Strategies to improve tumor penetration of nanomedicines through nanoparticle design
Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles...
Uložené v:
| Vydané v: | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Ročník 11; číslo 1; s. e1519 - n/a |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2019
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1939-5116, 1939-0041, 1939-0041 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium.
This article is categorized under:
Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
Advanced designing strategies can be exploited to improve tumor penetration and therapeutic efficacy of cancer nanomedicines. |
|---|---|
| AbstractList | Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium.
This article is categorized under:
Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium.This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease. Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Advanced designing strategies can be exploited to improve tumor penetration and therapeutic efficacy of cancer nanomedicines. Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site through the enhanced permeability and retention effect. Various forms of NPs including liposomes, polymeric micelles, and inorganic particles have been used for therapeutic applications. However, the therapeutic benefits of nanomedicines are suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumor penetration can be a vital obstacle. Tumor develops characteristic pathological environment, such as abnormal vasculature, elevated interstitial fluid pressure, and dense extracellular matrix, which intrinsically hinder the transport of nanomedicines in the tumor parenchyma. The physicochemical properties of the NPs such as size, shape, and surface charge have profound effect on tumor penetration. In this review, we will highlight the factors that affect the transport of NPs in solid tumor, and then elaborate on designing strategies to improve NPs' penetration and uniform distribution inside the tumor interstitium. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease. |
| Author | Li, Hong‐Jun Du, Jin‐Zhi Zhang, Ya‐Ru Wang, Jun Lin, Run He, Wei‐ling |
| Author_xml | – sequence: 1 givenname: Ya‐Ru surname: Zhang fullname: Zhang, Ya‐Ru organization: South China University of Technology – sequence: 2 givenname: Run surname: Lin fullname: Lin, Run organization: The First Affiliated Hospital of Sun Yat‐Sen University – sequence: 3 givenname: Hong‐Jun surname: Li fullname: Li, Hong‐Jun organization: South China University of Technology – sequence: 4 givenname: Wei‐ling surname: He fullname: He, Wei‐ling organization: The First Affiliated Hospital of Sun Yat‐Sen University – sequence: 5 givenname: Jin‐Zhi surname: Du fullname: Du, Jin‐Zhi email: djzhi@scut.edu.cn organization: National Engineering Research Center for Tissue Restoration and Reconstruction – sequence: 6 givenname: Jun surname: Wang fullname: Wang, Jun organization: National Engineering Research Center for Tissue Restoration and Reconstruction |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29659166$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1O3DAUha0KVH7aRV-gitQNXQzc69jOeIlQoZUQXZSqS8vj3AxGiT21kyLeHmcYNqisbNnfOb4-54jthRiIsU8IpwjAzx6CDacoUb9jh6hrvQAQuLfbS0R1wI5yvgdQQnH5nh1wraRGpQ7Z7a8x2ZHWnnI1xsoPmxT_UTVOQ0zVhgLN1z6GKnZVeSUO1Hrnw0zfpTit77anG5tG73qqWsp-HT6w_c72mT7u1mP2-_Lb7cX3xfXPqx8X59cLJ1DrhZXaQaPcEutGrBS1wAVvpANlG7XCrtUcgTtb2w7B1eCWrRJWgEPZqWVH9TE7efYtQ_-dKI9m8NlR39tAccqGA5dL4A2Kgn55hd7HKYUyneEodS0alE2hPu-oaVV-ajbJDzY9mpe8CnD2DLgUc07UGefHbUAlJ98bBDM3YuZGzNxIUXx9pXgx_R-7c3_wPT2-DZo_N-c3W8UTLsubGQ |
| CitedBy_id | crossref_primary_10_1007_s12668_021_00841_6 crossref_primary_10_1038_s41598_020_80161_z crossref_primary_10_1016_j_pharmthera_2022_108177 crossref_primary_10_1186_s12951_024_03005_2 crossref_primary_10_1002_wnan_1542 crossref_primary_10_1002_ibra_12087 crossref_primary_10_31083_j_fbl2910349 crossref_primary_10_3390_ijms24065474 crossref_primary_10_3389_fbioe_2019_00324 crossref_primary_10_1016_j_ejpb_2019_06_019 crossref_primary_10_1002_smll_201903323 crossref_primary_10_1080_10717544_2023_2174209 crossref_primary_10_1002_adfm_202103655 crossref_primary_10_2217_fon_2020_0198 crossref_primary_10_1007_s12274_020_2913_7 crossref_primary_10_1007_s40005_021_00523_1 crossref_primary_10_1016_j_biomaterials_2020_119840 crossref_primary_10_1002_ange_201905738 crossref_primary_10_1016_j_cej_2025_161996 crossref_primary_10_1016_j_ijpharm_2024_125156 crossref_primary_10_3390_molecules28196901 crossref_primary_10_1039_D2NR06621A crossref_primary_10_1016_j_bioadv_2025_214439 crossref_primary_10_1073_pnas_2209260120 crossref_primary_10_3390_ijms22031429 crossref_primary_10_3390_pharmaceutics16101268 crossref_primary_10_1002_adtp_201900093 crossref_primary_10_1016_j_apsb_2024_11_012 crossref_primary_10_1016_j_jddst_2023_104540 crossref_primary_10_1063_1_5052455 crossref_primary_10_1186_s12645_020_00070_8 crossref_primary_10_1016_j_medengphy_2022_103878 crossref_primary_10_1039_D3NR00800B crossref_primary_10_1063_5_0061530 crossref_primary_10_1002_adtp_202000120 crossref_primary_10_1002_wnan_1957 crossref_primary_10_2147_IJN_S520205 crossref_primary_10_3390_pharmaceutics15071820 crossref_primary_10_1016_j_jconrel_2020_06_024 crossref_primary_10_1080_10717544_2022_2096711 crossref_primary_10_1080_17425247_2020_1767583 crossref_primary_10_1016_j_ijpharm_2021_120493 crossref_primary_10_3390_pharmaceutics14061279 crossref_primary_10_1002_adhm_202201214 crossref_primary_10_3762_bjnano_15_98 crossref_primary_10_1016_j_ejps_2025_107246 crossref_primary_10_1016_j_biomaterials_2024_122955 crossref_primary_10_1016_j_colsurfb_2019_110407 crossref_primary_10_1007_s11094_021_02444_7 crossref_primary_10_1080_1061186X_2020_1807999 crossref_primary_10_1186_s40164_025_00656_1 crossref_primary_10_2147_IJN_S504644 crossref_primary_10_1016_j_cej_2021_128947 crossref_primary_10_1016_j_jconrel_2025_113786 crossref_primary_10_1590_1678_9199_jvatitd_1441_18 crossref_primary_10_1016_j_jtice_2021_07_011 crossref_primary_10_3892_etm_2023_12215 crossref_primary_10_1016_j_jphotobiol_2020_111901 crossref_primary_10_3390_ijms231911731 crossref_primary_10_1002_ange_202300511 crossref_primary_10_1016_j_ejpb_2020_04_009 crossref_primary_10_1186_s12951_023_01943_x crossref_primary_10_1007_s11095_020_02852_6 crossref_primary_10_1002_bmm2_12122 crossref_primary_10_2174_1381612825666190708214240 crossref_primary_10_1016_j_mtbio_2025_102263 crossref_primary_10_1002_bmm2_70011 crossref_primary_10_3390_cells14141052 crossref_primary_10_1016_j_copbio_2020_12_024 crossref_primary_10_1016_j_ccr_2025_217118 crossref_primary_10_1016_j_actbio_2021_04_022 crossref_primary_10_1016_j_ijpharm_2025_125237 crossref_primary_10_1080_10717544_2022_2072544 crossref_primary_10_2174_1381612826666200728141601 crossref_primary_10_1016_j_jconrel_2021_10_028 crossref_primary_10_1016_j_apsb_2025_09_004 crossref_primary_10_1016_j_jconrel_2024_06_002 crossref_primary_10_3389_fmedt_2022_846065 crossref_primary_10_1016_j_addr_2023_114898 crossref_primary_10_1007_s13346_025_01935_4 crossref_primary_10_1016_j_jconrel_2023_02_009 crossref_primary_10_1016_j_biomaterials_2022_121640 crossref_primary_10_1080_09205063_2024_2381372 crossref_primary_10_1002_advs_202002797 crossref_primary_10_1186_s12951_022_01514_6 crossref_primary_10_2147_IJN_S324314 crossref_primary_10_1016_j_msec_2022_112711 crossref_primary_10_3390_nano10050916 crossref_primary_10_1002_anie_202300511 crossref_primary_10_1002_mds3_10111 crossref_primary_10_3390_polym14112287 crossref_primary_10_1016_j_jconrel_2023_01_051 crossref_primary_10_3390_pharmaceutics14020227 crossref_primary_10_1002_smll_202205787 crossref_primary_10_1088_2057_1976_ad14f0 crossref_primary_10_1038_s41578_023_00617_2 crossref_primary_10_1016_j_mattod_2020_05_023 crossref_primary_10_3389_fnut_2024_1379982 crossref_primary_10_3390_cancers13061465 crossref_primary_10_3390_ijms24043762 crossref_primary_10_1016_j_biomaterials_2020_120590 crossref_primary_10_1039_D5LP00154D crossref_primary_10_1016_j_ijbiomac_2024_138668 crossref_primary_10_1016_j_bioadv_2022_212850 crossref_primary_10_3390_nano13152225 crossref_primary_10_1016_j_jconrel_2021_01_021 crossref_primary_10_1002_med_21644 crossref_primary_10_1208_s12249_021_01919_w crossref_primary_10_1007_s11756_024_01620_w crossref_primary_10_1002_adfm_202306174 crossref_primary_10_1016_j_nxnano_2025_100233 crossref_primary_10_1002_wnan_1875 crossref_primary_10_1080_10717544_2020_1809559 crossref_primary_10_1186_s12929_021_00744_4 crossref_primary_10_1016_j_jconrel_2020_08_016 crossref_primary_10_1002_adfm_202103347 crossref_primary_10_3390_ijms23169440 crossref_primary_10_1016_j_canlet_2023_216461 crossref_primary_10_2147_IJN_S402891 crossref_primary_10_1007_s11095_022_03206_0 crossref_primary_10_1016_j_bioactmat_2021_05_038 crossref_primary_10_2217_nnm_2021_0126 crossref_primary_10_3390_pharmaceutics16081086 crossref_primary_10_1016_j_jconrel_2020_08_024 crossref_primary_10_1080_17425247_2022_2042512 crossref_primary_10_1002_smll_202007494 crossref_primary_10_1016_j_xphs_2020_06_018 crossref_primary_10_3390_polym13091416 crossref_primary_10_1038_s44222_024_00154_9 crossref_primary_10_1038_s41598_020_74809_z crossref_primary_10_1007_s13346_024_01591_0 crossref_primary_10_2147_IJN_S487303 crossref_primary_10_1016_j_xphs_2022_08_020 crossref_primary_10_3390_nano10112276 crossref_primary_10_1016_j_biomaterials_2020_120166 crossref_primary_10_1016_j_pdpdt_2022_102915 crossref_primary_10_1016_j_abb_2024_110257 crossref_primary_10_2147_IJN_S257164 crossref_primary_10_3390_pharmaceutics13122144 crossref_primary_10_1007_s12274_021_3817_x crossref_primary_10_1016_j_bcp_2025_116928 crossref_primary_10_1002_adhm_202001415 crossref_primary_10_3390_pharmaceutics14051024 crossref_primary_10_1016_j_jiec_2022_11_043 crossref_primary_10_1016_j_bioactmat_2023_10_017 crossref_primary_10_3390_cancers14122868 crossref_primary_10_1038_s41563_024_01961_6 crossref_primary_10_1002_advs_202002589 crossref_primary_10_3389_fbioe_2024_1383930 crossref_primary_10_1080_10837450_2019_1709500 crossref_primary_10_1186_s12951_022_01335_7 crossref_primary_10_1016_j_pmatsci_2023_101170 crossref_primary_10_2147_IJN_S378217 crossref_primary_10_1016_j_addr_2021_113847 crossref_primary_10_32604_biocell_2024_054879 crossref_primary_10_1016_j_jconrel_2022_04_013 crossref_primary_10_3390_cancers11121855 crossref_primary_10_1002_adma_202203890 crossref_primary_10_1016_j_addr_2023_114854 crossref_primary_10_1080_10717544_2022_2048133 crossref_primary_10_1002_adfm_202100936 crossref_primary_10_1002_anie_201905738 crossref_primary_10_1016_j_addr_2024_115445 crossref_primary_10_1016_j_jddst_2020_102041 crossref_primary_10_1016_j_colsurfb_2022_113019 crossref_primary_10_1016_j_exer_2020_108280 crossref_primary_10_1016_j_jconrel_2020_05_014 crossref_primary_10_1039_D3NR01539D crossref_primary_10_3390_polym14010093 crossref_primary_10_1016_j_jconrel_2020_11_003 crossref_primary_10_1016_j_addr_2020_06_030 |
| Cites_doi | 10.1016/j.devcel.2010.05.012 10.1002/wnan.1389 10.2217/17435889.2.3.265 10.1016/j.nantod.2017.06.010 10.1021/ja207150n 10.1073/pnas.0801763105 10.1021/ja211888a 10.1016/j.jconrel.2015.08.017 10.1126/science.1160809 10.2217/nnm.16.5 10.1016/j.nantod.2016.04.008 10.1021/acs.nanolett.6b00820 10.1021/acs.biomac.6b01688 10.1073/pnas.1315336110 10.1021/acsnano.6b04414 10.4161/tisb.29528 10.1016/j.bpj.2010.06.016 10.1038/nmat3819 10.1021/acsami.6b00668 10.1039/C4BM00323C 10.1016/j.jconrel.2016.09.004 10.1016/j.nantod.2015.06.004 10.1016/j.addr.2012.01.020 10.1016/j.nantod.2014.04.008 10.1021/nn406258m 10.1002/anie.201311227 10.1200/JCO.2004.08.048 10.1073/pnas.1411499111 10.1021/mp100038h 10.1002/adfm.201404484 10.1371/journal.pone.0040006 10.1002/smll.201100442 10.1039/C5RA18833D 10.1038/nrc3110 10.1021/nn502807n 10.2174/1389200217666160630203600 10.1002/wnan.1325 10.1016/S0169-409X(00)00131-9 10.1002/anie.201003142 10.1021/nn301282m 10.1002/wnan.1387 10.1073/pnas.1018382108 10.1021/acsnano.5b02017 10.1016/j.jconrel.2014.12.018 10.1093/jnci/djj070 10.1038/nrclinonc.2010.139 10.1038/nnano.2011.166 10.1517/17425247.2015.960920 10.1021/acsnano.6b02326 10.1002/anie.201104449 10.1002/anie.201308834 10.1016/j.biomaterials.2015.05.006 10.1016/j.cell.2010.03.015 10.1083/jcb.201102147 10.1016/j.jconrel.2015.07.018 10.1016/j.bpj.2009.07.009 10.1016/j.jconrel.2015.08.050 10.1073/pnas.1522080113 10.1038/nbt1340 10.1016/j.ccr.2009.10.013 10.1002/anie.200907210 10.1016/j.addr.2011.04.006 10.1126/science.1171362 |
| ContentType | Journal Article |
| Copyright | 2018 Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7TK 7U7 8FD C1K FR3 K9. M7N P64 RC3 7X8 |
| DOI | 10.1002/wnan.1519 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-0041 |
| EndPage | n/a |
| ExternalDocumentID | 29659166 10_1002_wnan_1519 WNAN1519 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: The National Key R&D Program of China funderid: 2017YFA0205600 – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 31771091 – fundername: Guangdong Natural Science Funds for Distinguished Young Scholar funderid: 2017A030306018 – fundername: Ph.D. Programs Foundation of Ministry of Education of China funderid: 20130171110044 |
| GroupedDBID | --- 05W 0R~ 1OC 1VH 31~ 33P 4.4 53G 5DZ 8-0 8-1 8UM AAESR AAHQN AAIPD AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADKYN ADMGS ADNMO ADXAS ADZMN AEIGN AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AIACR AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI DCZOG DRFUL DRMAN DRSTM EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXMAN MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ SV3 WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR XV2 ZZTAW AAYXX CITATION LH4 AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7TK 7U7 8FD C1K FR3 K9. M7N P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c4199-a59c076c81374b6ed024275c06a76b1fd92102ca3af10c30c8d64a40c15f68fe3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 225 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454121300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-5116 1939-0041 |
| IngestDate | Sun Nov 09 10:29:55 EST 2025 Tue Oct 07 06:46:56 EDT 2025 Thu Apr 03 06:58:07 EDT 2025 Tue Nov 18 22:18:54 EST 2025 Sat Nov 29 02:10:44 EST 2025 Wed Aug 20 07:25:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | nanomedicine drug delivery stimuli-responsive tumor penetration |
| Language | English |
| License | 2018 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4199-a59c076c81374b6ed024275c06a76b1fd92102ca3af10c30c8d64a40c15f68fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 29659166 |
| PQID | 2159347157 |
| PQPubID | 2034620 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2025802714 proquest_journals_2159347157 pubmed_primary_29659166 crossref_citationtrail_10_1002_wnan_1519 crossref_primary_10_1002_wnan_1519 wiley_primary_10_1002_wnan_1519_WNAN1519 |
| PublicationCentury | 2000 |
| PublicationDate | January/February 2019 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January/February 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
| PublicationTitle | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology |
| PublicationTitleAlternate | Wiley Interdiscip Rev Nanomed Nanobiotechnol |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2010; 99 2004; 22 2010; 18 1994a; 54 2010; 141 2011; 11 2008; 105 1994b; 54 2001; 46 2012; 134 2009; 97 2014; 2 1988; 48 2016; 113 2000; 60 2013a; 110 2014; 13 2015; 219 2007; 2 2014; 9 2014; 8 2010; 7 2009; 16 2007; 25 2012; 64 2009; 324 2014; 53 2015; 12 2013b; 110 2015; 5 2015; 3 2006; 98 2015; 201 2011a; 6 2015; 10 2016; 10 2016; 244 2016; 17 2014; 111 2015; 9 2016; 16 2015; 7 2011; 133 2011; 7 2016; 11 2012; 196 2015; 25 2010; 49 2011; 108 2017; 15 2015; 60 2011b; 6 1993; 53 2011; 50 2017; 18 2012; 6 2012; 7 2016; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 Curti B. D. (e_1_2_7_9_1) 1993; 53 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 Yuan F. (e_1_2_7_72_1) 1994; 54 e_1_2_7_27_1 e_1_2_7_29_1 Yuan F. (e_1_2_7_71_1) 1994; 54 Leu A. J. (e_1_2_7_32_1) 2000; 60 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Jain R. K. (e_1_2_7_24_1) 1988; 48 |
| References_xml | – volume: 2 start-page: e29528 year: 2014 article-title: Barriers to drug delivery in solid tumors publication-title: Tissue Barriers – volume: 11 start-page: 673 year: 2016 end-page: 692 article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction publication-title: Nanomedicine – volume: 110 start-page: 19048 year: 2013a end-page: 19053 article-title: Photoswitchable nanoparticles for in vivo cancer chemotherapy publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 223 year: 2014 end-page: 243 article-title: Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects publication-title: Nano Today – volume: 219 start-page: 192 year: 2015 end-page: 204 article-title: Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors publication-title: Journal of Controlled Release – volume: 17 start-page: 731 year: 2016 end-page: 736 article-title: Shaping tumor microenvironment for improving nanoparticles delivery publication-title: Current Drug Metabolism – volume: 196 start-page: 395 year: 2012 end-page: 406 article-title: The extracellular matrix: A dynamic niche in cancer progression publication-title: The Journal of Cell Biology – volume: 7 start-page: 494 year: 2015 end-page: 508 article-title: Advances in the synthesis and application of nanoparticles for drug delivery publication-title: WIREs Nanomedicine and Nanobiotechnology – volume: 8 start-page: 9874 year: 2014 end-page: 9883 article-title: Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix publication-title: ACS Nano – volume: 8 start-page: 4385 year: 2014 end-page: 4394 article-title: Radioactive Au‐198‐doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution publication-title: ACS Nano – volume: 53 start-page: 2204 year: 1993 end-page: 2207 article-title: Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: Changes during treatment publication-title: Cancer Research – volume: 12 start-page: 223 year: 2015 end-page: 238 article-title: Overcoming multidrug resistance with nanomedicines publication-title: Expert Opinion on Drug Delivery – volume: 13 start-page: 204 year: 2014 end-page: 212 article-title: A nanoparticle‐based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals publication-title: Nature Materials – volume: 99 start-page: 1342 year: 2010 end-page: 1349 article-title: Diffusion of particles in the extracellular matrix: The effect of repulsive electrostatic interactions publication-title: Biophysical Journal – volume: 10 start-page: 9420 year: 2016 end-page: 9433 article-title: The penetrated delivery of drug and energy to tumors by lipo‐graphene nanosponges for photolytic therapy publication-title: ACS Nano – volume: 11 start-page: 133 year: 2016 end-page: 144 article-title: Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines publication-title: Nano Today – volume: 54 start-page: 3352 year: 1994a end-page: 3356 article-title: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft publication-title: Cancer Research – volume: 113 start-page: 4164 year: 2016 end-page: 4169 article-title: Stimuli‐responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 60 start-page: 4324 year: 2000 end-page: 4327 article-title: Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation publication-title: Cancer Research – volume: 201 start-page: 78 year: 2015 end-page: 89 article-title: Improving drug delivery to solid tumors: Priming the tumor microenvironment publication-title: Journal of Controlled Release – volume: 105 start-page: 11613 year: 2008 end-page: 11618 article-title: The effect of particle design on cellular internalization pathways publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 16 start-page: 3268 year: 2016 end-page: 3277 article-title: Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy publication-title: Nano Letters – volume: 6 start-page: 815 year: 2011b end-page: 823 article-title: Accumulation of sub‐100 nm polymeric micelles in poorly permeable tumours depends on size publication-title: Nature Nanotechnology – volume: 8 start-page: 678 year: 2016 end-page: 695 article-title: Crossing the barrier: Treatment of brain tumors using nanochain particles publication-title: WIREs Nanomedicine and Nanobiotechnology – volume: 11 start-page: 671 year: 2011 end-page: 677 article-title: Dysregulated pH: A perfect storm for cancer progression publication-title: Nature Reviews. Cancer – volume: 3 start-page: 1085 year: 2015 end-page: 1095 article-title: Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids publication-title: Biomaterials Science – volume: 111 start-page: 15344 year: 2014 end-page: 15349 article-title: Investigating the optimal size of anticancer nanomedicine publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 219 start-page: 31 year: 2015 end-page: 42 article-title: Ultraviolet light‐mediated drug delivery: Principles, applications, and challenges publication-title: Journal of Controlled Release – volume: 50 start-page: 11417 year: 2011 end-page: 11420 article-title: Fluorescent nanorods and nanospheres for real‐time in vivo probing of nanoparticle shape‐dependent tumor penetration publication-title: Angewandte Chemie, International Edition – volume: 8 start-page: 696 year: 2016 end-page: 716 article-title: pH‐sensitive stimulus‐responsive nanocarriers for targeted delivery of therapeutic agents publication-title: WIREs Nanomedicine and Nanobiotechnology – volume: 10 start-page: 6753 year: 2016 end-page: 6761 article-title: Smart superstructures with ultrahigh pH‐sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration publication-title: ACS Nano – volume: 324 start-page: 1457 year: 2009 end-page: 1461 article-title: Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer publication-title: Science – volume: 2 start-page: 265 year: 2007 article-title: Increased nanoparticle penetration in collagenase‐treated multicellular spheroids publication-title: International Journal of Nanomedicine – volume: 9 start-page: 7195 year: 2015 end-page: 7206 article-title: The role of micelle size in tumor accumulation, penetration, and treatment publication-title: ACS Nano – volume: 25 start-page: 2489 year: 2015 end-page: 2500 article-title: pH‐ and NIR light‐responsive micelles with hyperthermia‐triggered tumor penetration and cytoplasm drug release to reverse doxorubicin resistance in breast cancer publication-title: Advanced Functional Materials – volume: 49 start-page: 8649 year: 2010 end-page: 8652 article-title: A nanoparticle size series for in vivo fluorescence imaging publication-title: Angewandte Chemie, International Edition – volume: 18 start-page: 884 year: 2010 end-page: 901 article-title: Tumors as organs: Complex tissues that interface with the entire organism publication-title: Developmental Cell – volume: 10 start-page: 451 year: 2015 end-page: 467 article-title: Photoresponsive nanoparticles for drug delivery publication-title: Nano Today – volume: 25 start-page: 1165 year: 2007 end-page: 1170 article-title: Renal clearance of quantum dots publication-title: Nature Biotechnology – volume: 64 start-page: 29 year: 2012 end-page: 39 article-title: Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor publication-title: Advanced Drug Delivery Reviews – volume: 134 start-page: 8848 year: 2012 end-page: 8855 article-title: Photoswitchable nanoparticles for triggered tissue penetration and drug delivery publication-title: Journal of the American Chemical Society – volume: 7 start-page: 1195 year: 2010 end-page: 1208 article-title: The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles publication-title: Molecular Pharmaceutics – volume: 46 start-page: 149 year: 2001 end-page: 168 article-title: Delivery of molecular and cellular medicine to solid tumors publication-title: Advanced Drug Delivery Reviews – volume: 133 start-page: 17560 year: 2011 end-page: 17563 article-title: Tailor‐made dual pH‐sensitive polymer‐doxorubicin nanoparticles for efficient anticancer drug delivery publication-title: Journal of the American Chemical Society – volume: 8 start-page: 10136 year: 2016 end-page: 10146 article-title: Size‐shifting micelle nanoclusters based on a cross‐linked and pH‐sensitive framework for enhanced tumor targeting and deep penetration features publication-title: ACS Applied Materials & Interfaces – volume: 141 start-page: 52 year: 2010 end-page: 67 article-title: Matrix metalloproteinases: Regulators of the tumor microenvironment publication-title: Cell – volume: 7 start-page: e40006 year: 2012 article-title: High interstitial fluid pressure is associated with tumor‐line specific vascular abnormalities in human melanoma xenografts publication-title: PLoS One – volume: 16 start-page: 510 year: 2009 end-page: 520 article-title: Tissue‐penetrating delivery of compounds and nanoparticles into tumors publication-title: Cancer Cell – volume: 6 start-page: 4483 year: 2012 end-page: 4493 article-title: Size‐dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo publication-title: ACS Nano – volume: 97 start-page: 1569 year: 2009 end-page: 1577 article-title: Selective filtering of particles by the extracellular matrix: An electrostatic bandpass publication-title: Biophysical Journal – volume: 5 start-page: 85933 year: 2015 end-page: 85937 article-title: Multistage drug delivery system based on microenvironment‐responsive dendrimer–gelatin nanoparticles for deep tumor penetration publication-title: RSC Advances – volume: 6 start-page: 815 year: 2011a end-page: 823 article-title: Accumulation of sub‐100 nm polymeric micelles in poorly permeable tumours depends on size publication-title: Nature Nanotechnology – volume: 324 start-page: 1029 year: 2009 end-page: 1033 article-title: Understanding the Warburg effect: The metabolic requirements of cell proliferation publication-title: Science – volume: 49 start-page: 3621 year: 2010 end-page: 3626 article-title: A tumor‐acidity‐activated charge‐conversional nanogel as an intelligent vehicle for promoted tumoral‐cell uptake and drug delivery publication-title: Angewandte Chemie, International Edition – volume: 53 start-page: 1012 year: 2014 end-page: 1016 article-title: Near‐infrared light‐mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion‐luminescent nanoparticles publication-title: Angewandte Chemie, International Edition – volume: 7 start-page: 653 year: 2010 end-page: 664 article-title: Delivering nanomedicine to solid tumors publication-title: Nature Reviews Clinical Oncology – volume: 54 start-page: 3352 year: 1994b end-page: 3356 article-title: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft publication-title: Cancer Research – volume: 219 start-page: 205 year: 2015 end-page: 214 article-title: Stimuli‐responsive nanoparticles for targeting the tumor microenvironment publication-title: Journal of Controlled Release – volume: 18 start-page: 535 year: 2017 end-page: 543 article-title: Tumor microenvironment‐sensitive liposomes penetrate tumor tissue via attenuated interaction of the extracellular matrix and tumor cells and accompanying actin depolymerization publication-title: Biomacromolecules – volume: 22 start-page: 2061 year: 2004 end-page: 2068 article-title: Failure of higher‐dose paclitaxel to improve outcome in patients with metastatic breast cancer: Cancer and leukemia group B trial 9342 publication-title: Journal of Clinical Oncology – volume: 64 start-page: 866 year: 2012 end-page: 884 article-title: Stimuli‐responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications publication-title: Advanced Drug Delivery Reviews – volume: 48 start-page: 7022 year: 1988 end-page: 7032 article-title: Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure publication-title: Cancer Research – volume: 7 start-page: 1919 year: 2011 end-page: 1931 article-title: More effective nanomedicines through particle design publication-title: Small – volume: 110 start-page: 19048 year: 2013b end-page: 19053 article-title: Photoswitchable nanoparticles for in vivo cancer chemotherapy publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 15 start-page: 56 year: 2017 end-page: 90 article-title: Design of nanocarriers based on complex biological barriers in vivo for tumor therapy publication-title: Nano Today – volume: 53 start-page: 6253 year: 2014 end-page: 6258 article-title: Sequential intra‐intercellular nanoparticle delivery system for deep tumor penetration publication-title: Angewandte Chemie, International Edition – volume: 60 start-page: 100 year: 2015 end-page: 110 article-title: Matrix metalloproteinase‐sensitive size‐shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release publication-title: Biomaterials – volume: 98 start-page: 335 year: 2006 end-page: 344 article-title: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers publication-title: Journal of the National Cancer Institute – volume: 108 start-page: 2426 year: 2011 end-page: 2431 article-title: Multistage nanoparticle delivery system for deep penetration into tumor tissue publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 244 start-page: 257 year: 2016 end-page: 268 article-title: Tumor stroma‐containing 3D spheroid arrays: A tool to study nanoparticle penetration publication-title: Journal of Controlled Release – ident: e_1_2_7_14_1 doi: 10.1016/j.devcel.2010.05.012 – ident: e_1_2_7_29_1 doi: 10.1002/wnan.1389 – ident: e_1_2_7_18_1 doi: 10.2217/17435889.2.3.265 – ident: e_1_2_7_38_1 doi: 10.1016/j.nantod.2017.06.010 – ident: e_1_2_7_11_1 doi: 10.1021/ja207150n – ident: e_1_2_7_19_1 doi: 10.1073/pnas.0801763105 – volume: 60 start-page: 4324 year: 2000 ident: e_1_2_7_32_1 article-title: Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation publication-title: Cancer Research – ident: e_1_2_7_61_1 doi: 10.1021/ja211888a – ident: e_1_2_7_42_1 doi: 10.1016/j.jconrel.2015.08.017 – ident: e_1_2_7_62_1 doi: 10.1126/science.1160809 – ident: e_1_2_7_20_1 doi: 10.2217/nnm.16.5 – ident: e_1_2_7_63_1 doi: 10.1016/j.nantod.2016.04.008 – ident: e_1_2_7_73_1 doi: 10.1021/acs.nanolett.6b00820 – ident: e_1_2_7_57_1 doi: 10.1021/acs.biomac.6b01688 – ident: e_1_2_7_59_1 doi: 10.1073/pnas.1315336110 – ident: e_1_2_7_55_1 doi: 10.1021/acsnano.6b04414 – ident: e_1_2_7_53_1 doi: 10.4161/tisb.29528 – ident: e_1_2_7_54_1 doi: 10.1016/j.bpj.2010.06.016 – ident: e_1_2_7_66_1 doi: 10.1038/nmat3819 – ident: e_1_2_7_36_1 doi: 10.1021/acsami.6b00668 – ident: e_1_2_7_39_1 doi: 10.1039/C4BM00323C – ident: e_1_2_7_48_1 doi: 10.1016/j.jconrel.2016.09.004 – ident: e_1_2_7_51_1 doi: 10.1016/j.nantod.2015.06.004 – ident: e_1_2_7_15_1 doi: 10.1016/j.addr.2012.01.020 – ident: e_1_2_7_3_1 doi: 10.1016/j.nantod.2014.04.008 – volume: 54 start-page: 3352 year: 1994 ident: e_1_2_7_71_1 article-title: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft publication-title: Cancer Research – ident: e_1_2_7_4_1 doi: 10.1021/nn406258m – volume: 53 start-page: 2204 year: 1993 ident: e_1_2_7_9_1 article-title: Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: Changes during treatment publication-title: Cancer Research – ident: e_1_2_7_26_1 doi: 10.1002/anie.201311227 – ident: e_1_2_7_68_1 doi: 10.1200/JCO.2004.08.048 – ident: e_1_2_7_58_1 doi: 10.1073/pnas.1411499111 – ident: e_1_2_7_31_1 doi: 10.1021/mp100038h – ident: e_1_2_7_70_1 doi: 10.1002/adfm.201404484 – ident: e_1_2_7_52_1 doi: 10.1371/journal.pone.0040006 – ident: e_1_2_7_64_1 doi: 10.1002/smll.201100442 – ident: e_1_2_7_21_1 doi: 10.1039/C5RA18833D – ident: e_1_2_7_67_1 doi: 10.1038/nrc3110 – ident: e_1_2_7_41_1 doi: 10.1016/j.jconrel.2015.08.017 – ident: e_1_2_7_46_1 doi: 10.1021/nn502807n – volume: 48 start-page: 7022 year: 1988 ident: e_1_2_7_24_1 article-title: Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure publication-title: Cancer Research – ident: e_1_2_7_17_1 doi: 10.2174/1389200217666160630203600 – ident: e_1_2_7_45_1 doi: 10.1002/wnan.1325 – volume: 54 start-page: 3352 year: 1994 ident: e_1_2_7_72_1 article-title: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft publication-title: Cancer Research – ident: e_1_2_7_23_1 doi: 10.1016/S0169-409X(00)00131-9 – ident: e_1_2_7_47_1 doi: 10.1002/anie.201003142 – ident: e_1_2_7_22_1 doi: 10.1021/nn301282m – ident: e_1_2_7_28_1 doi: 10.1002/wnan.1387 – ident: e_1_2_7_69_1 doi: 10.1073/pnas.1018382108 – ident: e_1_2_7_65_1 doi: 10.1021/acsnano.5b02017 – ident: e_1_2_7_30_1 doi: 10.1016/j.jconrel.2014.12.018 – ident: e_1_2_7_10_1 doi: 10.1093/jnci/djj070 – ident: e_1_2_7_25_1 doi: 10.1038/nrclinonc.2010.139 – ident: e_1_2_7_5_1 doi: 10.1038/nnano.2011.166 – ident: e_1_2_7_16_1 doi: 10.1517/17425247.2015.960920 – ident: e_1_2_7_34_1 doi: 10.1021/acsnano.6b02326 – ident: e_1_2_7_7_1 doi: 10.1002/anie.201104449 – ident: e_1_2_7_43_1 doi: 10.1002/anie.201308834 – ident: e_1_2_7_50_1 doi: 10.1016/j.biomaterials.2015.05.006 – ident: e_1_2_7_6_1 doi: 10.1038/nnano.2011.166 – ident: e_1_2_7_27_1 doi: 10.1016/j.cell.2010.03.015 – ident: e_1_2_7_40_1 doi: 10.1083/jcb.201102147 – ident: e_1_2_7_49_1 doi: 10.1021/ja211888a – ident: e_1_2_7_2_1 doi: 10.1016/j.jconrel.2015.07.018 – ident: e_1_2_7_37_1 doi: 10.1016/j.bpj.2009.07.009 – ident: e_1_2_7_60_1 doi: 10.1073/pnas.1315336110 – ident: e_1_2_7_12_1 doi: 10.1016/j.jconrel.2015.08.050 – ident: e_1_2_7_33_1 doi: 10.1073/pnas.1522080113 – ident: e_1_2_7_8_1 doi: 10.1038/nbt1340 – ident: e_1_2_7_56_1 doi: 10.1016/j.ccr.2009.10.013 – ident: e_1_2_7_13_1 doi: 10.1002/anie.200907210 – ident: e_1_2_7_35_1 doi: 10.1016/j.addr.2011.04.006 – ident: e_1_2_7_44_1 doi: 10.1126/science.1171362 |
| SSID | ssj0064625 |
| Score | 2.5876453 |
| SecondaryResourceType | review_article |
| Snippet | Nanoparticles (NPs) have emerged as an effective means to deliver therapeutic drugs for cancer treatment, as they can preferentially accumulate at tumor site... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1519 |
| SubjectTerms | Animals Cancer drug delivery Drug delivery systems Drug discovery Extracellular matrix Fluid pressure Humans Liposomes Micelles nanomedicine Nanomedicine - methods Nanoparticles Nanoparticles - chemistry Nanotechnology Neoplasms - pathology Parenchyma Penetration Permeability Physicochemical properties Solid tumors stimuli‐responsive Surface charge Therapeutic applications Transport Tumor Microenvironment tumor penetration Tumors |
| Title | Strategies to improve tumor penetration of nanomedicines through nanoparticle design |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwnan.1519 https://www.ncbi.nlm.nih.gov/pubmed/29659166 https://www.proquest.com/docview/2159347157 https://www.proquest.com/docview/2025802714 |
| Volume | 11 |
| WOSCitedRecordID | wos000454121300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1939-0041 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064625 issn: 1939-5116 databaseCode: DRFUL dateStart: 20090101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4tSw_lUB4tdMuCDOqhl5QkduxYPSFgxQFFCC3q3iLHcSQkSFab3fbvd-w8yqpUQuIWJePY8ng83_jxDcBX9ABMMcrsXSflMUWNJ3OTe6FUkdAGfYpxF4VvRJLEs5m8HcCP7i5Mww_RL7hZy3DztTVwldVnf0lDf5eq_I7-Sm7AJlZE2RA2L-8m9zfdRMwZdzlXEaJID3EF74iF_PCsL7zujv7BmOuQ1fmcyfabWrsDH1qoSc6bsbELA1PuwdYzAsKPMO3IaU1NlhV5cCsMhixXT9WCzHEabEl1SVUQ_HXV7cSjdJPfx72dt8OP5O44yCe4n1xNL669Ns-Cp1kgpaciqX3BdRxQwTJucuu3RaR9rgTPgiKXNi7Uiqoi8DX1dZxzVLCvg6jgcWHoPgzLqjSfgcQZpVnm6wKjFia5kprSIqI5xrzMZIKP4FvX3aluSchtLozHtKFPDlPbUantqBGc9qLzhnnjJaFxp7O0Nb46RRQjKTrdSIzgpP-MZmP3QlRpqhXKINaLMSQP2AgOGl33tYSWZDHgtrFOpf-vPv2ZnCf24cvrRQ_hPYIud04tlGMYLhcrcwTv9K_lQ704hg0xi4_bkfwHDvr3PA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdSD78f6jOLBS912k6YNeBF1UVyLyIreSpqmIGi77EP_vpO-VFQQvJV22oTMTOabSfMF4BAjAJOMMrPXSVpMUm2JWMdWW0jXUxpjis43Cne9IPAfH8XtBJxUe2EKfoi64GY8I5-vjYObgnTrgzX0LZXpMQYsMQlTDM3IbcDU-V3nvlvNxJzx_NBVxCjCQmDBK2Yhu92qX_4aj76BzK-YNQ86nYX_dXcR5kuwSU4L61iCCZ0uw9wnCsIV6FX0tHpIRhl5ymsMmozGL9mA9HEiLGl1SZYQ_HRWrcWjdHHCT363XxogifMfQlbhvnPRO7u0ypMWLMUcISzpCmV7XPkO9VjEdWwit-cqm0uPR04SC5MZKkll4tiK2sqPOarYVo6bcD_RdA0aaZbqDSB-RGkU2SrBvIUJLoWiNHFpjFkv05HHm3BUjXeoShpycxrGc1gQKLdDM1ChGagmHNSi_YJ74yeh7UppYel-wxBxjKAYdl2vCfv1Y3QcsxoiU52NUQbRno9JucOasF4ou26lbWgWHW46m-v09-bDh-A0MBebfxfdg5nL3k037F4F11swixBMFEWdbWiMBmO9A9PqdfQ0HOyWBv0O_4b6Mg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7UFdGD78f6jOLBS7XdpGkDXsR1UVyKyIp7K2magqDtsg_9-076UlFB8FbaaRMymcw3k-YbgGP0AEwyysxZJ2kxSbUlYh1bLSFdT2n0KTo_KNz1gsDv98XdFJxXZ2EKfog64WYsI1-vjYHrQZycfbCGvqUyPUWHJaahwVzB0Swb7fvOQ7daiTnjedFVxCjCQmDBK2Yhu3VWv_zVH30DmV8xa-50Okv_6-4yLJZgk1wUs2MFpnS6CgufKAjXoFfR0-oRGWfkKc8xaDKevGRDMsCFsKTVJVlC8NNZtReP0kWFn_zuoJyAJM5_CFmHh85V7_LaKistWIo5QljSFcr2uPId6rGI69h4bs9VNpcej5wkFiYyVJLKxLEVtZUfc1SxrRw34X6i6QbMpFmqt4D4EaVRZKsE4xYmuBSK0sSlMUa9TEceb8JJNd6hKmnITTWM57AgUG6FZqBCM1BNOKpFBwX3xk9Cu5XSwtL8RiHiGEHR7bpeEw7rx2g4ZjdEpjqboAyiPR-Dcoc1YbNQdt1Ky9AsOtx0Ntfp782Hj8FFYC62_y56AHN37U7YvQlud2AeEZgocjq7MDMeTvQezKrX8dNouF_O53eUWvmt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategies+to+improve+tumor+penetration+of+nanomedicines+through+nanoparticle+design&rft.jtitle=Wiley+interdisciplinary+reviews.+Nanomedicine+and+nanobiotechnology&rft.au=Zhang%2C+Ya-Ru&rft.au=Lin%2C+Run&rft.au=Li%2C+Hong-Jun&rft.au=He%2C+Wei-Ling&rft.date=2019-01-01&rft.issn=1939-0041&rft.eissn=1939-0041&rft.volume=11&rft.issue=1&rft.spage=e1519&rft_id=info:doi/10.1002%2Fwnan.1519&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5116&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5116&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5116&client=summon |