
  year: 2014
  article-title: Barriers to drug delivery in solid tumors
  publication-title: Tissue Barriers
– volume: 11
  start-page: 673
  year: 2016
  end-page: 692
  article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction
  publication-title: Nanomedicine
– volume: 110
  start-page: 19048
  year: 2013a
  end-page: 19053
  article-title: Photoswitchable nanoparticles for in vivo cancer chemotherapy
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  start-page: 223
  year: 2014
  end-page: 243
  article-title: Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects
  publication-title: Nano Today
– volume: 219
  start-page: 192
  year: 2015
  end-page: 204
  article-title: Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors
  publication-title: Journal of Controlled Release
– volume: 17
  start-page: 731
  year: 2016
  end-page: 736
  article-title: Shaping tumor microenvironment for improving nanoparticles delivery
  publication-title: Current Drug Metabolism
– volume: 196
  start-page: 395
  year: 2012
  end-page: 406
  article-title: The extracellular matrix: A dynamic niche in cancer progression
  publication-title: The Journal of Cell Biology
– volume: 7
  start-page: 494
  year: 2015
  end-page: 508
  article-title: Advances in the synthesis and application of nanoparticles for drug delivery
  publication-title: WIREs Nanomedicine and Nanobiotechnology
– volume: 8
  start-page: 9874
  year: 2014
  end-page: 9883
  article-title: Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix
  publication-title: ACS Nano
– volume: 8
  start-page: 4385
  year: 2014
  end-page: 4394
  article-title: Radioactive Au‐198‐doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution
  publication-title: ACS Nano
– volume: 53
  start-page: 2204
  year: 1993
  end-page: 2207
  article-title: Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: Changes during treatment
  publication-title: Cancer Research
– volume: 12
  start-page: 223
  year: 2015
  end-page: 238
  article-title: Overcoming multidrug resistance with nanomedicines
  publication-title: Expert Opinion on Drug Delivery
– volume: 13
  start-page: 204
  year: 2014
  end-page: 212
  article-title: A nanoparticle‐based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals
  publication-title: Nature Materials
– volume: 99
  start-page: 1342
  year: 2010
  end-page: 1349
  article-title: Diffusion of particles in the extracellular matrix: The effect of repulsive electrostatic interactions
  publication-title: Biophysical Journal
– volume: 10
  start-page: 9420
  year: 2016
  end-page: 9433
  article-title: The penetrated delivery of drug and energy to tumors by lipo‐graphene nanosponges for photolytic therapy
  publication-title: ACS Nano
– volume: 11
  start-page: 133
  year: 2016
  end-page: 144
  article-title: Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines
  publication-title: Nano Today
– volume: 54
  start-page: 3352
  year: 1994a
  end-page: 3356
  article-title: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft
  publication-title: Cancer Research
– volume: 113
  start-page: 4164
  year: 2016
  end-page: 4169
  article-title: Stimuli‐responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 60
  start-page: 4324
  year: 2000
  end-page: 4327
  article-title: Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation
  publication-title: Cancer Research
– volume: 201
  start-page: 78
  year: 2015
  end-page: 89
  article-title: Improving drug delivery to solid tumors: Priming the tumor microenvironment
  publication-title: Journal of Controlled Release
– volume: 105
  start-page: 11613
  year: 2008
  end-page: 11618
  article-title: The effect of particle design on cellular internalization pathways
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 16
  start-page: 3268
  year: 2016
  end-page: 3277
  article-title: Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy
  publication-title: Nano Letters
– volume: 6
  start-page: 815
  year: 2011b
  end-page: 823
  article-title: Accumulation of sub‐100 nm polymeric micelles in poorly permeable tumours depends on size
  publication-title: Nature Nanotechnology
– volume: 8
  start-page: 678
  year: 2016
  end-page: 695
  article-title: Crossing the barrier: Treatment of brain tumors using nanochain particles
  publication-title: WIREs Nanomedicine and Nanobiotechnology
– volume: 11
  start-page: 671
  year: 2011
  end-page: 677
  article-title: Dysregulated pH: A perfect storm for cancer progression
  publication-title: Nature Reviews. Cancer
– volume: 3
  start-page: 1085
  year: 2015
  end-page: 1095
  article-title: Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids
  publication-title: Biomaterials Science
– volume: 111
  start-page: 15344
  year: 2014
  end-page: 15349
  article-title: Investigating the optimal size of anticancer nanomedicine
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 219
  start-page: 31
  year: 2015
  end-page: 42
  article-title: Ultraviolet light‐mediated drug delivery: Principles, applications, and challenges
  publication-title: Journal of Controlled Release
– volume: 50
  start-page: 11417
  year: 2011
  end-page: 11420
  article-title: Fluorescent nanorods and nanospheres for real‐time in vivo probing of nanoparticle shape‐dependent tumor penetration
  publication-title: Angewandte Chemie, International Edition
– volume: 8
  start-page: 696
  year: 2016
  end-page: 716
  article-title: pH‐sensitive stimulus‐responsive nanocarriers for targeted delivery of therapeutic agents
  publication-title: WIREs Nanomedicine and Nanobiotechnology
– volume: 10
  start-page: 6753
  year: 2016
  end-page: 6761
  article-title: Smart superstructures with ultrahigh pH‐sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration
  publication-title: ACS Nano
– volume: 324
  start-page: 1457
  year: 2009
  end-page: 1461
  article-title: Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer
  publication-title: Science
– volume: 2
  start-page: 265
  year: 2007
  article-title: Increased nanoparticle penetration in collagenase‐treated multicellular spheroids
  publication-title: International Journal of Nanomedicine
– volume: 9
  start-page: 7195
  year: 2015
  end-page: 7206
  article-title: The role of micelle size in tumor accumulation, penetration, and treatment
  publication-title: ACS Nano
– volume: 25
  start-page: 2489
  year: 2015
  end-page: 2500
  article-title: pH‐ and NIR light‐responsive micelles with hyperthermia‐triggered tumor penetration and cytoplasm drug release to reverse doxorubicin resistance in breast cancer
  publication-title: Advanced Functional Materials
– volume: 49
  start-page: 8649
  year: 2010
  end-page: 8652
  article-title: A nanoparticle size series for in vivo fluorescence imaging
  publication-title: Angewandte Chemie, International Edition
– volume: 18
  start-page: 884
  year: 2010
  end-page: 901
  article-title: Tumors as organs: Complex tissues that interface with the entire organism
  publication-title: Developmental Cell
– volume: 10
  start-page: 451
  year: 2015
  end-page: 467
  article-title: Photoresponsive nanoparticles for drug delivery
  publication-title: Nano Today
– volume: 25
  start-page: 1165
  year: 2007
  end-page: 1170
  article-title: Renal clearance of quantum dots
  publication-title: Nature Biotechnology
– volume: 64
  start-page: 29
  year: 2012
  end-page: 39
  article-title: Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor
  publication-title: Advanced Drug Delivery Reviews
– volume: 134
  start-page: 8848
  year: 2012
  end-page: 8855
  article-title: Photoswitchable nanoparticles for triggered tissue penetration and drug delivery
  publication-title: Journal of the American Chemical Society
– volume: 7
  start-page: 1195
  year: 2010
  end-page: 1208
  article-title: The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles
  publication-title: Molecular Pharmaceutics
– volume: 46
  start-page: 149
  year: 2001
  end-page: 168
  article-title: Delivery of molecular and cellular medicine to solid tumors
  publication-title: Advanced Drug Delivery Reviews
– volume: 133
  start-page: 17560
  year: 2011
  end-page: 17563
  article-title: Tailor‐made dual pH‐sensitive polymer‐doxorubicin nanoparticles for efficient anticancer drug delivery
  publication-title: Journal of the American Chemical Society
– volume: 8
  start-page: 10136
  year: 2016
  end-page: 10146
  article-title: Size‐shifting micelle nanoclusters based on a cross‐linked and pH‐sensitive framework for enhanced tumor targeting and deep penetration features
  publication-title: ACS Applied Materials & Interfaces
– volume: 141
  start-page: 52
  year: 2010
  end-page: 67
  article-title: Matrix metalloproteinases: Regulators of the tumor microenvironment
  publication-title: Cell
– volume: 7
  start-page: e40006
  year: 2012
  article-title: High interstitial fluid pressure is associated with tumor‐line specific vascular abnormalities in human melanoma xenografts
  publication-title: PLoS One
– volume: 16
  start-page: 510
  year: 2009
  end-page: 520
  article-title: Tissue‐penetrating delivery of compounds and nanoparticles into tumors
  publication-title: Cancer Cell
– volume: 6
  start-page: 4483
  year: 2012
  end-page: 4493
  article-title: Size‐dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo
  publication-title: ACS Nano
– volume: 97
  start-page: 1569
  year: 2009
  end-page: 1577
  article-title: Selective filtering of particles by the extracellular matrix: An electrostatic bandpass
  publication-title: Biophysical Journal
– volume: 5
  start-page: 85933
  year: 2015
  end-page: 85937
  article-title: Multistage drug delivery system based on microenvironment‐responsive dendrimer–gelatin nanoparticles for deep tumor penetration
  publication-title: RSC Advances
– volume: 6
  start-page: 815
  year: 2011a
  end-page: 823
  article-title: Accumulation of sub‐100 nm polymeric micelles in poorly permeable tumours depends on size
  publication-title: Nature Nanotechnology
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  article-title: Understanding the Warburg effect: The metabolic requirements of cell proliferation
  publication-title: Science
– volume: 49
  start-page: 3621
  year: 2010
  end-page: 3626
  article-title: A tumor‐acidity‐activated charge‐conversional nanogel as an intelligent vehicle for promoted tumoral‐cell uptake and drug delivery
  publication-title: Angewandte Chemie, International Edition
– volume: 53
  start-page: 1012
  year: 2014
  end-page: 1016
  article-title: Near‐infrared light‐mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion‐luminescent nanoparticles
  publication-title: Angewandte Chemie, International Edition
– volume: 7
  start-page: 653
  year: 2010
  end-page: 664
  article-title: Delivering nanomedicine to solid tumors
  publication-title: Nature Reviews Clinical Oncology
– volume: 54
  start-page: 3352
  year: 1994b
  end-page: 3356
  article-title: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft
  publication-title: Cancer Research
– volume: 219
  start-page: 205
  year: 2015
  end-page: 214
  article-title: Stimuli‐responsive nanoparticles for targeting the tumor microenvironment
  publication-title: Journal of Controlled Release
– volume: 18
  start-page: 535
  year: 2017
  end-page: 543
  article-title: Tumor microenvironment‐sensitive liposomes penetrate tumor tissue via attenuated interaction of the extracellular matrix and tumor cells and accompanying actin depolymerization
  publication-title: Biomacromolecules
– volume: 22
  start-page: 2061
  year: 2004
  end-page: 2068
  article-title: Failure of higher‐dose paclitaxel to improve outcome in patients with metastatic breast cancer: Cancer and leukemia group B trial 9342
  publication-title: Journal of Clinical Oncology
– volume: 64
  start-page: 866
  year: 2012
  end-page: 884
  article-title: Stimuli‐responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications
  publication-title: Advanced Drug Delivery Reviews
– volume: 48
  start-page: 7022
  year: 1988
  end-page: 7032
  article-title: Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure
  publication-title: Cancer Research
– volume: 7
  start-page: 1919
  year: 2011
  end-page: 1931
  article-title: More effective nanomedicines through particle design
  publication-title: Small
– volume: 110
  start-page: 19048
  year: 2013b
  end-page: 19053
  article-title: Photoswitchable nanoparticles for in vivo cancer chemotherapy
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 15
  start-page: 56
  year: 2017
  end-page: 90
  article-title: Design of nanocarriers based on complex biological barriers in vivo for tumor therapy
  publication-title: Nano Today
– volume: 53
  start-page: 6253
  year: 2014
  end-page: 6258
  article-title: Sequential intra‐intercellular nanoparticle delivery system for deep tumor penetration
  publication-title: Angewandte Chemie, International Edition
– volume: 60
  start-page: 100
  year: 2015
  end-page: 110
  article-title: Matrix metalloproteinase‐sensitive size‐shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release
  publication-title: Biomaterials
– volume: 98
  start-page: 335
  year: 2006
  end-page: 344
  article-title: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers
  publication-title: Journal of the National Cancer Institute
– volume: 108
  start-page: 2426
  year: 2011
  end-page: 2431
  article-title: Multistage nanoparticle delivery system for deep penetration into tumor tissue
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 244
  start-page: 257
  year: 2016
  end-page: 268
  article-title: Tumor stroma‐containing 3D spheroid arrays: A tool to study nanoparticle penetration
  publication-title: Journal of Controlled Release
– ident: e_1_2_7_14_1
  doi: 10.1016/j.devcel.2010.05.012
– ident: e_1_2_7_29_1
  doi: 10.1002/wnan.1389
– ident: e_1_2_7_18_1
  doi: 10.2217/17435889.2.3.265
– ident: e_1_2_7_38_1
  doi: 10.1016/j.nantod.2017.06.010
– ident: e_1_2_7_11_1
  doi: 10.1021/ja207150n
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.0801763105
– volume: 60
  start-page: 4324
  year: 2000
  ident: e_1_2_7_32_1
  article-title: Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation
  publication-title: Cancer Research
– ident: e_1_2_7_61_1
  doi: 10.1021/ja211888a
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jconrel.2015.08.017
– ident: e_1_2_7_62_1
  doi: 10.1126/science.1160809
– ident: e_1_2_7_20_1
  doi: 10.2217/nnm.16.5
– ident: e_1_2_7_63_1
  doi: 10.1016/j.nantod.2016.04.008
– ident: e_1_2_7_73_1
  doi: 10.1021/acs.nanolett.6b00820
– ident: e_1_2_7_57_1
  doi: 10.1021/acs.biomac.6b01688
– ident: e_1_2_7_59_1
  doi: 10.1073/pnas.1315336110
– ident: e_1_2_7_55_1
  doi: 10.1021/acsnano.6b04414
– ident: e_1_2_7_53_1
  doi: 10.4161/tisb.29528
– ident: e_1_2_7_54_1
  doi: 10.1016/j.bpj.2010.06.016
– ident: e_1_2_7_66_1
  doi: 10.1038/nmat3819
– ident: e_1_2_7_36_1
  doi: 10.1021/acsami.6b00668
– ident: e_1_2_7_39_1
  doi: 10.1039/C4BM00323C
– ident: e_1_2_7_48_1
  doi: 10.1016/j.jconrel.2016.09.004
– ident: e_1_2_7_51_1
  doi: 10.1016/j.nantod.2015.06.004
– ident: e_1_2_7_15_1
  doi: 10.1016/j.addr.2012.01.020
– ident: e_1_2_7_3_1
  doi: 10.1016/j.nantod.2014.04.008
– volume: 54
  start-page: 3352
  year: 1994
  ident: e_1_2_7_71_1
  article-title: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft
  publication-title: Cancer Research
– ident: e_1_2_7_4_1
  doi: 10.1021/nn406258m
– volume: 53
  start-page: 2204
  year: 1993
  ident: e_1_2_7_9_1
  article-title: Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: Changes during treatment
  publication-title: Cancer Research
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.201311227
– ident: e_1_2_7_68_1
  doi: 10.1200/JCO.2004.08.048
– ident: e_1_2_7_58_1
  doi: 10.1073/pnas.1411499111
– ident: e_1_2_7_31_1
  doi: 10.1021/mp100038h
– ident: e_1_2_7_70_1
  doi: 10.1002/adfm.201404484
– ident: e_1_2_7_52_1
  doi: 10.1371/journal.pone.0040006
– ident: e_1_2_7_64_1
  doi: 10.1002/smll.201100442
– ident: e_1_2_7_21_1
  doi: 10.1039/C5RA18833D
– ident: e_1_2_7_67_1
  doi: 10.1038/nrc3110
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jconrel.2015.08.017
– ident: e_1_2_7_46_1
  doi: 10.1021/nn502807n
– volume: 48
  start-page: 7022
  year: 1988
  ident: e_1_2_7_24_1
  article-title: Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure
  publication-title: Cancer Research
– ident: e_1_2_7_17_1
  doi: 10.2174/1389200217666160630203600
– ident: e_1_2_7_45_1
  doi: 10.1002/wnan.1325
– volume: 54
  start-page: 3352
  year: 1994
  ident: e_1_2_7_72_1
  article-title: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft
  publication-title: Cancer Research
– ident: e_1_2_7_23_1
  doi: 10.1016/S0169-409X(00)00131-9
– ident: e_1_2_7_47_1
  doi: 10.1002/anie.201003142
– ident: e_1_2_7_22_1
  doi: 10.1021/nn301282m
– ident: e_1_2_7_28_1
  doi: 10.1002/wnan.1387
– ident: e_1_2_7_69_1
  doi: 10.1073/pnas.1018382108
– ident: e_1_2_7_65_1
  doi: 10.1021/acsnano.5b02017
– ident: e_1_2_7_30_1
  doi: 10.1016/j.jconrel.2014.12.018
– ident: e_1_2_7_10_1
  doi: 10.1093/jnci/djj070
– ident: e_1_2_7_25_1
  doi: 10.1038/nrclinonc.2010.139
– ident: e_1_2_7_5_1
  doi: 10.1038/nnano.2011.166
– ident: e_1_2_7_16_1
  doi: 10.1517/17425247.2015.960920
– ident: e_1_2_7_34_1
  doi: 10.1021/acsnano.6b02326
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201104449
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.201308834
– ident: e_1_2_7_50_1
  doi: 10.1016/j.biomaterials.2015.05.006
– ident: e_1_2_7_6_1
  doi: 10.1038/nnano.2011.166
– ident: e_1_2_7_27_1
  doi: 10.1016/j.cell.2010.03.015
– ident: e_1_2_7_40_1
  doi: 10.1083/jcb.201102147
– ident: e_1_2_7_49_1
  doi: 10.1021/ja211888a
– ident: e_1_2_7_2_1
  doi: 10.1016/j.jconrel.2015.07.018
– ident: e_1_2_7_37_1
  doi: 10.1016/j.bpj.2009.07.009
– ident: e_1_2_7_60_1
  doi: 10.1073/pnas.1315336110
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jconrel.2015.08.050
– ident: e_1_2_7_33_1
  doi: 10.1073/pnas.1522080113
– ident: e_1_2_7_8_1
  doi: 10.1038/nbt1340
– ident: e_1_2_7_56_1
  doi: 10.1016/j.ccr.2009.10.013
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.200907210
– ident: e_1_2_7_35_1
  doi: 10.1016/j.addr.2011.04.006
– ident: e_1_2_7_44_1
  doi: 10.1126/science.1171362
SSID ssj0064625
Score 2.587586
SecondaryResourceType review_article
Snippet Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1519
SubjectTerms Animals
Cancer
drug delivery
Drug delivery systems
Drug discovery
Extracellular matrix
Fluid pressure
Humans
Liposomes
Micelles
nanomedicine
Nanomedicine - methods
Nanoparticles
Nanoparticles - chemistry
Nanotechnology
Neoplasms - pathology
Parenchyma
Penetration
Permeability
Physicochemical properties
Solid tumors
stimuli‐responsive
Surface charge
Therapeutic applications
Transport
Tumor Microenvironment
tumor penetration
Tumors
Title Strategies to improve tumor penetration of nanomedicines through nanoparticle design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwnan.1519
https://www.ncbi.nlm.nih.gov/pubmed/29659166
https://www.proquest.com/docview/2159347157
https://www.proquest.com/docview/2025802714
Volume 11
WOSCitedRecordID wos000454121300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1939-0041
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064625
  issn: 1939-5116
  databaseCode: DRFUL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6S3RyaQ99Nt02DWnLIxV3ZlscSPS1plx7CUkqW7M3IkgwLqb3so_37HfnVhiQQyM3YY0toZjTfSPI3AKeoDIFiZQOpbRKIxMpAJqklv9LS5BxllNeavkhnM7lYqB978KX7F6bhh-gX3Lxn1PO1d3Cdb8b_SEP_lLr8TPFK7cMwIrsVAxh-_TmdX3QTMQqsa64SRFEB4QrsiIV4NO5fvhmObmHMm5C1jjnTZ4_q7XN42kJNNmls4wXsufIlHP5HQPgKLjtyWrdh24ot6xUGx7a7X9WarWgabEl1WVUw-nTV7cSTdFPfp767as2P2fo4yGuYT79dnn8P2joLgRGhUoFOlOEpGhnGqcjRWR-308Rw1CnmYWGVzwuNjnURchNzIy0KLbgJkwJl4eI3MCir0r0FVqDOBUpukcJeHopcGc2VExHl7Bp1MYKzbrgz05KQ-1oY11lDnxxlfqAyP1Aj-NSLrhrmjbuEjjudZa3zbTJCMSqmoJukI_jYPya38XshunTVjmQI60lKyUMxgqNG130rkSdZDBGps7VK728-u5pNZv7i3cNF38MTAl2qWcY5hsF2vXMf4MD83i436xPYTxfypLXkv-fs93E
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRJwaHkUWFqoQRy4pHUSZ2JLvVRtV0VdIoS2orfIsR2pUklW-4C_zzgvqAoSErcomcSWZ8bzeex8A_AelSFQrGwgtU0CkVgZyCS15FdamoKjjIpG09M0y-TVlfq8AUf9vzAtP8SQcPOe0czX3sF9QvrwF2voj0pXBxSw1D3YFGRGyQg2T79MLqf9TIwCm6KrhFFUQMACe2YhHh0OL9-OR3dA5m3M2gSdyfb_dfcxbHVgkx231vEENlz1FB79RkH4DGY9Pa1bslXNrpscg2Or9bd6weY0EXa0uqwuGX267vfiSbqt8NPcnXcGyGxzIGQHLidns5PzoKu0EBgRKhXoRBmeopFhnIoCnfWRO00MR51iEZZW-ZWh0bEuQ25ibqRFoQU3YVKiLF38HEZVXbmXwErUhUDJLVLgK0JRKKO5ciKiVbtGXY7hQz_eueloyH01jJu8JVCOcj9QuR-oMbwbROct98afhPZ6peWd-y1zwjEqprCbpGN4Ozwmx_G7Ibpy9ZpkCO1JWpSHYgwvWmUPrUSeZjFEpM42Ov178_nX7DjzF6_-XXQfHpzPPk3z6cfsYhceEgRTbVJnD0arxdq9hvvm--p6uXjTGfRP2_f6eQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UVqQ-eGltXa3tWHzoS9pJMjmZAV-Kdal0CYu02LcwmZlAwSbLXvTveyY3XVQQfAvJSWaYc_vmku8AvENlCBQrG0htk0AkVgYySS35lZam4CijotH0JM0yeXurphvwvv8XpuWHGBbcvGc08do7uJvZ8uwna-j3SlenlLDUA9gSiUJyy62Lz-ObSR-JUWBTdJUwigoIWGDPLMSjs-Hl9Xz0G8hcx6xN0hk__b_uPoMnHdhk5611PIcNV-3A418oCHfhuqendQu2rNlds8bg2HJ1X8_ZjAJhR6vL6pLRp-t-L56k2wo_zd1ZZ4DMNgdCXsDN-OP1h8ugq7QQGBEqFehEGZ6ikWGcigKd9Zk7TQxHnWIRllb5maHRsS5DbmJupEWhBTdhUqIsXbwHm1VduZfAStSFQMktUuIrQlEoo7lyIqJZu0ZdjuCkH-_cdDTkvhrG17wlUI5yP1C5H6gRHA-is5Z7409CB73S8s79FjnhGBVT2k3SEbwdHpPj-N0QXbl6RTKE9iRNykMxgv1W2UMrkadZDBGps41O_958_iU7z_zFq38XPYJH04txPvmUXb2GbUJgql3TOYDN5Xzl3sBD8215t5gfdvb8A3CE-fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+to+improve+tumor+penetration+of+nanomedicines+through+nanoparticle+design&rft.jtitle=Wiley+interdisciplinary+reviews.+Nanomedicine+and+nanobiotechnology&rft.au=Zhang%2C+Ya-Ru&rft.au=Lin%2C+Run&rft.au=Li%2C+Hong-Jun&rft.au=He%2C+Wei-Ling&rft.date=2019-01-01&rft.issn=1939-0041&rft.eissn=1939-0041&rft.volume=11&rft.issue=1&rft.spage=e1519&rft_id=info:doi/10.1002%2Fwnan.1519&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5116&client=summon