The revised EEMCO guidance for the in vivo measurement of water in the skin
Background Noninvasive quantification of stratum corneum water content is widely used in skin research and topical product development. Methods The original EEMCO guidelines on measurements of skin hydration by electrical methods and transepidermal water loss (TEWL) by evaporimeter published in 1997...
Gespeichert in:
| Veröffentlicht in: | Skin research and technology Jg. 24; H. 3; S. 351 - 358 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
John Wiley & Sons, Inc
01.08.2018
|
| Schlagworte: | |
| ISSN: | 0909-752X, 1600-0846, 1600-0846 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Background
Noninvasive quantification of stratum corneum water content is widely used in skin research and topical product development.
Methods
The original EEMCO guidelines on measurements of skin hydration by electrical methods and transepidermal water loss (TEWL) by evaporimeter published in 1997 and 2001 have been revisited and updated with the incorporation of recently available technologies.
Results
Electrical methods and open‐chamber evaporimeters for measurement of TEWL are still the preferred techniques to measure the water balance in the stratum corneum. The background technology and biophysics of these instruments remain relevant and valid. However, new methods that can image surface hydration and measure depth profiles of dermal water content now available. Open‐chamber measurement of TEWL has been supplemented with semiopen and closed chamber probes, which are more robust to environmental influence and therefore convenient to use and more applicable to field studies. However, closed chamber methods interfere with the evaporation of water, and the methods cannot be used for continuous monitoring. Validation of methods with respect to intra‐ and inter‐instrument variation remains challenging. No validation standard or test phantom is available.
Results and Conclusions
The established methods for measurement of epidermal water content and TEWL have been supplemented with important new technologies including methods that allow imaging of epidermal water distribution and water depth profiles. A much more complete and sophisticated characterization of the various aspects of the dermal water barrier has been accomplished by means of today's noninvasive techniques; however, instrument standardization and validation remain a challenge. |
|---|---|
| AbstractList | BackgroundNoninvasive quantification of stratum corneum water content is widely used in skin research and topical product development.MethodsThe original EEMCO guidelines on measurements of skin hydration by electrical methods and transepidermal water loss (TEWL) by evaporimeter published in 1997 and 2001 have been revisited and updated with the incorporation of recently available technologies.ResultsElectrical methods and open‐chamber evaporimeters for measurement of TEWL are still the preferred techniques to measure the water balance in the stratum corneum. The background technology and biophysics of these instruments remain relevant and valid. However, new methods that can image surface hydration and measure depth profiles of dermal water content now available. Open‐chamber measurement of TEWL has been supplemented with semiopen and closed chamber probes, which are more robust to environmental influence and therefore convenient to use and more applicable to field studies. However, closed chamber methods interfere with the evaporation of water, and the methods cannot be used for continuous monitoring. Validation of methods with respect to intra‐ and inter‐instrument variation remains challenging. No validation standard or test phantom is available.Results and ConclusionsThe established methods for measurement of epidermal water content and TEWL have been supplemented with important new technologies including methods that allow imaging of epidermal water distribution and water depth profiles. A much more complete and sophisticated characterization of the various aspects of the dermal water barrier has been accomplished by means of today's noninvasive techniques; however, instrument standardization and validation remain a challenge. Noninvasive quantification of stratum corneum water content is widely used in skin research and topical product development. The original EEMCO guidelines on measurements of skin hydration by electrical methods and transepidermal water loss (TEWL) by evaporimeter published in 1997 and 2001 have been revisited and updated with the incorporation of recently available technologies. Electrical methods and open-chamber evaporimeters for measurement of TEWL are still the preferred techniques to measure the water balance in the stratum corneum. The background technology and biophysics of these instruments remain relevant and valid. However, new methods that can image surface hydration and measure depth profiles of dermal water content now available. Open-chamber measurement of TEWL has been supplemented with semiopen and closed chamber probes, which are more robust to environmental influence and therefore convenient to use and more applicable to field studies. However, closed chamber methods interfere with the evaporation of water, and the methods cannot be used for continuous monitoring. Validation of methods with respect to intra- and inter-instrument variation remains challenging. No validation standard or test phantom is available. The established methods for measurement of epidermal water content and TEWL have been supplemented with important new technologies including methods that allow imaging of epidermal water distribution and water depth profiles. A much more complete and sophisticated characterization of the various aspects of the dermal water barrier has been accomplished by means of today's noninvasive techniques; however, instrument standardization and validation remain a challenge. Background Noninvasive quantification of stratum corneum water content is widely used in skin research and topical product development. Methods The original EEMCO guidelines on measurements of skin hydration by electrical methods and transepidermal water loss (TEWL) by evaporimeter published in 1997 and 2001 have been revisited and updated with the incorporation of recently available technologies. Results Electrical methods and open‐chamber evaporimeters for measurement of TEWL are still the preferred techniques to measure the water balance in the stratum corneum. The background technology and biophysics of these instruments remain relevant and valid. However, new methods that can image surface hydration and measure depth profiles of dermal water content now available. Open‐chamber measurement of TEWL has been supplemented with semiopen and closed chamber probes, which are more robust to environmental influence and therefore convenient to use and more applicable to field studies. However, closed chamber methods interfere with the evaporation of water, and the methods cannot be used for continuous monitoring. Validation of methods with respect to intra‐ and inter‐instrument variation remains challenging. No validation standard or test phantom is available. Results and Conclusions The established methods for measurement of epidermal water content and TEWL have been supplemented with important new technologies including methods that allow imaging of epidermal water distribution and water depth profiles. A much more complete and sophisticated characterization of the various aspects of the dermal water barrier has been accomplished by means of today's noninvasive techniques; however, instrument standardization and validation remain a challenge. Noninvasive quantification of stratum corneum water content is widely used in skin research and topical product development.BACKGROUNDNoninvasive quantification of stratum corneum water content is widely used in skin research and topical product development.The original EEMCO guidelines on measurements of skin hydration by electrical methods and transepidermal water loss (TEWL) by evaporimeter published in 1997 and 2001 have been revisited and updated with the incorporation of recently available technologies.METHODSThe original EEMCO guidelines on measurements of skin hydration by electrical methods and transepidermal water loss (TEWL) by evaporimeter published in 1997 and 2001 have been revisited and updated with the incorporation of recently available technologies.Electrical methods and open-chamber evaporimeters for measurement of TEWL are still the preferred techniques to measure the water balance in the stratum corneum. The background technology and biophysics of these instruments remain relevant and valid. However, new methods that can image surface hydration and measure depth profiles of dermal water content now available. Open-chamber measurement of TEWL has been supplemented with semiopen and closed chamber probes, which are more robust to environmental influence and therefore convenient to use and more applicable to field studies. However, closed chamber methods interfere with the evaporation of water, and the methods cannot be used for continuous monitoring. Validation of methods with respect to intra- and inter-instrument variation remains challenging. No validation standard or test phantom is available.RESULTSElectrical methods and open-chamber evaporimeters for measurement of TEWL are still the preferred techniques to measure the water balance in the stratum corneum. The background technology and biophysics of these instruments remain relevant and valid. However, new methods that can image surface hydration and measure depth profiles of dermal water content now available. Open-chamber measurement of TEWL has been supplemented with semiopen and closed chamber probes, which are more robust to environmental influence and therefore convenient to use and more applicable to field studies. However, closed chamber methods interfere with the evaporation of water, and the methods cannot be used for continuous monitoring. Validation of methods with respect to intra- and inter-instrument variation remains challenging. No validation standard or test phantom is available.The established methods for measurement of epidermal water content and TEWL have been supplemented with important new technologies including methods that allow imaging of epidermal water distribution and water depth profiles. A much more complete and sophisticated characterization of the various aspects of the dermal water barrier has been accomplished by means of today's noninvasive techniques; however, instrument standardization and validation remain a challenge.RESULTS AND CONCLUSIONSThe established methods for measurement of epidermal water content and TEWL have been supplemented with important new technologies including methods that allow imaging of epidermal water distribution and water depth profiles. A much more complete and sophisticated characterization of the various aspects of the dermal water barrier has been accomplished by means of today's noninvasive techniques; however, instrument standardization and validation remain a challenge. |
| Author | Masson, Philippe Berardesca, Enzo Loden, Marie Rodrigues, Luis Monteiro Serup, Jorgen |
| Author_xml | – sequence: 1 givenname: Enzo surname: Berardesca fullname: Berardesca, Enzo organization: San Gallicano Dermatological Institute – sequence: 2 givenname: Marie surname: Loden fullname: Loden, Marie organization: Eviderm Institute – sequence: 3 givenname: Jorgen surname: Serup fullname: Serup, Jorgen organization: Bispebjerg University Hospital – sequence: 4 givenname: Philippe surname: Masson fullname: Masson, Philippe – sequence: 5 givenname: Luis Monteiro orcidid: 0000-0003-0198-7671 surname: Rodrigues fullname: Rodrigues, Luis Monteiro email: monteiro.rodrigues@ulusofona.pt organization: Universidade de Lisboa |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29923639$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kU9P3DAQxS0EYpc_h36BylIv9JDFjhMnPlarpVSAkNpF4mY5zrg1TWywk13x7fF2l8uqzGUO83tPT_NO0KHzDhD6RMmMprmMYZjRvBTiAE0pJyQjdcEP0ZQIIrKqzB8n6CTGJ0JIKSg7RpNciJxxJqboZvkHcICVjdDixeJufo9_j7ZVTgM2PuAhna3DK7vyuAcVxwA9uAF7g9dqgLA5bpj417ozdGRUF-F8t0_Rw9ViOb_Obu-__5h_u810QYXIqNK0EQCaFwUrWUVUK0xbGVLmpqnBcFEVrBG6qCtltNKckkK3pDa8YYrrkp2ii63vc_AvI8RB9jZq6DrlwI9R5qRMDoLVG_TLHvrkx-BSukTxqhYpUJ2ozztqbHpo5XOwvQqv8v1NCbjcAjr4GAMYqe2gBuvdEJTtJCVyU4RMRch_RSTF1z3Fu-n_2J372nbw-jEof_1cbhVvNSKWFg |
| CitedBy_id | crossref_primary_10_1177_1934578X20932744 crossref_primary_10_1111_srt_13307 crossref_primary_10_1016_j_gerinurse_2024_10_031 crossref_primary_10_3390_pharmaceutics14061144 crossref_primary_10_1016_j_gerinurse_2023_10_032 crossref_primary_10_1093_jbcr_iraf151 crossref_primary_10_1111_srt_13276 crossref_primary_10_2340_actadv_v101_413 crossref_primary_10_1111_dth_14391 crossref_primary_10_3390_s21062162 crossref_primary_10_3390_pharmaceutics14020433 crossref_primary_10_1016_j_jdsct_2024_100005 crossref_primary_10_3390_cosmetics6010019 crossref_primary_10_3390_cosmetics6040062 crossref_primary_10_3390_cosmetics10060169 crossref_primary_10_1111_ics_12950 crossref_primary_10_1111_srt_13039 crossref_primary_10_1111_srt_13159 crossref_primary_10_1111_srt_12900 crossref_primary_10_1002_ski2_21 crossref_primary_10_1093_annweh_wxac023 crossref_primary_10_1016_j_burns_2024_09_008 crossref_primary_10_1016_j_preteyeres_2025_101399 crossref_primary_10_1111_cod_14532 crossref_primary_10_3390_s19204376 crossref_primary_10_1159_000539411 crossref_primary_10_1111_ics_12726 crossref_primary_10_1111_jocd_15555 crossref_primary_10_3390_medicina60050739 crossref_primary_10_1111_cod_13959 crossref_primary_10_1111_jocd_14992 crossref_primary_10_1016_j_ijbiomac_2025_142707 crossref_primary_10_1016_j_jtv_2024_05_008 crossref_primary_10_1111_cod_14808 crossref_primary_10_1111_srt_13773 crossref_primary_10_3390_gels11070495 crossref_primary_10_3390_cosmetics9060141 crossref_primary_10_1111_jdv_17784 crossref_primary_10_1155_2022_7014004 crossref_primary_10_3390_cosmetics6030038 crossref_primary_10_3390_gels11070532 crossref_primary_10_3390_antiox10101625 crossref_primary_10_3390_cosmetics9010005 crossref_primary_10_1016_j_cej_2023_147819 crossref_primary_10_1111_jocd_16513 crossref_primary_10_1002_adhm_202001322 crossref_primary_10_3390_cosmetics9010009 crossref_primary_10_7759_cureus_17665 crossref_primary_10_1111_wrr_12866 crossref_primary_10_4081_dr_2021_8811 crossref_primary_10_11124_JBIES_20_00468 crossref_primary_10_2147_CCID_S476004 crossref_primary_10_1111_ics_12861 crossref_primary_10_1111_jdv_15871 crossref_primary_10_1088_2515_7647_abcb71 crossref_primary_10_1111_ics_13034 crossref_primary_10_1111_srt_12653 crossref_primary_10_3390_pharmaceutics15010240 crossref_primary_10_2196_51962 crossref_primary_10_1111_all_14842 crossref_primary_10_1111_srt_12932 crossref_primary_10_1111_srt_12898 crossref_primary_10_1111_jocd_13163 crossref_primary_10_2340_actadv_v101_979 crossref_primary_10_1016_j_indcrop_2021_114466 crossref_primary_10_1038_s41598_025_89264_x crossref_primary_10_3390_cosmetics11010018 crossref_primary_10_1016_j_ejps_2024_106889 crossref_primary_10_1111_ics_12990 crossref_primary_10_1159_000530115 crossref_primary_10_3390_cosmetics8020036 crossref_primary_10_1159_000520009 crossref_primary_10_1111_srt_12664 crossref_primary_10_1111_jocd_12854 crossref_primary_10_3390_cosmetics10040095 crossref_primary_10_1002_ski2_65 crossref_primary_10_5021_ad_23_103 crossref_primary_10_3390_app14177911 crossref_primary_10_1016_j_archger_2025_105995 crossref_primary_10_1111_srt_12792 crossref_primary_10_1111_srt_13242 crossref_primary_10_1097_ACI_0000000000000476 crossref_primary_10_4081_dr_2024_9964 crossref_primary_10_4081_dr_2023_9711 crossref_primary_10_1097_WON_0000000000000684 crossref_primary_10_1002_der2_70037 crossref_primary_10_1016_j_ijpharm_2021_121370 crossref_primary_10_3390_ijms22094428 crossref_primary_10_1016_j_infrared_2023_104759 crossref_primary_10_1093_annweh_wxac019 crossref_primary_10_1016_j_burns_2025_107629 crossref_primary_10_3390_jpm13101507 crossref_primary_10_1016_j_xkme_2019_04_008 crossref_primary_10_1016_j_rpor_2019_09_001 crossref_primary_10_1111_cod_14287 crossref_primary_10_3389_fmed_2021_686470 crossref_primary_10_1111_cod_14282 crossref_primary_10_1080_02678292_2024_2361285 crossref_primary_10_5021_ad_23_052 crossref_primary_10_1111_ics_12814 crossref_primary_10_1111_all_13824 crossref_primary_10_1111_ijcp_13603 crossref_primary_10_1111_srt_70203 crossref_primary_10_3390_md21020057 |
| Cites_doi | 10.1111/j.1600-0536.1987.tb01411.x 10.1111/j.0909-752X.2006.00177.x 10.1111/srt.12377 10.1111/srt.12232 10.1111/srt.12185 10.1111/j.1468-3083.2006.01787.x 10.1111/j.1467-2494.2005.00270.x 10.1159/000056341 10.1111/j.1600-0846.1997.tb00174.x 10.1111/1523-1747.ep12524316 10.1111/j.1365-4362.1984.tb04061.x 10.1111/j.1600-0846.2004.00050.x 10.1111/j.1600-0846.2009.00376.x 10.1034/j.1600-0846.2003.00025.x 10.2340/0001555570400404 10.1111/cpf.12286 10.1159/000077836 10.1111/j.1600-0846.2011.00509.x 10.1111/j.1473-2165.2012.00620.x 10.1111/j.1600-0846.2005.00101.x 10.1111/j.1365-4632.2007.03455.x 10.2340/0001555567357359 10.1111/j.1475-097X.2008.00844.x 10.1111/j.1600-0536.1990.tb01553.x 10.1034/j.1600-0846.2003.00043.x 10.1111/srt.12590 |
| ContentType | Journal Article |
| Copyright | 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Copyright © 2018 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. – notice: Copyright © 2018 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
| DOI | 10.1111/srt.12599 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1600-0846 |
| EndPage | 358 |
| ExternalDocumentID | 29923639 10_1111_srt_12599 SRT12599 |
| Genre | article Journal Article Practice Guideline |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 31~ 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAKAS AAMMB AANHP AAONW AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCMX ACGFS ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADPDF ADXAS ADZCM ADZMN AEFGJ AEGXH AEIMD AENEX AFBPY AFEBI AFGKR AFKRA AFRAH AFZJQ AGQPQ AGXDD AHEFC AHMBA AIACR AIDQK AIDYY AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BROTX BRXPI BY8 CAG CCPQU COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 FEDTE FUBAC FYUFA FZ0 G-S G.N GODZA H.X HF~ HMCUK HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RPM RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 UKHRP W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAYXX AIQQE CITATION O8X PHGZM CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
| ID | FETCH-LOGICAL-c4199-1ac1b9eec64435370ad9fd7f052fb8ef69743b9c487afcac6104cd08f6b3a6c53 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 115 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438221100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0909-752X 1600-0846 |
| IngestDate | Mon Sep 29 06:26:52 EDT 2025 Sat Nov 29 14:56:42 EST 2025 Mon Jul 21 05:57:29 EDT 2025 Tue Nov 18 22:37:48 EST 2025 Sat Nov 29 02:17:34 EST 2025 Wed Aug 20 07:25:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | TEWL skin conductance skin hydration epidermal water loss evaporimetry skin capacitance SkinChip |
| Language | English |
| License | 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4199-1ac1b9eec64435370ad9fd7f052fb8ef69743b9c487afcac6104cd08f6b3a6c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Instructional Material/Guideline-3 content type line 23 |
| ORCID | 0000-0003-0198-7671 |
| PMID | 29923639 |
| PQID | 2067891998 |
| PQPubID | 1106343 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2057439385 proquest_journals_2067891998 pubmed_primary_29923639 crossref_citationtrail_10_1111_srt_12599 crossref_primary_10_1111_srt_12599 wiley_primary_10_1111_srt_12599_SRT12599 |
| PublicationCentury | 2000 |
| PublicationDate | August 2018 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Copenhagen |
| PublicationTitle | Skin research and technology |
| PublicationTitleAlternate | Skin Res Technol |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2006; 12 2006; 16 2002; 5 1984; 23 2017; 23 2014; 47 2004; 208 2005; 27 1997; 3 2012; 11 2009; 29 1987; 16 2004; 10 2011; 2011 1987; 67 1990; 22 2006; 20 1980; 75 2017; 37 2015; 21 2003; 9 2018 2001; 14 2007; 46 2005; 11 1990; 70 2009; 15 1988 2016; 22 e_1_2_6_32_1 e_1_2_6_10_1 Tagami H (e_1_2_6_7_1) 1988 Serup J (e_1_2_6_9_1) 1987; 67 e_1_2_6_13_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 Alanen E (e_1_2_6_25_1) 2003; 9 Mayrovitz HN (e_1_2_6_14_1) 2014; 47 e_1_2_6_21_1 Jones C (e_1_2_6_30_1) 2005; 11 e_1_2_6_20_1 Leveque JL (e_1_2_6_19_1) 2006; 16 Berardesca E (e_1_2_6_8_1) 1990; 70 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_6_1 Imhof RE (e_1_2_6_31_1) 2002; 5 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 27 start-page: 237 year: 2005 end-page: 241 article-title: Comparative assessment of the performance of two generations of Tewameter: TM210 and TM300 publication-title: Int J Cosmet Sciences – volume: 5 start-page: 297 year: 2002 end-page: 301 article-title: New instrument for measuring water vapour flux density from arbitrary surfaces publication-title: IFSCC Magazine – volume: 16 start-page: 500 year: 2006 end-page: 506 article-title: Skin capacitance imaging, a new technique for investigating the skin surface publication-title: Eur J Dermatol – volume: 16 start-page: 155 year: 1987 end-page: 159 article-title: Hydration studies on scaly hand eczema publication-title: Contact Derm – year: 2018 article-title: Validation of GPSkin Barrier® for assessing epidermal permeability barrier function and stratum corneum hydration in human publication-title: Skin Res Technol – volume: 11 start-page: 296 year: 2005 article-title: Closed‐chamber and open‐chamber TEWL measurement: a comparison of dermalab and AquaFlux AF102 Instruments publication-title: Skin Res Tech – volume: 12 start-page: 99 year: 2006 end-page: 104 article-title: Capacitance imaging of the skin surface publication-title: Skin Res Technol – volume: 208 start-page: 291 year: 2004 end-page: 292 article-title: What is SkinChip? From silicon image sensor technology to SkinChip publication-title: Dermatology – volume: 9 start-page: 199 year: 2003 article-title: Measurement of skin hydration in the diapered area of infants with a closed chamber TEWL meter publication-title: Skin Res Technol – volume: 2011 start-page: 366 issue: 17 year: 2011 end-page: 372 article-title: Side‐by‐side comparison of an open‐chamber (TM 300) and a closed‐chamber (VapometerTM) transepidermal water loss meter publication-title: Skin Res Technol – volume: 46 start-page: 11 issue: Suppl 1 year: 2007 end-page: 14 article-title: Comparative study of the hydration of the stratum corneum between four ethnic groups: influence of age publication-title: Int J Dermatol – volume: 3 start-page: 126 year: 1997 end-page: 132 article-title: EEMCO guidance for the assessment of stratum comeum hydration: electrical methods publication-title: Skin Res Technol – volume: 9 start-page: 85 year: 2003 end-page: 89 article-title: A closed unventilated chamber for the measurement of transepidermal water loss publication-title: Skin Res Technol – volume: 37 start-page: 198 year: 2017 end-page: 204 article-title: Age‐related changes in male forearm skin‐to‐fat tissue dielectric constant at 300 MHz publication-title: Clin Physiol Funct Imaging – volume: 67 start-page: 357 year: 1987 end-page: 366 article-title: Epidermal hydration of psoriatic plaques in relation to scaling publication-title: Acta Derm Venereol (Stockh) – start-page: 99 year: 1988 – volume: 75 start-page: 500 year: 1980 end-page: 507 article-title: Evaluation of skin surface hydration in vivo by electrical measurement publication-title: J Invest Dermatol – volume: 47 start-page: 142 year: 2014 end-page: 150 article-title: Tissue dielectric constant (TDC) measurements as a means of characterizing localized tissue water in arms of women with and without breast cancer treatment related lymphedema publication-title: Lymphology – volume: 23 start-page: 322 year: 1984 end-page: 329 article-title: In vivo studies of the evolution of physical properties of the human skin with age publication-title: Int J Dermatol – volume: 10 start-page: 32 year: 2004 end-page: 37 article-title: Measurement of hydration in the stratum corneum with the MoistureMeter and comparison with the Corneometer publication-title: Skin Res Technol – volume: 11 start-page: 179 year: 2012 end-page: 182 article-title: Hair weathering and hair capacitance mapping: a pilot study publication-title: J Cosmet Dermatol – volume: 29 start-page: 123 year: 2009 end-page: 127 article-title: Suitability of single tissue dielectric constant measurements to assess local tissue water in normal and lymphedematous skin publication-title: Clin Physiol Imaging – volume: 22 start-page: 81 year: 2016 end-page: 88 article-title: Young adult gender differences in forearm skin‐to‐fat tissue dielectric constant values measured at 300 MHz publication-title: Skin Res Technol – volume: 20 start-page: 1261 year: 2006 end-page: 1265 article-title: Skin capacitance mapping of psoriasis publication-title: JEADV – volume: 23 start-page: 597 year: 2017 end-page: 601 article-title: Comparison of the measuring efficacy of transepidermal water loss of a reasonably priced, portable closed‐chamber system device H4500 with that of rather expensive, conventional devices such as Tewameter® and Vapometer® publication-title: Skin Res Technol – volume: 14 start-page: 117 year: 2001 end-page: 128 article-title: EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences publication-title: Skin Pharmacology and Physiology – volume: 21 start-page: 265 year: 2015 end-page: 271 article-title: Comparative study of temporary effect on the water content at different depths of the skin by hot and cold moisturizing formulations publication-title: Skin Res Technol – volume: 11 start-page: 61 year: 2005 end-page: 69 article-title: Validation of the VapoMeter, a closed unventilated chamber system to assess transepidermal water loss vs. the open chamber Tewameter publication-title: Skin Res Technol – volume: 9 start-page: 343 year: 2003 end-page: 347 article-title: SkinChip, a new tool for investigating the skin surface in vivo publication-title: Skin Res Technol – volume: 22 start-page: 164 year: 1990 end-page: 178 article-title: Guidelines for transepidermal water loss (TEWL) measurement. A report from the Standardization Group of the European Society of Contact Dermatitis publication-title: Contact Dermatitis – volume: 15 start-page: 392 year: 2009 end-page: 398 article-title: Measuring transepidermal water loss: a comparative in vivo study of condenser‐chamber, unventilated‐chamber and open‐chamber systems publication-title: Skin Res Technol – volume: 70 start-page: 4004 year: 1990 article-title: In vivo hydration and water‐retention capacity of stratum corneum in clinically uninvolved skin in atopic and psoriatic patients publication-title: Acta Derm Venereol (Stockh) – ident: e_1_2_6_10_1 doi: 10.1111/j.1600-0536.1987.tb01411.x – ident: e_1_2_6_18_1 doi: 10.1111/j.0909-752X.2006.00177.x – ident: e_1_2_6_33_1 doi: 10.1111/srt.12377 – ident: e_1_2_6_13_1 doi: 10.1111/srt.12232 – volume: 11 start-page: 296 year: 2005 ident: e_1_2_6_30_1 article-title: Closed‐chamber and open‐chamber TEWL measurement: a comparison of dermalab and AquaFlux AF102 Instruments publication-title: Skin Res Tech – ident: e_1_2_6_12_1 doi: 10.1111/srt.12185 – ident: e_1_2_6_22_1 doi: 10.1111/j.1468-3083.2006.01787.x – ident: e_1_2_6_28_1 doi: 10.1111/j.1467-2494.2005.00270.x – ident: e_1_2_6_3_1 doi: 10.1159/000056341 – volume: 5 start-page: 297 year: 2002 ident: e_1_2_6_31_1 article-title: New instrument for measuring water vapour flux density from arbitrary surfaces publication-title: IFSCC Magazine – ident: e_1_2_6_2_1 doi: 10.1111/j.1600-0846.1997.tb00174.x – ident: e_1_2_6_4_1 doi: 10.1111/1523-1747.ep12524316 – ident: e_1_2_6_5_1 doi: 10.1111/j.1365-4362.1984.tb04061.x – ident: e_1_2_6_11_1 doi: 10.1111/j.1600-0846.2004.00050.x – ident: e_1_2_6_32_1 doi: 10.1111/j.1600-0846.2009.00376.x – ident: e_1_2_6_26_1 doi: 10.1034/j.1600-0846.2003.00025.x – volume: 70 start-page: 4004 year: 1990 ident: e_1_2_6_8_1 article-title: In vivo hydration and water‐retention capacity of stratum corneum in clinically uninvolved skin in atopic and psoriatic patients publication-title: Acta Derm Venereol (Stockh) doi: 10.2340/0001555570400404 – ident: e_1_2_6_16_1 doi: 10.1111/cpf.12286 – ident: e_1_2_6_21_1 doi: 10.1159/000077836 – ident: e_1_2_6_29_1 doi: 10.1111/j.1600-0846.2011.00509.x – ident: e_1_2_6_23_1 doi: 10.1111/j.1473-2165.2012.00620.x – ident: e_1_2_6_27_1 doi: 10.1111/j.1600-0846.2005.00101.x – ident: e_1_2_6_20_1 doi: 10.1111/j.1365-4632.2007.03455.x – volume: 16 start-page: 500 year: 2006 ident: e_1_2_6_19_1 article-title: Skin capacitance imaging, a new technique for investigating the skin surface publication-title: Eur J Dermatol – volume: 9 start-page: 199 year: 2003 ident: e_1_2_6_25_1 article-title: Measurement of skin hydration in the diapered area of infants with a closed chamber TEWL meter publication-title: Skin Res Technol – volume: 67 start-page: 357 year: 1987 ident: e_1_2_6_9_1 article-title: Epidermal hydration of psoriatic plaques in relation to scaling publication-title: Acta Derm Venereol (Stockh) doi: 10.2340/0001555567357359 – ident: e_1_2_6_15_1 doi: 10.1111/j.1475-097X.2008.00844.x – ident: e_1_2_6_6_1 – ident: e_1_2_6_24_1 doi: 10.1111/j.1600-0536.1990.tb01553.x – ident: e_1_2_6_17_1 doi: 10.1034/j.1600-0846.2003.00043.x – start-page: 99 volume-title: Cutaneous Aging year: 1988 ident: e_1_2_6_7_1 – volume: 47 start-page: 142 year: 2014 ident: e_1_2_6_14_1 article-title: Tissue dielectric constant (TDC) measurements as a means of characterizing localized tissue water in arms of women with and without breast cancer treatment related lymphedema publication-title: Lymphology – ident: e_1_2_6_34_1 doi: 10.1111/srt.12590 |
| SSID | ssj0005913 |
| Score | 2.508461 |
| Snippet | Background
Noninvasive quantification of stratum corneum water content is widely used in skin research and topical product development.
Methods
The original... Noninvasive quantification of stratum corneum water content is widely used in skin research and topical product development. The original EEMCO guidelines on... BackgroundNoninvasive quantification of stratum corneum water content is widely used in skin research and topical product development.MethodsThe original EEMCO... Noninvasive quantification of stratum corneum water content is widely used in skin research and topical product development.BACKGROUNDNoninvasive... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 351 |
| SubjectTerms | Biophysics Dermatology - instrumentation Dermatology - methods Electric Capacitance Electric Impedance epidermal water loss Epidermis - metabolism Evaporation Evaporimeters evaporimetry Galvanic Skin Response Humans Hydration In vivo methods and tests Measurement methods Moisture content Monitoring instruments New technology Product development Reproducibility of Results Skin Skin - metabolism skin capacitance skin conductance skin hydration SkinChip Societies, Scientific Standardization Stratum corneum TEWL Water - metabolism Water balance Water content Water depth Water distribution Water engineering Water loss Water Loss, Insensible |
| Title | The revised EEMCO guidance for the in vivo measurement of water in the skin |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.12599 https://www.ncbi.nlm.nih.gov/pubmed/29923639 https://www.proquest.com/docview/2067891998 https://www.proquest.com/docview/2057439385 |
| Volume | 24 |
| WOSCitedRecordID | wos000438221100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1600-0846 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005913 issn: 0909-752X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_SdIztoe26L7dd0cYe9uLhWJYt0afSJhTWL7IE8mYkWRpmmzPsJPv3d7Idt6UtDAp-MOiMxH34fied7gA-S3f2IzXzB0pkfhSpgbusrHxNJdNMcGZlVjebSC4v-WwmrntwtL4L09SH6DbcnGXU_2tn4FJVt4y8Khdf0TsLsQGbIeot68Pm6Xg0Pb_J8BBNd2QRCD9h4awtLOQSebqP77qjexjzLmStfc5o-0mr3YGtFmqS40Y3XkHPFLvw8lYBwl14ftEerb-Gb6gwxOX8ViYjw-HFyRX5scwzpxQEgS1BoEjygqzy1Zz8vtlYJHNL_iJeLd2go6l-5sUbmI6Gk5Mzv-204OtoIIQ_kBplZYxGdEQZTQKZCZslNmChVdzYGKMOqoTG6EZaLTVirkhnAbexojLWjL6FfjEvzHsgobAs1ojyIqPxMZyrMLJxqKIkC6iOPfiyZniq2zLkrhvGr3QdjiCr0ppVHnzqSP80tTceIjpYSy1tza9KXU16Ltz1QQ8-dsNoOO40RBZmvnQ0zAVjlDMP3jXS7mZBHx1SxG642Fqoj0-ffh9P6pe9_yfdhxcIu3iTRngA_UW5NB_gmV4t8qo8hI1kxg9bXf4HoG31dA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xQAMeBgMGZXx4iAdegtI4TmyJF8RagWgLYkXqW-Q4Noq2pahpy7_POUkDiE1CQspDJF9ky3eX-935fAdwJO3Zj1TMacYicXw_btrLyrGjqGSKCc6MTIpmE2GvxwcDcTMHp7O7MGV9iDrgZjWj-F9bBbcB6Rdano_GJ2iehfgECz6KEcr3ws_b9l3nOcVDlO2RhSuckHmDqrKQzeSpP35tj96AzNeYtTA67dWPLXcNvlRgk5yV0vEV5nS2DisvShCuw-dudbi-AVcoMsRm_eY6Ia1W9_ya3E_SxIoFQWhLECqSNCPTdDokf59Di2RoyCMi1pEdtDT57zTbhLt2q39-4VS9FhzlN4VwmlIht7RWiI8oo6ErE2GS0LjMMzHXJkC_g8ZCoX8jjZIKUZevEpebIKYyUIx-g_lsmOltIJ4wLFCI83yt8NGcx55vAi_2w8SlKmjA8WzHI1UVIrf9MP5EM4cEtyoqtqoBhzXpQ1l9419EuzO2RZUC5pGtSs-FvUDYgB_1MKqOPQ-RmR5OLA2z7hjlrAFbJbvrWdBKexTRGy624Or_p49-3faLl533kx7A0kW_24k6l72r77CMIIyXSYW7MD8eTfQeLKrpOM1H-5VIPwGLG_h8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_sKVIf6kdte9aPtfTBl0gum012oS9F71DUU_yAewub_SihbU4ud-e_72ySi4oKgpCHwE7YZT4yv9mdnQH4Kd3Zj1TM66RCe2GYdtxl5dRTVDLFBGdW6rLZRNzv88FAXMzBr9ldmKo-RLPh5iyj_F87Aze32j6y8mI03kf3LMQHmA9dE5kWzB9e9m5OH1I8RNUeWfjCi1kwqCsLuUye5uOn_ugZyHyKWUun01t-33JX4FMNNsnvSjtWYc7ka7D0qAThGiye1Yfrn-EEVYa4rN_CaNLtnh2ckz-TTDu1IAhtCUJFkuVkmk2H5P_D1iIZWnKHiHXkBh1N8TfL1-Gm170-OPLqXgueCjtCeB2pUFrGKMRHlNHYl1pYHVufBTblxkYYd9BUKIxvpFVSIeoKlfa5jVIqI8XoF2jlw9x8AxIIyyKFOC80Ch_DeRqENgrSMNY-VVEb9mYcT1RdiNz1w_iXzAISZFVSsqoNPxrS26r6xktEmzOxJbUBFomrSs-Fu0DYht1mGE3HnYfI3Awnjoa5cIxy1oavlbibWdBLBxTRGy62lOrr0ydXl9fly8bbSXdg8eKwl5we90--w0fEYLzKKdyE1ng0MVuwoKbjrBht1xp9DyFZ9_c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+revised+EEMCO+guidance+for+the+in+vivo+measurement+of+water+in+the+skin&rft.jtitle=Skin+research+and+technology&rft.au=Berardesca%2C+Enzo&rft.au=Loden%2C+Marie&rft.au=Serup%2C+Jorgen&rft.au=Masson%2C+Philippe&rft.date=2018-08-01&rft.issn=1600-0846&rft.eissn=1600-0846&rft.volume=24&rft.issue=3&rft.spage=351&rft_id=info:doi/10.1111%2Fsrt.12599&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0909-752X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0909-752X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0909-752X&client=summon |