Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction

Objectives We sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12‐lead electrocardiogram (ECG) in a large prospective cohort. Background Patients undergoing routine ECG may have undetected left ventricular (LV) dysfunct...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cardiovascular electrophysiology Ročník 30; číslo 5; s. 668 - 674
Hlavní autoři: Attia, Zachi I., Kapa, Suraj, Yao, Xiaoxi, Lopez‐Jimenez, Francisco, Mohan, Tarun L., Pellikka, Patricia A., Carter, Rickey E., Shah, Nilay D., Friedman, Paul A., Noseworthy, Peter A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.05.2019
Témata:
ISSN:1045-3873, 1540-8167, 1540-8167
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objectives We sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12‐lead electrocardiogram (ECG) in a large prospective cohort. Background Patients undergoing routine ECG may have undetected left ventricular (LV) dysfunction that warrants further echocardiographic assessment. However, identification of these patients can be challenging. Methods We applied the algorithm to all ECGs interpreted by the Mayo Clinic ECG laboratory in September 2018. The performance of the algorithm was tested among patients with recent echocardiographic assessments of LV function. We also applied the algorithm in patients with no recent echocardiographic assessments of LV function to determine the rate of new “positive screens.” Results Among 16 056 adult patients who underwent routine ECG, 8600 (age 67.1 ± 15.2 years, 45.6% male), had a transthoracic echocardiogram (TTE) and 3874 patients had a TTE and ECG less than 1 month apart. Among these patients, the algorithm was able to detect an EF less than or equal to 35% with 86.8% specificity, 82.5% sensitivity, and 86.5% accuracy, (area under the curve, 0.918). Among 474 “false‐positives screens,” 189 (39.8%) had an EF of 36% to 50%. Among patients with no prior TTE, the algorithm identified 3.5% of the patients with suspected EF less than or equal to 35%. Exploratory analysis suggests false positives could be reduced by assessing NT‐pro‐BNP after the initial “positive screen.” Conclusions A deep learning algorithm detected depressed LV function with good accuracy in routine practice. Further studies are needed to validate the algorithm in patients with no prior echocardiogram and to assess the impact on echocardiography utilization, cost, and clinical outcomes.
AbstractList Objectives We sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12‐lead electrocardiogram (ECG) in a large prospective cohort. Background Patients undergoing routine ECG may have undetected left ventricular (LV) dysfunction that warrants further echocardiographic assessment. However, identification of these patients can be challenging. Methods We applied the algorithm to all ECGs interpreted by the Mayo Clinic ECG laboratory in September 2018. The performance of the algorithm was tested among patients with recent echocardiographic assessments of LV function. We also applied the algorithm in patients with no recent echocardiographic assessments of LV function to determine the rate of new “positive screens.” Results Among 16 056 adult patients who underwent routine ECG, 8600 (age 67.1 ± 15.2 years, 45.6% male), had a transthoracic echocardiogram (TTE) and 3874 patients had a TTE and ECG less than 1 month apart. Among these patients, the algorithm was able to detect an EF less than or equal to 35% with 86.8% specificity, 82.5% sensitivity, and 86.5% accuracy, (area under the curve, 0.918). Among 474 “false‐positives screens,” 189 (39.8%) had an EF of 36% to 50%. Among patients with no prior TTE, the algorithm identified 3.5% of the patients with suspected EF less than or equal to 35%. Exploratory analysis suggests false positives could be reduced by assessing NT‐pro‐BNP after the initial “positive screen.” Conclusions A deep learning algorithm detected depressed LV function with good accuracy in routine practice. Further studies are needed to validate the algorithm in patients with no prior echocardiogram and to assess the impact on echocardiography utilization, cost, and clinical outcomes.
ObjectivesWe sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12‐lead electrocardiogram (ECG) in a large prospective cohort.BackgroundPatients undergoing routine ECG may have undetected left ventricular (LV) dysfunction that warrants further echocardiographic assessment. However, identification of these patients can be challenging.MethodsWe applied the algorithm to all ECGs interpreted by the Mayo Clinic ECG laboratory in September 2018. The performance of the algorithm was tested among patients with recent echocardiographic assessments of LV function. We also applied the algorithm in patients with no recent echocardiographic assessments of LV function to determine the rate of new “positive screens.”ResultsAmong 16 056 adult patients who underwent routine ECG, 8600 (age 67.1 ± 15.2 years, 45.6% male), had a transthoracic echocardiogram (TTE) and 3874 patients had a TTE and ECG less than 1 month apart. Among these patients, the algorithm was able to detect an EF less than or equal to 35% with 86.8% specificity, 82.5% sensitivity, and 86.5% accuracy, (area under the curve, 0.918). Among 474 “false‐positives screens,” 189 (39.8%) had an EF of 36% to 50%. Among patients with no prior TTE, the algorithm identified 3.5% of the patients with suspected EF less than or equal to 35%. Exploratory analysis suggests false positives could be reduced by assessing NT‐pro‐BNP after the initial “positive screen.”ConclusionsA deep learning algorithm detected depressed LV function with good accuracy in routine practice. Further studies are needed to validate the algorithm in patients with no prior echocardiogram and to assess the impact on echocardiography utilization, cost, and clinical outcomes.
We sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12-lead electrocardiogram (ECG) in a large prospective cohort.OBJECTIVESWe sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12-lead electrocardiogram (ECG) in a large prospective cohort.Patients undergoing routine ECG may have undetected left ventricular (LV) dysfunction that warrants further echocardiographic assessment. However, identification of these patients can be challenging.BACKGROUNDPatients undergoing routine ECG may have undetected left ventricular (LV) dysfunction that warrants further echocardiographic assessment. However, identification of these patients can be challenging.We applied the algorithm to all ECGs interpreted by the Mayo Clinic ECG laboratory in September 2018. The performance of the algorithm was tested among patients with recent echocardiographic assessments of LV function. We also applied the algorithm in patients with no recent echocardiographic assessments of LV function to determine the rate of new "positive screens."METHODSWe applied the algorithm to all ECGs interpreted by the Mayo Clinic ECG laboratory in September 2018. The performance of the algorithm was tested among patients with recent echocardiographic assessments of LV function. We also applied the algorithm in patients with no recent echocardiographic assessments of LV function to determine the rate of new "positive screens."Among 16 056 adult patients who underwent routine ECG, 8600 (age 67.1 ± 15.2 years, 45.6% male), had a transthoracic echocardiogram (TTE) and 3874 patients had a TTE and ECG less than 1 month apart. Among these patients, the algorithm was able to detect an EF less than or equal to 35% with 86.8% specificity, 82.5% sensitivity, and 86.5% accuracy, (area under the curve, 0.918). Among 474 "false-positives screens," 189 (39.8%) had an EF of 36% to 50%. Among patients with no prior TTE, the algorithm identified 3.5% of the patients with suspected EF less than or equal to 35%. Exploratory analysis suggests false positives could be reduced by assessing NT-pro-BNP after the initial "positive screen."RESULTSAmong 16 056 adult patients who underwent routine ECG, 8600 (age 67.1 ± 15.2 years, 45.6% male), had a transthoracic echocardiogram (TTE) and 3874 patients had a TTE and ECG less than 1 month apart. Among these patients, the algorithm was able to detect an EF less than or equal to 35% with 86.8% specificity, 82.5% sensitivity, and 86.5% accuracy, (area under the curve, 0.918). Among 474 "false-positives screens," 189 (39.8%) had an EF of 36% to 50%. Among patients with no prior TTE, the algorithm identified 3.5% of the patients with suspected EF less than or equal to 35%. Exploratory analysis suggests false positives could be reduced by assessing NT-pro-BNP after the initial "positive screen."A deep learning algorithm detected depressed LV function with good accuracy in routine practice. Further studies are needed to validate the algorithm in patients with no prior echocardiogram and to assess the impact on echocardiography utilization, cost, and clinical outcomes.CONCLUSIONSA deep learning algorithm detected depressed LV function with good accuracy in routine practice. Further studies are needed to validate the algorithm in patients with no prior echocardiogram and to assess the impact on echocardiography utilization, cost, and clinical outcomes.
We sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12-lead electrocardiogram (ECG) in a large prospective cohort. Patients undergoing routine ECG may have undetected left ventricular (LV) dysfunction that warrants further echocardiographic assessment. However, identification of these patients can be challenging. We applied the algorithm to all ECGs interpreted by the Mayo Clinic ECG laboratory in September 2018. The performance of the algorithm was tested among patients with recent echocardiographic assessments of LV function. We also applied the algorithm in patients with no recent echocardiographic assessments of LV function to determine the rate of new "positive screens." Among 16 056 adult patients who underwent routine ECG, 8600 (age 67.1 ± 15.2 years, 45.6% male), had a transthoracic echocardiogram (TTE) and 3874 patients had a TTE and ECG less than 1 month apart. Among these patients, the algorithm was able to detect an EF less than or equal to 35% with 86.8% specificity, 82.5% sensitivity, and 86.5% accuracy, (area under the curve, 0.918). Among 474 "false-positives screens," 189 (39.8%) had an EF of 36% to 50%. Among patients with no prior TTE, the algorithm identified 3.5% of the patients with suspected EF less than or equal to 35%. Exploratory analysis suggests false positives could be reduced by assessing NT-pro-BNP after the initial "positive screen." A deep learning algorithm detected depressed LV function with good accuracy in routine practice. Further studies are needed to validate the algorithm in patients with no prior echocardiogram and to assess the impact on echocardiography utilization, cost, and clinical outcomes.
Author Attia, Zachi I.
Friedman, Paul A.
Kapa, Suraj
Carter, Rickey E.
Lopez‐Jimenez, Francisco
Yao, Xiaoxi
Noseworthy, Peter A.
Mohan, Tarun L.
Shah, Nilay D.
Pellikka, Patricia A.
Author_xml – sequence: 1
  givenname: Zachi I.
  surname: Attia
  fullname: Attia, Zachi I.
  organization: Mayo Clinic
– sequence: 2
  givenname: Suraj
  orcidid: 0000-0003-2283-4340
  surname: Kapa
  fullname: Kapa, Suraj
  organization: Mayo Clinic
– sequence: 3
  givenname: Xiaoxi
  surname: Yao
  fullname: Yao, Xiaoxi
  organization: Mayo Clinic
– sequence: 4
  givenname: Francisco
  surname: Lopez‐Jimenez
  fullname: Lopez‐Jimenez, Francisco
  organization: Mayo Clinic
– sequence: 5
  givenname: Tarun L.
  surname: Mohan
  fullname: Mohan, Tarun L.
  organization: Mayo Clinic
– sequence: 6
  givenname: Patricia A.
  surname: Pellikka
  fullname: Pellikka, Patricia A.
  organization: Mayo Clinic
– sequence: 7
  givenname: Rickey E.
  surname: Carter
  fullname: Carter, Rickey E.
  organization: Mayo Clinic College of Medicine
– sequence: 8
  givenname: Nilay D.
  surname: Shah
  fullname: Shah, Nilay D.
  organization: Mayo Clinic
– sequence: 9
  givenname: Paul A.
  orcidid: 0000-0001-5052-2948
  surname: Friedman
  fullname: Friedman, Paul A.
  organization: Mayo Clinic
– sequence: 10
  givenname: Peter A.
  orcidid: 0000-0002-4308-0456
  surname: Noseworthy
  fullname: Noseworthy, Peter A.
  email: Noseworthy.peter@mayo.edu
  organization: Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30821035$$D View this record in MEDLINE/PubMed
BookMark eNp90btuHCEUBmAUOYovSZEXiJDSJMXYMAwzTBmtnItlyS6SenQWDmtWzLABZqPt8uhhd50UlhwaKL7zC53_nJxMYUJC3nJ2ycu5Wmu85EKp_gU547JhleJtd1LerJGVUJ04JecprRnjomXyFTkVTNWcCXlGft_HkDaos9si3YJ3BrILEw2WAjWIG-oR4uSmFUVfWAwaonFhFWGk4FchuvwwUhsizQ9YJvI-6xjg0Wa6xSlHp2cPkaZdysE7Tc0u2Xk6wNfkpQWf8M3jfUF-fL7-vvha3d59-bb4dFvphvd9xblgywZq2TYdLBvslWmaWgP20vasN8yC6muwHEwBopMWGLZcGexNq7QQF-TDMXcTw88ZUx5GlzR6DxOGOQ01V52smRCs0PdP6DrMcSq_G-paSMmVqveB7x7VvBzRDJvoRoi74e9uC_h4BLqsOEW0_whnw763ofQ2HHor9uqJ1S4fmsgRnP_fxC_ncfd89HCzuD5O_AGwT6rg
CitedBy_id crossref_primary_10_1016_j_csm_2022_02_004
crossref_primary_10_3390_jcm14124257
crossref_primary_10_1016_j_ijcard_2020_12_065
crossref_primary_10_3390_s20040969
crossref_primary_10_1016_j_medj_2021_06_003
crossref_primary_10_1007_s13534_025_00479_3
crossref_primary_10_1038_s41591_020_0870_z
crossref_primary_10_1161_JAHA_124_035201
crossref_primary_10_1016_j_atherosclerosis_2023_117238
crossref_primary_10_1016_j_cvdhj_2021_08_002
crossref_primary_10_1097_01_NPR_0000000000000312
crossref_primary_10_3390_s21072539
crossref_primary_10_1109_ACCESS_2024_3384349
crossref_primary_10_1016_j_ccep_2021_04_011
crossref_primary_10_1016_j_mayocp_2020_11_032
crossref_primary_10_1093_eurheartj_ehab649
crossref_primary_10_1161_CIRCEP_120_008437
crossref_primary_10_1016_j_ijcard_2021_05_017
crossref_primary_10_1016_j_ahjo_2025_100528
crossref_primary_10_2196_49842
crossref_primary_10_1177_20552076241311460
crossref_primary_10_3389_fmed_2022_870523
crossref_primary_10_3390_diagnostics13182992
crossref_primary_10_3390_s20092556
crossref_primary_10_1038_s41591_022_02053_1
crossref_primary_10_1002_ejhf_2994
crossref_primary_10_1111_eci_70002
crossref_primary_10_1152_ajpheart_00149_2024
crossref_primary_10_1161_CIRCEP_119_007952
crossref_primary_10_1016_j_ejim_2025_04_036
crossref_primary_10_1016_j_cjca_2024_11_031
crossref_primary_10_1016_j_mayocp_2021_08_029
crossref_primary_10_3390_jcm13164792
crossref_primary_10_1161_CIRCEP_119_007988
crossref_primary_10_1038_s41569_020_00503_2
crossref_primary_10_1016_j_bspc_2023_105219
crossref_primary_10_1016_j_ejim_2025_106441
crossref_primary_10_1097_CRD_0000000000000975
crossref_primary_10_1097_CRD_0000000000000851
crossref_primary_10_3390_s22208002
crossref_primary_10_1016_j_cvdhj_2020_07_003
crossref_primary_10_1016_j_bspc_2022_103493
crossref_primary_10_1016_j_cjca_2024_06_011
crossref_primary_10_1093_eurheartj_ehae651
crossref_primary_10_1186_s12938_025_01349_w
crossref_primary_10_1016_S0140_6736_25_01393_5
crossref_primary_10_3390_jpm12030455
crossref_primary_10_1016_j_mayocpiqo_2025_100652
crossref_primary_10_1007_s11936_024_01059_x
crossref_primary_10_1007_s00399_022_00855_x
crossref_primary_10_3390_jpm11080725
crossref_primary_10_1016_j_csbj_2024_12_032
crossref_primary_10_1016_j_mcpdig_2024_10_001
crossref_primary_10_1016_j_jjcc_2021_08_029
crossref_primary_10_1016_j_jacc_2020_06_068
crossref_primary_10_2217_fca_2020_0225
crossref_primary_10_1097_01_JAA_0000000000000204
crossref_primary_10_3389_fcvm_2022_873582
crossref_primary_10_1007_s00521_025_11617_4
crossref_primary_10_1016_j_jacc_2024_03_400
crossref_primary_10_1016_j_hrcr_2025_07_022
crossref_primary_10_1161_JAHA_124_037839
crossref_primary_10_1177_1759720X221105978
crossref_primary_10_1007_s12170_023_00723_4
crossref_primary_10_1016_j_heliyon_2023_e23597
crossref_primary_10_3390_life14010145
crossref_primary_10_1016_j_cmpb_2023_107359
crossref_primary_10_1016_j_ijcard_2021_07_001
crossref_primary_10_1016_j_mcpdig_2024_06_010
crossref_primary_10_1016_j_mayocp_2021_06_024
crossref_primary_10_1016_j_cjca_2023_11_044
crossref_primary_10_1093_ehjdh_ztaf067
crossref_primary_10_18203_2320_6012_ijrms20252060
crossref_primary_10_1016_j_jacc_2020_07_001
crossref_primary_10_1111_eci_14387
crossref_primary_10_1016_j_ijcard_2020_10_074
crossref_primary_10_1093_eurheartj_ehz500
crossref_primary_10_1007_s12170_020_00649_1
crossref_primary_10_1016_j_hfc_2021_11_001
crossref_primary_10_3389_fcvm_2021_765693
crossref_primary_10_3389_fcvm_2022_754909
crossref_primary_10_3390_jpm13081214
crossref_primary_10_1016_j_mayocp_2020_01_038
crossref_primary_10_1016_j_cjca_2021_07_016
crossref_primary_10_1016_j_hroo_2025_08_038
crossref_primary_10_33549_physiolres_934662
crossref_primary_10_1007_s00424_025_03067_7
crossref_primary_10_1016_j_mayocp_2024_07_016
crossref_primary_10_1210_jendso_bvab120
crossref_primary_10_1007_s10741_024_10448_0
crossref_primary_10_1161_CIRCULATIONAHA_123_067750
crossref_primary_10_3390_electronics8111288
crossref_primary_10_1038_s41591_021_01335_4
crossref_primary_10_3389_fdgth_2020_584555
crossref_primary_10_1161_JAHA_124_039203
crossref_primary_10_1007_s11042_021_11176_5
crossref_primary_10_1161_JAHA_120_016598
crossref_primary_10_1007_s11886_024_02062_1
crossref_primary_10_1007_s10620_023_07928_y
crossref_primary_10_1007_s10741_022_10283_1
crossref_primary_10_1097_MCP_0000000000001193
crossref_primary_10_1111_eci_14370
crossref_primary_10_1016_j_cjca_2024_07_003
crossref_primary_10_12688_wellcomeopenres_16499_1
Cites_doi 10.1016/j.echo.2014.10.003
10.1038/s41591-018-0240-2
10.1161/JAHA.117.006023
10.1111/j.1751-7133.2008.tb00002.x
10.1056/NEJM199209033271001
10.1016/S0140-6736(00)04560-8
10.1016/j.jacc.2013.05.019
10.1161/01.CIR.0000130845.38133.8F
10.1016/j.jelectrocard.2017.06.008
10.1109/ICSIPA.2011.6144164
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
7QP
K9.
7X8
DOI 10.1111/jce.13889
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Biology
EISSN 1540-8167
EndPage 674
ExternalDocumentID 30821035
10_1111_jce_13889
JCE13889
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
04C
05W
0R~
10A
1OB
1OC
29K
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOJX
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMSDO
BMXJE
BPMNR
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECF
ECT
ECV
EIHBH
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VVN
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQ9
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
7QP
K9.
7X8
ID FETCH-LOGICAL-c4199-1130b4a25647ab4e98d442cae95f909d0fa892af1ad47a375fa0e618de9d68c33
IEDL.DBID DRFUL
ISICitedReferencesCount 121
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471046800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-3873
1540-8167
IngestDate Sun Nov 09 14:21:18 EST 2025
Sat Nov 29 14:52:01 EST 2025
Thu Apr 03 07:09:27 EDT 2025
Sat Nov 29 03:10:40 EST 2025
Tue Nov 18 20:45:56 EST 2025
Wed Jan 22 16:40:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
electrocardiogram
ejection fraction
artificial intelligence
echocardiography
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4199-1130b4a25647ab4e98d442cae95f909d0fa892af1ad47a375fa0e618de9d68c33
Notes Disclosures
In the past 36 months, Dr. Shah has received research support through Mayo Clinic from the Food and Drug Administration to establish Yale‐Mayo Clinic Center for Excellence in Regulatory Science and Innovation (CERSI) program (U01FD005938), from the Centers of Medicare and Medicaid Innovation under the Transforming Clinical Practice Initiative (TCPI), from the Agency for Healthcare Research and Quality (R01HS025164; R01HS025402; 1U19HS024075; and R03HS025517), from the National Heart, Lung and Blood Institute of the National Institutes of Health (NIH) (R56HL130496 and R01HL131535), National Science Foundation, and from the Patient Centered Outcomes Research Institute (PCORI) to develop a Clinical Data Research Network (LHSNet). XY, TLM, PAP, REC, NDS, and PAN report no relevant relationships with industry. Mayo Clinic has licensed use of the low ejection fraction detection algorithm to and electronic stethoscope maker (Eko, Berkeley, CA). Several of the Mayo clinic authors are coinventors in the technology (PAF, SK, FLJ, and ZIA); however, Mayo Clinic and Mayo inventors will not receive financial benefit from the use of the technology at Mayo Clinic.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-2283-4340
0000-0002-4308-0456
0000-0001-5052-2948
PMID 30821035
PQID 2235518823
PQPubID 1086397
PageCount 7
ParticipantIDs proquest_miscellaneous_2187520330
proquest_journals_2235518823
pubmed_primary_30821035
crossref_primary_10_1111_jce_13889
crossref_citationtrail_10_1111_jce_13889
wiley_primary_10_1111_jce_13889_JCE13889
PublicationCentury 2000
PublicationDate May 2019
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cardiovascular electrophysiology
PublicationTitleAlternate J Cardiovasc Electrophysiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_5_1_2_1
Al‐Khatib SM (e_1_2_5_1_12_1) 2018; 138
e_1_2_5_1_10_1
Ioffe S (e_1_2_5_1_9_1) 2015; 37
e_1_2_5_1_7_1
e_1_2_5_1_6_1
e_1_2_5_1_4_1
Rossum G (e_1_2_5_1_8_1) 1995
e_1_2_5_1_3_1
Cristianini N (e_1_2_5_1_11_1) 2000
e_1_2_5_1_13_1
Wilson JMG (e_1_2_5_1_15_1) 1968
Priori SG (e_1_2_5_1_5_1); 2015
e_1_2_5_1_14_1
e_1_2_5_1_17_1
e_1_2_5_1_16_1
References_xml – ident: e_1_2_5_1_7_1
  doi: 10.1016/j.echo.2014.10.003
– volume: 138
  start-page: e210
  issue: 13
  year: 2018
  ident: e_1_2_5_1_12_1
  article-title: AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society
  publication-title: Circulation
– ident: e_1_2_5_1_6_1
  doi: 10.1038/s41591-018-0240-2
– ident: e_1_2_5_1_17_1
  doi: 10.1161/JAHA.117.006023
– volume: 2015
  start-page: 2793
  issue: 36
  ident: e_1_2_5_1_5_1
  article-title: 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC)
  publication-title: Eur Heart J
– volume-title: Python Tutorial, Technical Report CS‐R9526
  year: 1995
  ident: e_1_2_5_1_8_1
– volume-title: An Introduction to Support Vector Machines
  year: 2000
  ident: e_1_2_5_1_11_1
– volume-title: Principles and practice of screening for disease
  year: 1968
  ident: e_1_2_5_1_15_1
– ident: e_1_2_5_1_2_1
  doi: 10.1111/j.1751-7133.2008.tb00002.x
– ident: e_1_2_5_1_4_1
  doi: 10.1056/NEJM199209033271001
– ident: e_1_2_5_1_3_1
  doi: 10.1016/S0140-6736(00)04560-8
– volume: 37
  start-page: 448
  year: 2015
  ident: e_1_2_5_1_9_1
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift International Conference on Machine Learning
  publication-title: Proceedings of the 32nd International Conference on Machine Learning, PMLR, Lille France
– ident: e_1_2_5_1_13_1
  doi: 10.1016/j.jacc.2013.05.019
– ident: e_1_2_5_1_14_1
  doi: 10.1161/01.CIR.0000130845.38133.8F
– ident: e_1_2_5_1_16_1
  doi: 10.1016/j.jelectrocard.2017.06.008
– ident: e_1_2_5_1_10_1
  doi: 10.1109/ICSIPA.2011.6144164
SSID ssj0013605
Score 2.5841923
Snippet Objectives We sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12‐lead...
We sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12-lead electrocardiogram...
ObjectivesWe sought to validate a deep learning algorithm designed to predict an ejection fraction (EF) less than or equal to 35% based on the 12‐lead...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 668
SubjectTerms Algorithms
artificial intelligence
Deep learning
Echocardiography
ejection fraction
EKG
electrocardiogram
Electrocardiography
Heart
Ultrasonic imaging
Ventricle
Title Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjce.13889
https://www.ncbi.nlm.nih.gov/pubmed/30821035
https://www.proquest.com/docview/2235518823
https://www.proquest.com/docview/2187520330
Volume 30
WOSCitedRecordID wos000471046800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1540-8167
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013605
  issn: 1045-3873
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS90wFD7odRt7cZvO7aqTbIyxl442SdsEn9R5GcOJjAn3raRpqheurfRWwTf_dE_StCrbYLC3QE9-tDmn-U5y8h2Aj2VhBNWRCkLGWcBjoYOc2hh3lhplyT5S7dj1j9LjYzGdypMl2O3vwnT8EMOGm7UM97-2Bq7yxUMj1-ZLxISQy7BCUW_jEax8_Tk5Pbo_ROiuRaLDEVsKWeaJhVwgT1_58XL0G8Z8DFndmjN58V-jfQmrHmqSvU43XsGSqdZgfa9CN_vihnwiLvjT7aqvwdP9vvTshz9tX4fbk6bub2IS1MhZl3-J1CVRpDDmkvicE2fEZ9PRLrrVBnwRNT-rm1l7fkEQFhOEmVijdXFfroG5KVtiYy3dBqRqiKWUthzFpLhZ2MXWCr6G08nhr4Nvgc_YEGgeSRlEuCLmXCGM4qnKuZGi4JxqZWRcylAWYamEpKqMVIECLI1LFZokEoWRRSI0YxswqurKvAUiOKMmT2KaKERs2EaMjmFCuUk1xzfUY_jcT1ymPZ25zaoxzwa3RpvMffIxfBhELzsOjz8Jbfezn3kzXmSInRxjHWVjeD88RgO0pyqqMvUVykTo8tGQsXAMbzqtGXqxXEARqiYO1inH37vPvh8cusLmv4tuwXOEb7ILv9yGUdtcmXfwRF-3s0WzA8vpVOx4m7gDxCQPCQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFlouPPpioYBBqOISlNhOYktc2tJVge2qQq3UW-R1nHalbVJlU6Te-tM7dpxAVZCQuFnK-JF4Jv7GHn8D8KHIjaA6UkHIOAt4LHQwoTbGnaVGWbKPVDt2_VE6HovTU3m0AJ-7uzAtP0S_4WYtw_2vrYHbDenfrVybTxETQj6AJY5qhPq99OXH8GT06xShvReJHkdsOWSZZxZykTxd5bvr0T2QeRezukVn-PT_hvsMnniwSXZa7XgOC6ZchbWdEh3ti2uyTVz4p9tXX4VHu11p-dCft6_BzVFddXcxCerktM3ARKqCKJIbc0l81okz4vPpaBffakO-iJqdVfW0Ob8gCIwJAk2s0bjIL9fAzBQNsdGWbgtS1cSSSluWYpJfz-1yawXX4WS4f7x3EPicDYHmkZRBhGvihCsEUjxVE26kyDmnWhkZFzKUeVgoIakqIpWjAEvjQoUmiURuZJ4IzdgGLJZVaV4AEZxRM0limijEbNhGjK5hQrlJNcc31AP42M1cpj2huc2rMct6x0abzH3yAbzvRS9bFo8_CW110595Q55niJ4cZx1lA3jXP0YTtOcqqjTVFcpE6PTRkLFwAJut2vS9WDagKGQxDtZpx9-7z77t7bvCy38XfQsrB8eHo2z0dfz9FTxGMCfbYMwtWGzqK_MaHuqfzXRev_GmcQuQMRIR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLVS98GihXVrAIIR6CUpsJ7GlXkrbFY9ltUJU6i3yOk5ZaZussmml3vjpjB0nUAESEjdLGT8Sz8Tf2ONvAF4XuRFURyoIGWcBj4UOZtTGuLPUKEv2kWrHrj9OJxNxfi6na3DY3YVp-SH6DTdrGe5_bQ3cLPPiVyvX5m3EhJB3YJ3bJDIDWD_5Mjob_zxFaO9FoscRWw5Z5pmFXCRPV_n2evQbyLyNWd2iM3rwf8N9CPc92CRHrXY8gjVTbsH2UYmO9uUNeUNc-KfbV9-Ce--60sZnf96-Dd-nddXdxSSok_M2AxOpCqJIbsyS-KwTF8Tn09EuvtWGfBG1uKjqefPtkiAwJgg0sUbjIr9cAwtTNMRGW7otSFUTSyptWYpJfrOyy60VfAxno9Ovx-8Dn7Mh0DySMohwTZxxhUCKp2rGjRQ551QrI-NChjIPCyUkVUWkchRgaVyo0CSRyI3ME6EZewKDsirNLhDBGTWzJKaJQsyGbcToGiaUm1RzfEM9hINu5jLtCc1tXo1F1js22mTukw_hVS-6bFk8_iS0301_5g15lSF6cpx1lA3hZf8YTdCeq6jSVFcoE6HTR0PGwiHstGrT92LZgKKQxThYpx1_7z77eHzqCk__XfQFbExPRtn4w-TTHmwilpNtLOY-DJr6yjyDu_q6ma_q594yfgABXxGM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospective+validation+of+a+deep+learning+electrocardiogram+algorithm+for+the+detection+of+left+ventricular+systolic+dysfunction&rft.jtitle=Journal+of+cardiovascular+electrophysiology&rft.au=Attia%2C+Zachi+I&rft.au=Kapa%2C+Suraj&rft.au=Yao%2C+Xiaoxi&rft.au=Francisco+Lopez%E2%80%90Jimenez&rft.date=2019-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1045-3873&rft.eissn=1540-8167&rft.volume=30&rft.issue=5&rft.spage=668&rft.epage=674&rft_id=info:doi/10.1111%2Fjce.13889&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-3873&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-3873&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-3873&client=summon