Memristors—From In‐Memory Computing, Deep Learning Acceleration, and Spiking Neural Networks to the Future of Neuromorphic and Bio‐Inspired Computing

Machine learning, particularly in the form of deep learning (DL), has driven most of the recent fundamental developments in artificial intelligence (AI). DL is based on computational models that are, to a certain extent, bio‐inspired, as they rely on networks of connected simple computing units oper...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced intelligent systems Ročník 2; číslo 11
Hlavní autoři: Mehonic, Adnan, Sebastian, Abu, Rajendran, Bipin, Simeone, Osvaldo, Vasilaki, Eleni, Kenyon, Anthony J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim John Wiley & Sons, Inc 01.11.2020
Wiley
Témata:
ISSN:2640-4567, 2640-4567
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machine learning, particularly in the form of deep learning (DL), has driven most of the recent fundamental developments in artificial intelligence (AI). DL is based on computational models that are, to a certain extent, bio‐inspired, as they rely on networks of connected simple computing units operating in parallel. The success of DL is supported by three factors: availability of vast amounts of data, continuous growth in computing power, and algorithmic innovations. The approaching demise of Moore's law, and the consequent expected modest improvements in computing power that can be achieved by scaling, raises the question of whether the progress will be slowed or halted due to hardware limitations. This article reviews the case for a novel beyond‐complementary metal–oxide–semiconductor (CMOS) technology—memristors—as a potential solution for the implementation of power‐efficient in‐memory computing, DL accelerators, and spiking neural networks. Central themes are the reliance on non‐von‐Neumann computing architectures and the need for developing tailored learning and inference algorithms. To argue that lessons from biology can be useful in providing directions for further progress in AI, an example‐based reservoir computing is briefly discussed. At the end, speculation is given on the “big picture” view of future neuromorphic and brain‐inspired computing systems. Memristor technologies, with their remarkable diversity and richness of functional properties, can prove to be fundamental building blocks for the next generation of extraordinarily power‐efficient computing systems. Herein, it is discussed how memristors fit within the ever‐expanding field of hardware for artificial intelligence applications—from in‐memory computing, deep learning accelerators, and spiking neural networks to more bio‐inspired computing models.
AbstractList Machine learning, particularly in the form of deep learning (DL), has driven most of the recent fundamental developments in artificial intelligence (AI). DL is based on computational models that are, to a certain extent, bio‐inspired, as they rely on networks of connected simple computing units operating in parallel. The success of DL is supported by three factors: availability of vast amounts of data, continuous growth in computing power, and algorithmic innovations. The approaching demise of Moore's law, and the consequent expected modest improvements in computing power that can be achieved by scaling, raises the question of whether the progress will be slowed or halted due to hardware limitations. This article reviews the case for a novel beyond‐complementary metal–oxide–semiconductor (CMOS) technology—memristors—as a potential solution for the implementation of power‐efficient in‐memory computing, DL accelerators, and spiking neural networks. Central themes are the reliance on non‐von‐Neumann computing architectures and the need for developing tailored learning and inference algorithms. To argue that lessons from biology can be useful in providing directions for further progress in AI, an example‐based reservoir computing is briefly discussed. At the end, speculation is given on the “big picture” view of future neuromorphic and brain‐inspired computing systems.
Machine learning, particularly in the form of deep learning (DL), has driven most of the recent fundamental developments in artificial intelligence (AI). DL is based on computational models that are, to a certain extent, bio‐inspired, as they rely on networks of connected simple computing units operating in parallel. The success of DL is supported by three factors: availability of vast amounts of data, continuous growth in computing power, and algorithmic innovations. The approaching demise of Moore's law, and the consequent expected modest improvements in computing power that can be achieved by scaling, raises the question of whether the progress will be slowed or halted due to hardware limitations. This article reviews the case for a novel beyond‐complementary metal–oxide–semiconductor (CMOS) technology—memristors—as a potential solution for the implementation of power‐efficient in‐memory computing, DL accelerators, and spiking neural networks. Central themes are the reliance on non‐von‐Neumann computing architectures and the need for developing tailored learning and inference algorithms. To argue that lessons from biology can be useful in providing directions for further progress in AI, an example‐based reservoir computing is briefly discussed. At the end, speculation is given on the “big picture” view of future neuromorphic and brain‐inspired computing systems. Memristor technologies, with their remarkable diversity and richness of functional properties, can prove to be fundamental building blocks for the next generation of extraordinarily power‐efficient computing systems. Herein, it is discussed how memristors fit within the ever‐expanding field of hardware for artificial intelligence applications—from in‐memory computing, deep learning accelerators, and spiking neural networks to more bio‐inspired computing models.
Author Vasilaki, Eleni
Simeone, Osvaldo
Rajendran, Bipin
Mehonic, Adnan
Kenyon, Anthony J.
Sebastian, Abu
Author_xml – sequence: 1
  givenname: Adnan
  orcidid: 0000-0002-2476-5038
  surname: Mehonic
  fullname: Mehonic, Adnan
  email: adnan.mehonic.09@ucl.ac.uk
  organization: UCL
– sequence: 2
  givenname: Abu
  surname: Sebastian
  fullname: Sebastian, Abu
  organization: IBM Research Europe
– sequence: 3
  givenname: Bipin
  surname: Rajendran
  fullname: Rajendran, Bipin
  organization: King's College London
– sequence: 4
  givenname: Osvaldo
  surname: Simeone
  fullname: Simeone, Osvaldo
  organization: King's College London
– sequence: 5
  givenname: Eleni
  surname: Vasilaki
  fullname: Vasilaki, Eleni
  organization: University of Sheffield
– sequence: 6
  givenname: Anthony J.
  surname: Kenyon
  fullname: Kenyon, Anthony J.
  organization: UCL
BookMark eNqFkc9uEzEQxleoSJTSK2dLXJtge__ZxxAaulKAQ-HAyfI649bpZr2Mvapy6yNw6I2365PgJEAREsKX8Yy_3zcjz_PsqPc9ZNlLRqeMUv5au7CdcsppOqJ8kh3zqqCToqzqoz_uz7LTENZJwlnNKK-Ps-_vYYMuRI_h4e5-gX5Dmv7h7lsqe9ySud8MY3T91Rl5CzCQJWjsU0pmxkAHqKPz_RnR_YpcDu5m9_IBRtRdCvHW400g0ZN4DWQxxhGBeLsX-OQ-XDuzJ984nzo2fRgcwuqx54vsqdVdgNOf8ST7vDj_NL-YLD--a-az5cQUTJaTlsnCUC20ZUZapgXYKs8tQGkrU1pDc8tzKihvpaCybHOoIWd8xawEA5XJT7Lm4Lvyeq0GdBuNW-W1U_uCxyulMTrTgYK2LbVhZW2YKWwldCu4pFIYXlnQrU1erw5eA_qvI4So1n7EPo2vuOC8zgvGWFIVB5VBHwKCVcbF_V9G1K5TjKrdVtVuq-r3VhM2_Qv7New_AXkAbl0H2_-o1ay5_PLI_gAiyb1J
CitedBy_id crossref_primary_10_3103_S0027134924701947
crossref_primary_10_3389_fncom_2022_859874
crossref_primary_10_1186_s40580_024_00432_7
crossref_primary_10_3389_fncom_2022_1037976
crossref_primary_10_1002_admt_202400585
crossref_primary_10_1016_j_nanoen_2025_110999
crossref_primary_10_1109_JMEMS_2025_3581048
crossref_primary_10_1088_2634_4386_acd4e2
crossref_primary_10_1103_PhysRevApplied_22_014041
crossref_primary_10_1038_s41598_021_04614_9
crossref_primary_10_1111_nyas_15256
crossref_primary_10_1002_aisy_202200028
crossref_primary_10_1002_jnm_70055
crossref_primary_10_1016_j_nanoen_2025_110871
crossref_primary_10_3390_nano15100724
crossref_primary_10_1109_TCSII_2022_3157789
crossref_primary_10_1002_aelm_202200702
crossref_primary_10_1063_5_0173662
crossref_primary_10_1063_5_0275293
crossref_primary_10_1134_S2635167621060100
crossref_primary_10_1557_s43577_022_00391_6
crossref_primary_10_1002_aelm_202300424
crossref_primary_10_1063_5_0148469
crossref_primary_10_1111_tgis_13264
crossref_primary_10_1016_j_nanoen_2024_109646
crossref_primary_10_1016_j_chaos_2020_110504
crossref_primary_10_3389_fnano_2024_1371386
crossref_primary_10_1063_5_0255043
crossref_primary_10_1109_TCSII_2022_3169416
crossref_primary_10_1038_s41598_023_45790_0
crossref_primary_10_1039_D4NH00508B
crossref_primary_10_3389_fnins_2023_1253075
crossref_primary_10_1002_admt_202401048
crossref_primary_10_1038_s41928_022_00869_w
crossref_primary_10_1088_2634_4386_ac970c
crossref_primary_10_1088_2632_959X_ad2999
crossref_primary_10_1038_s41699_025_00556_2
crossref_primary_10_1038_s41598_024_53125_w
crossref_primary_10_29026_oea_2025_240316
crossref_primary_10_1016_j_techfore_2023_122588
crossref_primary_10_1016_j_apsusc_2025_162305
crossref_primary_10_1021_acs_chemrev_4c00862
crossref_primary_10_1007_s40820_025_01891_1
crossref_primary_10_1039_D4NH00104D
crossref_primary_10_1063_5_0286727
crossref_primary_10_1002_aisy_202300136
crossref_primary_10_1016_j_mattod_2023_09_003
crossref_primary_10_1002_adfm_202504017
crossref_primary_10_1109_TVLSI_2025_3552534
crossref_primary_10_3389_fncom_2025_1452203
crossref_primary_10_3390_electronics11162545
crossref_primary_10_3390_app132413309
crossref_primary_10_1109_JSEN_2022_3207912
crossref_primary_10_1002_adma_202210035
crossref_primary_10_1002_smll_202411596
crossref_primary_10_1016_j_nantod_2024_102184
crossref_primary_10_1038_s41467_024_47228_1
crossref_primary_10_1002_aelm_202200642
crossref_primary_10_1002_aelm_202300171
crossref_primary_10_3389_fmats_2022_813407
crossref_primary_10_1002_aelm_202200365
crossref_primary_10_3389_fnano_2025_1621554
crossref_primary_10_1016_j_eswa_2025_128406
crossref_primary_10_3390_nano13142082
crossref_primary_10_1002_aisy_202200047
crossref_primary_10_3390_agriengineering5010023
crossref_primary_10_1002_adma_202505642
crossref_primary_10_1063_5_0087001
crossref_primary_10_1088_2634_4386_acc683
crossref_primary_10_1109_MNANO_2022_3208723
crossref_primary_10_1038_s41467_023_42470_5
crossref_primary_10_1016_j_apmt_2024_102346
crossref_primary_10_1002_aelm_202400938
crossref_primary_10_1038_s42005_023_01352_4
crossref_primary_10_1039_D4NR04861J
crossref_primary_10_1109_LED_2024_3355889
crossref_primary_10_1038_s44335_025_00035_3
crossref_primary_10_3390_jlpea12010014
crossref_primary_10_1038_s41598_025_85608_9
crossref_primary_10_1002_aelm_202200877
crossref_primary_10_1515_pac_2024_0242
crossref_primary_10_1002_cpe_7997
crossref_primary_10_1002_adem_202200439
crossref_primary_10_1063_5_0271898
crossref_primary_10_1109_TCSII_2021_3065932
crossref_primary_10_1088_1402_4896_acf89a
crossref_primary_10_1002_adma_202301924
crossref_primary_10_1038_s41467_025_56595_2
crossref_primary_10_3390_electronics11101610
crossref_primary_10_1016_j_mssp_2025_109897
crossref_primary_10_1002_aisy_202500215
crossref_primary_10_1021_acs_chemrev_4c00049
crossref_primary_10_1109_TCAD_2021_3101464
crossref_primary_10_1063_5_0131593
crossref_primary_10_1063_5_0235922
crossref_primary_10_1109_JPROC_2023_3273520
crossref_primary_10_1088_1361_6641_ac4b8a
crossref_primary_10_1002_adfm_202315058
crossref_primary_10_1109_TCSI_2021_3130938
crossref_primary_10_5194_jsss_11_233_2022
crossref_primary_10_1007_s43939_024_00077_7
crossref_primary_10_1063_5_0073056
crossref_primary_10_1109_ACCESS_2024_3387094
crossref_primary_10_1088_2634_4386_ad53f9
crossref_primary_10_1002_aisy_202200068
crossref_primary_10_1007_s11432_022_3601_8
crossref_primary_10_1063_5_0133044
crossref_primary_10_1002_smsc_202300139
crossref_primary_10_1088_2634_4386_ad409a
crossref_primary_10_1109_TED_2025_3547291
crossref_primary_10_1088_2634_4386_ac156f
crossref_primary_10_1109_LED_2023_3295337
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1002_aisy_202100175
crossref_primary_10_1002_aelm_202001258
crossref_primary_10_1002_adfm_202416309
crossref_primary_10_1021_acsami_5c03940
crossref_primary_10_1038_s41467_022_29727_1
crossref_primary_10_3390_jlpea12030044
crossref_primary_10_1002_adma_202416073
crossref_primary_10_1002_pssr_202300342
crossref_primary_10_1088_1361_6528_ac87b5
crossref_primary_10_1088_1751_8121_ace56f
crossref_primary_10_3389_fnins_2022_959626
crossref_primary_10_1063_5_0162712
crossref_primary_10_1002_adma_202300576
crossref_primary_10_1038_s41578_022_00434_z
crossref_primary_10_1002_adfm_202300343
crossref_primary_10_1109_TCAD_2023_3245543
crossref_primary_10_1039_D5MH00803D
crossref_primary_10_1002_aisy_202400191
crossref_primary_10_1088_1361_6528_ad857f
crossref_primary_10_1002_aisy_202401150
crossref_primary_10_3389_fncom_2023_1215824
crossref_primary_10_1016_j_mser_2025_101095
crossref_primary_10_1140_epjs_s11734_025_01615_x
crossref_primary_10_1088_2631_8695_adfbbb
crossref_primary_10_1038_s41586_021_04362_w
crossref_primary_10_1088_2634_4386_ac4918
crossref_primary_10_1002_admt_202100144
crossref_primary_10_1002_aisy_202200127
crossref_primary_10_1016_j_trechm_2022_06_004
crossref_primary_10_1063_5_0179424
crossref_primary_10_1039_D4NR04865B
crossref_primary_10_1002_aisy_202100273
crossref_primary_10_1016_j_mtnano_2023_100441
crossref_primary_10_1016_j_apsusc_2024_160681
crossref_primary_10_1109_JLT_2024_3433454
crossref_primary_10_1109_JPHOT_2022_3173559
crossref_primary_10_1016_j_sse_2025_109084
crossref_primary_10_3390_e26020126
crossref_primary_10_1016_j_chaos_2022_111813
crossref_primary_10_1016_j_jallcom_2025_178794
crossref_primary_10_1063_5_0073349
crossref_primary_10_1109_TED_2023_3317000
crossref_primary_10_1002_aisy_202400968
crossref_primary_10_1016_j_jksuci_2021_11_002
crossref_primary_10_1109_TED_2024_3482258
crossref_primary_10_1002_aelm_202201006
crossref_primary_10_1109_TED_2022_3227523
crossref_primary_10_3390_math13111878
crossref_primary_10_1007_s10470_024_02257_0
crossref_primary_10_23919_JSEE_2023_000018
crossref_primary_10_1002_advs_202304804
crossref_primary_10_1088_1361_6463_ad7155
crossref_primary_10_3389_fnins_2022_1050585
crossref_primary_10_1038_s41598_025_93159_2
crossref_primary_10_1039_D3RA06853F
crossref_primary_10_1134_S2635167621060112
crossref_primary_10_3390_fractalfract8100605
crossref_primary_10_1016_j_sna_2024_115382
crossref_primary_10_18863_pgy_1539145
crossref_primary_10_1109_TNANO_2025_3565887
crossref_primary_10_3390_electronics11040619
crossref_primary_10_3390_chemistry7040133
crossref_primary_10_1002_smll_202505032
Cites_doi 10.1038/s41928-018-0039-7
10.1002/aelm.201700627
10.1109/CICC.2011.6055293
10.1088/1361-6528/aaa733
10.1038/s41928-018-0092-2
10.1038/nnano.2015.29
10.1038/s41467-018-04933-y
10.1038/s41598-017-09565-8
10.1021/acs.nanolett.5b00697
10.1038/nmat1614
10.1088/1361-6463/ab37b6
10.1038/s41467-020-16108-9
10.1109/IEDM.2015.7409716
10.1109/ICASSP.2018.8462410
10.3389/fnins.2016.00333
10.1109/MSSC.2019.2922889
10.1038/nnano.2016.70
10.1038/s41563-019-0291-x
10.1038/s41928-020-0410-3
10.1109/ESSDERC.2016.7599664
10.1002/aisy.201900189
10.1523/JNEUROSCI.4098-12.2013
10.1002/adma.201500039
10.1109/TCSI.2017.2705051
10.1038/s41928-017-0002-z
10.1088/0957-4484/27/36/365204
10.1162/089976602760407955
10.1109/IEDM.2012.6479018
10.1038/s41586-020-1942-4
10.3389/fnins.2020.00406
10.1109/TCSII.2014.2357292
10.18653/v1/P19-1355
10.3389/fnins.2016.00057
10.1038/ncomms3072
10.1109/IJCNN.2015.7280696
10.1002/9783527680870
10.1162/neco_a_01086
10.1038/s41467-017-02337-y
10.1016/j.neuron.2019.05.041
10.1021/nl201040y
10.1109/TNANO.2020.2982819
10.1002/aelm.201800143
10.1063/1.5009069
10.1147/JRD.2019.2947008
10.1109/JETCAS.2015.2435512
10.1002/aelm.201900198
10.1109/JPROC.2014.2310593
10.1109/TCT.1971.1083337
10.1038/nature06932
10.1109/SPAWC.2019.8815546
10.1109/JPROC.2017.2761740
10.1109/MSP.2019.2928127
10.1063/1.5129306
10.1038/s41598-018-31958-6
10.1039/C5NR04982B
10.1038/s41563-017-0001-5
10.3389/fnins.2018.00057
10.1109/DRC.2016.7548503
10.1038/s41565-018-0302-0
10.1038/nature24270
10.1038/nature08940
10.1038/nphys2566
10.1038/323533a0
10.1038/s41598-017-14240-z
10.1109/ICASSP.2019.8682960
10.1162/NECO_a_00200
10.1038/s41565-020-0655-z
10.1109/ISQED.2016.7479230
10.1002/9783527680870.ch21
10.1063/1.5042413
10.1126/science.1201938
10.1523/JNEUROSCI.18-24-10464.1998
10.1038/530144a
10.1039/C8FD00114F
10.1063/1.5143659
10.1109/TED.2020.2968223
10.3389/fnins.2019.00593
10.1109/JPROC.2018.2790840
10.1007/978-3-319-54313-0
10.1109/TED.2015.2439635
10.1038/s41467-017-01481-9
10.1088/1674-1056/ab75da
10.1145/3231589
10.1038/s41928-018-0054-8
10.1038/s41586-018-0180-5
10.1109/HPCA.2017.21
10.3389/fnins.2019.00855
10.1038/s41563-018-0110-9
10.1126/science.1254642
10.1073/pnas.1815682116
10.1109/JETCAS.2017.2776980
10.1007/s00339-011-6264-9
10.1109/LED.2016.2582859
10.1109/TCSI.2018.2846699
10.1016/j.mee.2017.04.033
10.1038/s42256-020-0162-9
10.1007/978-3-319-14367-5_13
10.1038/s41598-020-64878-5
10.1109/TED.2018.2865352
10.1038/s41565-019-0501-3
10.1038/s41928-017-0006-8
10.1109/MCAS.2016.2583673
10.23919/DATE.2019.8715020
10.1039/C8FD00118A
10.1109/IEDM.2018.8614558
10.1109/LED.2018.2831698
10.3389/fnins.2019.00095
10.1038/nnano.2012.240
10.1016/j.neucom.2019.10.104
10.1080/23746149.2016.1259585
10.1002/aelm.201900060
10.1088/1361-6528/aa8013
10.1109/IEDM.2013.6724692
10.1145/3123939.3124544
10.1109/DRC.2017.7999481
10.1109/MM.2011.89
10.1038/ncomms9181
10.1016/j.micpro.2019.01.009
10.1063/1.5129101
10.1145/3079856.3080246
10.1109/IJCNN.2017.7966434
10.1109/MSP.2019.2931595
10.1038/ncomms12611
ContentType Journal Article
Copyright 2020 The Authors. Published by Wiley‐VCH GmbH
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by Wiley‐VCH GmbH
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/aisy.202000085
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
EISSN 2640-4567
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ebb5ac157c1c4f68ab829098c26feabf
10_1002_aisy_202000085
AISY202000085
Genre article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council (EPSRC)
– fundername: Royal Academy of Engineering
– fundername: European Research Council (ERC)
  funderid: 682675; 725731
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ITC
M~E
OK1
PIMPY
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
ICD
PHGZM
PHGZT
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4195-b194c0a8af1c9f1a8ef633fee5f6c5fc03f230802b98095b3e7e312d1f9ece6c3
IEDL.DBID 24P
ISICitedReferencesCount 222
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000669793800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2640-4567
IngestDate Tue Oct 14 18:22:06 EDT 2025
Fri Jul 25 03:24:50 EDT 2025
Sat Nov 29 07:21:02 EST 2025
Tue Nov 18 21:45:43 EST 2025
Wed Jan 22 16:33:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4195-b194c0a8af1c9f1a8ef633fee5f6c5fc03f230802b98095b3e7e312d1f9ece6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2476-5038
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faisy.202000085
PQID 2822734111
PQPubID 5064933
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_ebb5ac157c1c4f68ab829098c26feabf
proquest_journals_2822734111
crossref_citationtrail_10_1002_aisy_202000085
crossref_primary_10_1002_aisy_202000085
wiley_primary_10_1002_aisy_202000085_AISY202000085
PublicationCentury 2000
PublicationDate November 2020
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced intelligent systems
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 7
2002; 14
2017; 8
2017; 2
2013; 4
2019; 52
2019; 11
2018; 124
2019; 13
2010; 464
2019; 14
2020; 15
2020; 14
2019; 18
2020; 11
2020; 10
2017; 550
2017; 111
2013; 8
2014; 61
2012; 12
2016; 37
2013; 9
2020; 19
2020; 8
2020; 7
2018; 9
1998; 18
2018; 39
2018; 8
2020; 3
2020; 2
2019; 62
2018; 4
2001
2019; 63
2018; 1
1971; 18
2019; 67
2019; 116
2020; 577
2018; 30
2012; 24
2010; 4
2019; 7
2017; 64
2015; 15
2018; 29
2015; 6
2015; 5
2019; 5
2018; 106
2012
2011
2017; 28
2015; 10
2020; 380
2019; 36
2011; 31
2016; 10
2006; 5
2019; 103
2017; 178
2016; 16
2018; 65
2015; 7
2011; 332
2016; 11
2011; 102
2018; 17
2016; 7
1986; 323
2015; 27
2013; 33
2015; 62
2018; 558
2020
2016; 530
2019
2018
2017
2019; 213
2016
2015
2017; 18
2020; 67
2014
2013
2008; 453
2018; 12
2016; 27
2014; 345
2017; 105
2014; 102
2020; 29
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_85_1
e_1_2_11_17_1
Jaeger H. (e_1_2_11_120_1) 2001
e_1_2_11_59_1
e_1_2_11_113_1
Strubell E. (e_1_2_11_117_1) 2019
e_1_2_11_132_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_133_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_123_1
Shouval H. (e_1_2_11_78_1) 2010; 4
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_130_1
Hubara I. (e_1_2_11_43_1) 2017; 18
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_131_1
References_xml – start-page: 1
  year: 2016
  end-page: 2
– start-page: 486
  year: 2019
  end-page: 491
– volume: 29
  start-page: 115203
  year: 2018
  publication-title: Nanotechnology
– volume: 4
  start-page: 2072
  year: 2013
  publication-title: Nat. Commun.
– volume: 453
  start-page: 80
  year: 2008
  publication-title: Nature
– volume: 30
  start-page: 1514
  year: 2018
  publication-title: Neural Comput.
– volume: 36
  start-page: 51
  year: 2019
  publication-title: IEEE Signal Process. Mag.
– volume: 14
  start-page: 35
  year: 2019
  publication-title: Nature Nanotechnol.
– volume: 4
  start-page: 1700627
  year: 2018
  publication-title: Adv. Electron. Mater.
– volume: 8
  start-page: 2204
  year: 2017
  publication-title: Nat. Commun.
– volume: 1
  start-page: 246
  year: 2018
  publication-title: Nat. Electron.
– volume: 102
  start-page: 765
  year: 2011
  publication-title: Appl. Phys. A
– volume: 8
  start-page: 13
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 102
  start-page: 860
  year: 2014
  publication-title: Proc. IEEE
– volume: 464
  start-page: 873
  year: 2010
  publication-title: Nature
– volume: 17
  start-page: 335
  year: 2018
  publication-title: Nat. Mater
– start-page: 273
  year: 2017
  end-page: 287
– volume: 65
  start-page: 4304
  year: 2018
  publication-title: IEEE Trans. Electron Devices
– volume: 61
  start-page: 895
  year: 2014
  publication-title: IEEE Trans. Circuits Syst. II
– start-page: 1
  year: 2019
  end-page: 5
– start-page: 2986
  year: 2018
  end-page: 2990
– volume: 63
  start-page: 1
  year: 2019
  publication-title: IBM J. Res. Dev.
– volume: 28
  start-page: 395202
  year: 2017
  publication-title: Nanotechnology
– volume: 5
  start-page: 1900198
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 10
  start-page: 333
  year: 2016
  publication-title: Front. Neurosci.
– volume: 9
  start-page: 2514
  year: 2018
  publication-title: Nat. Commun.
– start-page: 374
  year: 2016
  end-page: 379
– volume: 7
  start-page: 011305
  year: 2020
  publication-title: Appl. Phys. Rev.
– volume: 9
  start-page: 200
  year: 2013
  publication-title: Nat. Phys.
– volume: 5
  start-page: 1900060
  year: 2019
  publication-title: Adv. Electron. Mater.
– year: 2019
– volume: 16
  start-page: 15
  year: 2016
  publication-title: IEEE Circuits Syst. Mag.
– volume: 550
  start-page: 354
  year: 2017
  publication-title: Nature
– start-page: 373
  year: 2016
  end-page: 376
– volume: 18
  start-page: 309
  year: 2019
  publication-title: Nat. Mater.
– volume: 62
  start-page: 110
  year: 2019
  publication-title: Commun. ACM
– volume: 5
  start-page: 312
  year: 2006
  publication-title: Nat. Mater
– volume: 7
  start-page: 18030
  year: 2015
  publication-title: Nanoscale
– volume: 18
  start-page: 6869
  year: 2017
  publication-title: J. Mach. Learn. Res.
– start-page: 481
  year: 2017
  end-page: 492
– start-page: 329
  year: 2011
  end-page: 332
– volume: 12
  start-page: 2179
  year: 2012
  publication-title: Nano Lett.
– volume: 19
  start-page: 328
  year: 2020
  publication-title: IEEE Trans. Nanotechnol.
– volume: 213
  start-page: 151
  year: 2019
  publication-title: Faraday Discuss.
– volume: 8
  start-page: 010401
  year: 2020
  publication-title: APL Mater.
– year: 2016
– volume: 124
  start-page: 111101
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 18
  start-page: 507
  year: 1971
  publication-title: IEEE Trans. Circuit Theory
– volume: 2
  start-page: 89
  year: 2017
  publication-title: Adv. Phys. X
– volume: 27
  start-page: 2797
  year: 2015
  publication-title: Adv. Mater.
– volume: 17
  start-page: 681
  year: 2018
  publication-title: Nat. Mater
– volume: 323
  start-page: 533
  year: 1986
  publication-title: Nature
– start-page: 1
  year: 2011
  end-page: 4
– start-page: 1
  year: 2017
  end-page: 12
– volume: 10
  start-page: 8080
  year: 2020
  publication-title: Sci. Rep.
– volume: 14
  start-page: 2531
  year: 2002
  publication-title: Neural Comput.
– volume: 14
  start-page: 776
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 43
  year: 2019
  publication-title: IEEE Solid-State Circuits Mag.
– volume: 11
  start-page: 693
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 65
  start-page: 4258
  year: 2018
  publication-title: IEEE Trans. Circuits Syst. I
– volume: 67
  start-page: 1340
  year: 2020
  publication-title: IEEE Trans. Electron Devices
– volume: 105
  start-page: 2295
  year: 2017
  publication-title: Proc. IEEE
– volume: 345
  start-page: 668
  year: 2014
  publication-title: Science
– volume: 380
  start-page: 67
  year: 2020
  publication-title: Neurocomputing
– start-page: 27.7.1
  year: 2018
  end-page: 27.7.4
– volume: 558
  start-page: 60
  year: 2018
  publication-title: Nature
– volume: 15
  start-page: 2203
  year: 2015
  publication-title: Nano Lett.
– volume: 530
  start-page: 144
  year: 2016
  publication-title: Nature
– start-page: 17.1.1
  year: 2015
  end-page: 17.1.4
– volume: 27
  start-page: 365204
  year: 2016
  publication-title: Nanotechnology
– volume: 111
  start-page: 233502
  year: 2017
  publication-title: Appl. Phys. Lett.
– start-page: 1
  year: 2015
  end-page: 8
– volume: 18
  start-page: 10464
  year: 1998
  publication-title: J. Neurosci.
– volume: 8
  start-page: 1115
  year: 2017
  publication-title: Nat. Commun.
– volume: 7
  start-page: 12611
  year: 2016
  publication-title: Nat. Commun.
– year: 2001
– start-page: 25.6.1
  year: 2013
  end-page: 25.6.4
– start-page: 3382
  year: 2019
  end-page: 3386
– volume: 13
  start-page: 593
  year: 2019
  publication-title: Front. Neurosci.
– volume: 577
  start-page: 641
  year: 2020
  publication-title: Nature
– volume: 8
  start-page: 102
  year: 2018
  publication-title: IEEE J. Emerg. Sel. Topics Circuits Syst.
– volume: 2
  start-page: 1900189
  year: 2020
  publication-title: Adv. Intell. Syst.
– start-page: 401
  year: 2015
  end-page: 428
– volume: 2
  start-page: 155
  year: 2020
  publication-title: Nat. Mach. Intell.
– start-page: 3645
  year: 2019
  end-page: 3650
– start-page: 4557
  year: 2017
  end-page: 4563
– volume: 213
  start-page: 487
  year: 2019
  publication-title: Faraday Discuss.
– volume: 1
  start-page: 22
  year: 2018
  publication-title: Nat. Electron.
– volume: 64
  start-page: 2508
  year: 2017
  publication-title: IEEE Trans. Circuits Syst. I
– start-page: 597
  year: 2016
  end-page: 622
– volume: 116
  start-page: 4123
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 35
  year: 2018
  end-page: 36
– volume: 7
  start-page: 110903
  year: 2019
  publication-title: APL Mater.
– volume: 29
  start-page: 048401
  year: 2020
  publication-title: Chinese Phys. B
– volume: 39
  start-page: 819
  year: 2018
  publication-title: IEEE Electron Device Lett.
– start-page: 1
  year: 2018
  end-page: 5
– volume: 1
  start-page: 197
  year: 2018
  publication-title: Nat. Electron.
– volume: 10
  start-page: 57
  year: 2016
  publication-title: Front. Neurosci.
– volume: 14
  start-page: 406
  year: 2020
  publication-title: Front. Neurosci.
– volume: 5
  start-page: 242
  year: 2015
  publication-title: IEEE J. Emerg. Sel. Topics Circuits Syst.
– volume: 106
  start-page: 260
  year: 2018
  publication-title: Proc. IEEE
– volume: 10
  start-page: 191
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 19
  year: 2010
  publication-title: Front. Comput. Neurosci.
– volume: 24
  start-page: 104
  year: 2012
  publication-title: Neural Comput.
– volume: 5
  start-page: 1800143
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 13
  start-page: 95
  year: 2019
  publication-title: Front. Neurosci.
– volume: 13
  start-page: 855
  year: 2019
  publication-title: Front. Neurosci.
– start-page: 10.4.1
  year: 2012
  end-page: 10.4.4
– volume: 52
  start-page: 443002
  year: 2019
  publication-title: J. Phys. D: Appl. Phys.
– volume: 3
  start-page: 327
  year: 2020
  publication-title: Nat. Electron.
– volume: 7
  start-page: 9274
  year: 2017
  publication-title: Sci. Rep.
– volume: 8
  start-page: 13727
  year: 2018
  publication-title: Sci. Rep.
– volume: 31
  start-page: 7
  year: 2011
  publication-title: IEEE Micro.
– volume: 178
  start-page: 98
  year: 2017
  publication-title: Microelectron. Eng.
– volume: 36
  start-page: 29
  year: 2019
  publication-title: IEEE Signal Process. Mag.
– volume: 11
  start-page: 2473
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8181
  year: 2015
  publication-title: Nat. Commun.
– volume: 33
  start-page: 9565
  year: 2013
  publication-title: J. Neurosci.
– volume: 103
  start-page: 563
  year: 2019
  publication-title: Neuron
– volume: 1
  start-page: 333
  year: 2018
  publication-title: Nat. Electron.
– volume: 62
  start-page: 3498
  year: 2015
  publication-title: IEEE Trans. Electron Devices
– volume: 332
  start-page: 568
  year: 2011
  publication-title: Science
– start-page: 1
  year: 2014
  end-page: 2
– volume: 15
  start-page: 529
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 57
  year: 2018
  publication-title: Front. Neurosci.
– volume: 7
  start-page: 14101
  year: 2017
  publication-title: Sci. Rep.
– year: 2020
– volume: 67
  start-page: 28
  year: 2019
  publication-title: Microprocess. Microsyst.
– volume: 37
  start-page: 994
  year: 2016
  publication-title: IEEE Electron Device Lett.
– year: 2017
– volume: 1
  start-page: 52
  year: 2018
  publication-title: Nat. Electron.
– ident: e_1_2_11_35_1
  doi: 10.1038/s41928-018-0039-7
– ident: e_1_2_11_42_1
  doi: 10.1002/aelm.201700627
– ident: e_1_2_11_55_1
– ident: e_1_2_11_80_1
  doi: 10.1109/CICC.2011.6055293
– ident: e_1_2_11_91_1
  doi: 10.1088/1361-6528/aaa733
– ident: e_1_2_11_17_1
  doi: 10.1038/s41928-018-0092-2
– ident: e_1_2_11_22_1
  doi: 10.1038/nnano.2015.29
– ident: e_1_2_11_61_1
  doi: 10.1038/s41467-018-04933-y
– ident: e_1_2_11_95_1
  doi: 10.1038/s41598-017-09565-8
– ident: e_1_2_11_81_1
  doi: 10.1021/acs.nanolett.5b00697
– ident: e_1_2_11_7_1
  doi: 10.1038/nmat1614
– ident: e_1_2_11_38_1
– ident: e_1_2_11_99_1
– ident: e_1_2_11_23_1
  doi: 10.1088/1361-6463/ab37b6
– ident: e_1_2_11_40_1
  doi: 10.1038/s41467-020-16108-9
– ident: e_1_2_11_83_1
  doi: 10.1109/IEDM.2015.7409716
– ident: e_1_2_11_114_1
  doi: 10.1109/ICASSP.2018.8462410
– ident: e_1_2_11_49_1
  doi: 10.3389/fnins.2016.00333
– ident: e_1_2_11_53_1
  doi: 10.1109/MSSC.2019.2922889
– ident: e_1_2_11_71_1
  doi: 10.1038/nnano.2016.70
– ident: e_1_2_11_118_1
  doi: 10.1038/s41563-019-0291-x
– ident: e_1_2_11_31_1
  doi: 10.1038/s41928-020-0410-3
– ident: e_1_2_11_65_1
  doi: 10.1109/ESSDERC.2016.7599664
– ident: e_1_2_11_119_1
  doi: 10.1002/aisy.201900189
– ident: e_1_2_11_110_1
  doi: 10.1523/JNEUROSCI.4098-12.2013
– ident: e_1_2_11_130_1
  doi: 10.1002/adma.201500039
– ident: e_1_2_11_30_1
  doi: 10.1109/TCSI.2017.2705051
– ident: e_1_2_11_92_1
  doi: 10.1038/s41928-017-0002-z
– ident: e_1_2_11_101_1
  doi: 10.1088/0957-4484/27/36/365204
– ident: e_1_2_11_121_1
  doi: 10.1162/089976602760407955
– ident: e_1_2_11_66_1
  doi: 10.1109/IEDM.2012.6479018
– ident: e_1_2_11_67_1
  doi: 10.1038/s41586-020-1942-4
– ident: e_1_2_11_45_1
  doi: 10.3389/fnins.2020.00406
– ident: e_1_2_11_27_1
  doi: 10.1109/TCSII.2014.2357292
– volume: 4
  start-page: 19
  year: 2010
  ident: e_1_2_11_78_1
  publication-title: Front. Comput. Neurosci.
– start-page: 3645
  volume-title: Proc. of the 57th Annu. Meeting of the Association for Computational Linguistics
  year: 2019
  ident: e_1_2_11_117_1
  doi: 10.18653/v1/P19-1355
– ident: e_1_2_11_72_1
  doi: 10.3389/fnins.2016.00057
– ident: e_1_2_11_48_1
  doi: 10.1038/ncomms3072
– ident: e_1_2_11_74_1
  doi: 10.1109/IJCNN.2015.7280696
– ident: e_1_2_11_5_1
  doi: 10.1002/9783527680870
– ident: e_1_2_11_87_1
  doi: 10.1162/neco_a_01086
– ident: e_1_2_11_124_1
  doi: 10.1038/s41467-017-02337-y
– ident: e_1_2_11_79_1
  doi: 10.1016/j.neuron.2019.05.041
– ident: e_1_2_11_69_1
  doi: 10.1021/nl201040y
– ident: e_1_2_11_108_1
  doi: 10.1109/TNANO.2020.2982819
– ident: e_1_2_11_126_1
  doi: 10.1002/aelm.201800143
– ident: e_1_2_11_131_1
  doi: 10.1063/1.5009069
– ident: e_1_2_11_47_1
  doi: 10.1147/JRD.2019.2947008
– ident: e_1_2_11_105_1
  doi: 10.1109/JETCAS.2015.2435512
– ident: e_1_2_11_33_1
  doi: 10.1002/aelm.201900198
– ident: e_1_2_11_103_1
  doi: 10.1109/JPROC.2014.2310593
– ident: e_1_2_11_9_1
  doi: 10.1109/TCT.1971.1083337
– ident: e_1_2_11_6_1
  doi: 10.1038/nature06932
– ident: e_1_2_11_111_1
  doi: 10.1109/SPAWC.2019.8815546
– ident: e_1_2_11_4_1
  doi: 10.1109/JPROC.2017.2761740
– ident: e_1_2_11_113_1
  doi: 10.1109/MSP.2019.2928127
– ident: e_1_2_11_128_1
  doi: 10.1063/1.5129306
– ident: e_1_2_11_133_1
  doi: 10.1038/s41598-018-31958-6
– ident: e_1_2_11_58_1
  doi: 10.1039/C5NR04982B
– ident: e_1_2_11_60_1
  doi: 10.1038/s41563-017-0001-5
– ident: e_1_2_11_82_1
  doi: 10.3389/fnins.2018.00057
– ident: e_1_2_11_70_1
  doi: 10.1109/DRC.2016.7548503
– ident: e_1_2_11_57_1
  doi: 10.1038/s41565-018-0302-0
– ident: e_1_2_11_116_1
  doi: 10.1038/nature24270
– ident: e_1_2_11_25_1
  doi: 10.1038/nature08940
– ident: e_1_2_11_19_1
  doi: 10.1038/nphys2566
– ident: e_1_2_11_115_1
  doi: 10.1038/323533a0
– ident: e_1_2_11_34_1
  doi: 10.1038/s41598-017-14240-z
– ident: e_1_2_11_112_1
  doi: 10.1109/ICASSP.2019.8682960
– ident: e_1_2_11_123_1
  doi: 10.1162/NECO_a_00200
– volume: 18
  start-page: 6869
  year: 2017
  ident: e_1_2_11_43_1
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_11_18_1
  doi: 10.1038/s41565-020-0655-z
– ident: e_1_2_11_98_1
  doi: 10.1109/ISQED.2016.7479230
– ident: e_1_2_11_90_1
  doi: 10.1002/9783527680870.ch21
– ident: e_1_2_11_24_1
  doi: 10.1063/1.5042413
– ident: e_1_2_11_32_1
– ident: e_1_2_11_54_1
  doi: 10.1126/science.1201938
– ident: e_1_2_11_125_1
– ident: e_1_2_11_77_1
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– ident: e_1_2_11_3_1
  doi: 10.1038/530144a
– ident: e_1_2_11_109_1
– ident: e_1_2_11_104_1
  doi: 10.1039/C8FD00114F
– ident: e_1_2_11_135_1
  doi: 10.1063/1.5143659
– ident: e_1_2_11_107_1
  doi: 10.1109/TED.2020.2968223
– ident: e_1_2_11_41_1
  doi: 10.3389/fnins.2019.00593
– ident: e_1_2_11_64_1
  doi: 10.1109/JPROC.2018.2790840
– ident: e_1_2_11_11_1
  doi: 10.1007/978-3-319-54313-0
– ident: e_1_2_11_39_1
  doi: 10.1109/TED.2015.2439635
– ident: e_1_2_11_15_1
  doi: 10.1038/s41467-017-01481-9
– ident: e_1_2_11_132_1
  doi: 10.1088/1674-1056/ab75da
– ident: e_1_2_11_127_1
  doi: 10.1145/3231589
– ident: e_1_2_11_44_1
  doi: 10.1038/s41928-018-0054-8
– ident: e_1_2_11_50_1
  doi: 10.1038/s41586-018-0180-5
– ident: e_1_2_11_52_1
  doi: 10.1109/HPCA.2017.21
– ident: e_1_2_11_85_1
  doi: 10.3389/fnins.2019.00855
– ident: e_1_2_11_56_1
  doi: 10.1038/s41563-018-0110-9
– ident: e_1_2_11_68_1
  doi: 10.1126/science.1254642
– ident: e_1_2_11_20_1
  doi: 10.1073/pnas.1815682116
– ident: e_1_2_11_97_1
  doi: 10.1109/JETCAS.2017.2776980
– ident: e_1_2_11_21_1
  doi: 10.1007/s00339-011-6264-9
– ident: e_1_2_11_102_1
  doi: 10.1109/LED.2016.2582859
– ident: e_1_2_11_28_1
  doi: 10.1109/TCSI.2018.2846699
– ident: e_1_2_11_96_1
  doi: 10.1016/j.mee.2017.04.033
– ident: e_1_2_11_122_1
  doi: 10.1038/s42256-020-0162-9
– ident: e_1_2_11_10_1
  doi: 10.1007/978-3-319-14367-5_13
– ident: e_1_2_11_89_1
  doi: 10.1038/s41598-020-64878-5
– ident: e_1_2_11_37_1
  doi: 10.1109/TED.2018.2865352
– ident: e_1_2_11_129_1
  doi: 10.1038/s41565-019-0501-3
– ident: e_1_2_11_2_1
– ident: e_1_2_11_8_1
  doi: 10.1038/s41928-017-0006-8
– ident: e_1_2_11_26_1
  doi: 10.1109/MCAS.2016.2583673
– ident: e_1_2_11_29_1
  doi: 10.23919/DATE.2019.8715020
– ident: e_1_2_11_94_1
  doi: 10.1039/C8FD00118A
– ident: e_1_2_11_63_1
  doi: 10.1109/IEDM.2018.8614558
– ident: e_1_2_11_93_1
  doi: 10.1109/LED.2018.2831698
– ident: e_1_2_11_75_1
  doi: 10.3389/fnins.2019.00095
– ident: e_1_2_11_16_1
  doi: 10.1038/nnano.2012.240
– ident: e_1_2_11_86_1
  doi: 10.1016/j.neucom.2019.10.104
– ident: e_1_2_11_36_1
  doi: 10.1080/23746149.2016.1259585
– ident: e_1_2_11_76_1
  doi: 10.1002/aelm.201900060
– ident: e_1_2_11_59_1
  doi: 10.1088/1361-6528/aa8013
– ident: e_1_2_11_106_1
– ident: e_1_2_11_100_1
  doi: 10.1109/IEDM.2013.6724692
– ident: e_1_2_11_51_1
  doi: 10.1145/3123939.3124544
– ident: e_1_2_11_46_1
  doi: 10.1109/DRC.2017.7999481
– ident: e_1_2_11_13_1
  doi: 10.1109/MM.2011.89
– ident: e_1_2_11_62_1
  doi: 10.1038/ncomms9181
– ident: e_1_2_11_12_1
  doi: 10.1016/j.micpro.2019.01.009
– ident: e_1_2_11_134_1
  doi: 10.1063/1.5129101
– ident: e_1_2_11_14_1
  doi: 10.1145/3079856.3080246
– ident: e_1_2_11_73_1
  doi: 10.1109/IJCNN.2017.7966434
– volume-title: The “ECHO STATE” Approach to Analysing and Training Recurrent Neural Networks
  year: 2001
  ident: e_1_2_11_120_1
– ident: e_1_2_11_88_1
  doi: 10.1109/MSP.2019.2931595
– ident: e_1_2_11_84_1
  doi: 10.1038/ncomms12611
SSID ssj0002171027
Score 2.5632448
Snippet Machine learning, particularly in the form of deep learning (DL), has driven most of the recent fundamental developments in artificial intelligence (AI). DL is...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Architecture
Artificial intelligence
Biomimetics
CMOS
Computer memory
Deep learning
Digital switching
Electrodes
in-memory computing
Machine learning
Memory
Memristors
Moore's law
Neural networks
neuromorphic systems
Phase transitions
power-efficient artificial intelligence
Spiking
spiking neural networks
Technological change
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYQ4tBL1YpW3ZYiH5C4EBE7ieMcF8qKlWBVCVrRk2XPjttIJVlttpW48QgcuPXteBL8k90uh4pLj4kmM5ZnMj_x5BtC9vLCaCO0TArDIcmB5YnmwiSpRMQcGVYBp_vrWTmZyKur6vPaqC_fExbhgePGHaIxhQZWlMAgt0Jq44_-KglcWNTGeu-bltVaMeV9sEu0XeQslyiNKT_UdXfjykEeW7OeRKEA1v8kw1zPU0OgGb0iL_sMkQ7jyl6TDWy2yZ9zvA4oAPPu4fZ-NG-v6bh5uL07942yNzTOZnBR6IB-QpzRHjX1Ox0CuLgStXxAdTOlF7Pafx2nHpXDiZnENvCOLlrqckE6ChgjtLWBoHXcZz9qCE8e1a2TOG782TxO_8p8Q76MTi6PT5N-rkICuR_NaFiVQ6qltgwqy7REK7LMIhZWQGEhzawrTGTKTSVdBmYyLDFjfMpshYACsrdks2kbfEeola58SXXKrHXeIMuNcKxtKSyHKdeAA5Is91lBDzruZ1_8VBEumSuvF7XSy4Dsr-hnEW7jn5RHXm0rKg-THW4441G98ajnjGdAdpZKV_272ynfWFu64M7YgPBgCM8sRQ3HF99WV-__x8I-kBeeYfzpcYdsLua_8CPZgt-LupvvBlt_BB3iCT8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagcEBI_CMWCvIBiUutxs6fc0JbYMVKdFWpgAqXyJ6MSySahGRB6o2HQOL9eBJsx5u2B-DAMdHEtuTxzHhm8n2EPE1SrXSmJEu1AJYAT5gSmWaRRMQEORYep_v9m3y1kkdHxUFIuA2hrXJjE72hrlpwOfJd1-6YW5PL-fPuC3OsUa66Gig0LpMrDiXBUTccpB-nHIsNt63_zDdYjZHYVfVwai-FYmzQuuCLPGT_hTjzfLTq3c3i5v8u9Ba5EQJNOh814za5hM0dcn1-rm5wl_zcxxOPLdAPv77_WPTtCV02bN81357Ske_BerYd-hKxowGJ9ZjOAayvGjVnh6qmoodd7TLu1CF92DlXY2v5QNcttfElXXjcEtoaL9Da0btPNfgv9-qWLRtX7cfqbMZ75N3i1dsXr1lgamCQOLJHzYsEIiWV4VAYriSaLI4NYmoySA1EsbFXHRkJXUgb0-kYc4y5qLgpEDCD-D7ZatoGHxBqpL0QRSrixlj7Eic6s0ObPDMCKqEAZ4Rt9qyEAGPu2DQ-lyMAsyjdHpfTHs_Is0m-GwE8_ii551RgknLA2_5F2x-X4RyXqHWqgKc5cEhMJpV2lehCgsgMKm1mZHujFWWwBkN5phIzIrxS_WMp5Xx5-GF6evj3MR-Ra050_EFym2yt-6_4mFyFb-t66J_4E_Eb-UEXGg
  priority: 102
  providerName: ProQuest
Title Memristors—From In‐Memory Computing, Deep Learning Acceleration, and Spiking Neural Networks to the Future of Neuromorphic and Bio‐Inspired Computing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faisy.202000085
https://www.proquest.com/docview/2822734111
https://doaj.org/article/ebb5ac157c1c4f68ab829098c26feabf
Volume 2
WOSCitedRecordID wos000669793800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: P5Z
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: BENPR
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: PIMPY
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: WIN
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2640-4567
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171027
  issn: 2640-4567
  databaseCode: 24P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCFhwCxUFY-IHFp1Nh5Ocdd6IqV2CiiPFoukT07biPRZJUsSL31J3Dgxr_rL8F2smn3gJDgEsXW-CF77BmPx98Q8jKMlFSxFF6kOHghsNCTPFaeLxAxRIapw-n-9C7JMnF8nOY3XvF3-BCDwc2uDLdf2wUuVXtwDRoqy_bCnO9452t1m-wyFiSWr3mYD1YWo3AbCWrfTBvB73tGW0g2yI0-P9iuYksyOQD_La3zpu7qhM_s_v93-wG51yuedNJxykNyC6tH5NcCzx24QNNeXf6cNfU5nVdXlz8W1v_2gnYhH4xw26dvEFe0B2M9pRMAI6465tmnslrSo1Vpje7Ugn2YZrLOu7yl65oaFZPOHHQJrbUjqE3tq7MSXMlpWZsW55W98sfldZuPycfZ4YfXb70-XIMHoY34qFgagi-F1AxSzaRAHQeBRox0DJEGP9DmvCN8rlJhFDsVYIIB40umUwSMIXhCdqq6wqeEamFORb70mdZmkwlCFZuqdRJrDksuAUfE20xVAT2WuQ2p8bXoUJh5YYe5GIZ5RF4N9KsOxeOPlFM78wOVRd92GXVzWvSLuUClIgksSoBBqGMhlb2OTgXwWKNUekT2NnxT9FtCW1h_3cToDIyNCHcc8peuFJP50cmQevYvhZ6Tu_a_ezu5R3bWzTd8Qe7A93XZNmO3VMZkd3qY5e_Hzhphvnn0xeTl80V-YlKf59lvcH0f2A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAmExBsRKOADiEtXXXvfB4RSStRVkyhSC2pPW3syLpHobsgGUG78CCT-BT-KX4K9j7Q9AKceOO5qbK-8n-dhj78BeO4HSqpQxk6gBDo-ct-RIlSOGxORT5ySiqf7_SAajeLDw2S8Bj_buzA2rbLViZWinhRo98i3bLpjZFQu569nnxxbNcqerrYlNGpY7NHyqwnZylfpjvm_L4Tovz14s-s0VQUc9G1hQmXCdnRlLDXHRHMZkw49TxMFOsRAo-tp45bHrlBJbPwP5VFEHhcTrhNCCtEz_V6Bdd-CvQPr43Q4Plrt6hgH31jsqGWHdMWWnJZLE4aKOiXsgvWrigRc8GzP-8eVgevf-t-m5jbcbFxp1quxfwfWKL8LN3rnTkbuwY8hnVbsCfPy17fv_XlxytLcGdr04iWrK1oY273JdohmrOGaPWE9RGON67WxyWQ-YfuzqT1TYJbLxIw5qpPnS7YomPGgWb9iZmGFrgQK0_vswxSrltvTwklzm89Ak7MR78O7S5maB9DJi5weAtOxCflc6XKtjQb1fBWarnUUaoETIZG64LQYybAharf1Qj5mNcW0yCymshWmuvByJT-rKUr-KLltIbeSstTi1YtifpI1miojpQKJPIiQo6_DWCp71p7EKEJNUukubLQozBp9V2ZnEOyCqED8j0_Jeun-0erp0d_7fAbXdg-Gg2yQjvYew3XbrL4OugGdxfwzPYGr-GUxLedPm_XI4Piycf4bV2t2tg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQQgh8UYdKOAFiE2jiZ33AqEpw4hR29FIBVTYGPvmuozUJkMygGbHRyDxL3wOX4LtJNN2Aay6YJnIj8g5vg_f63MJeRxGSqpYpl6kOHghsNCTPFaenyJiiAwzx9P9djeZTNKDg2y6Rn52d2FsWmUnE52gzkuwZ-R9m-6YGJHLWF-3aRHT4ej5_JNnK0jZSGtXTqOByA4uvxr3rX42Hpp__YTz0cvXL155bYUBD0JbpFAZFx58mUrNINNMpqjjINCIkY4h0uAH2pjoqc9VlhpbRAWYYMB4znSGgDEEZtwL5GJifEybTjiN3q_Od4ypb3R30vFE-rwvZ_XSOKS8SQ47owdduYAzNu5pS9mputH1_3mRbpBrrYFNB82OuEnWsLhFrg5OxUtukx97eOw4Far617fvo6o8puPC27NJx0va1LkwGn2LDhHntGWgPaQDAKOjmx2zRWWR0_35zEYaqGU4MXNOmpT6mi5KauxqOnJ8LbTUrkFpRp9_nIHruT0rvXFhsxwwP5nxDnlzLktzl6wXZYEbhOrUOIK-9JnWRq4GoYrN0DqJNYecS8Ae8Tq8CGjp220VkSPREE9zYfElVvjqkaer9vOGuOSPLbct_FatLOG4e1FWh6KVXwKViiSwKAEGoY5TqWwEPkuBxxql0j2y2SFStFKwFidw7BHuAP2PTxGD8f671dO9v4_5iFw24Ba748nOfXLF9mruiG6S9UX1GR-QS_BlMaurh25jUvLhvEH-G2zSfhk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memristors%E2%80%94From+In%E2%80%90Memory+Computing%2C+Deep+Learning+Acceleration%2C+and+Spiking+Neural+Networks+to+the+Future+of+Neuromorphic+and+Bio%E2%80%90Inspired+Computing&rft.jtitle=Advanced+intelligent+systems&rft.au=Mehonic%2C+Adnan&rft.au=Sebastian%2C+Abu&rft.au=Rajendran%2C+Bipin&rft.au=Simeone%2C+Osvaldo&rft.date=2020-11-01&rft.issn=2640-4567&rft.eissn=2640-4567&rft.volume=2&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faisy.202000085&rft.externalDBID=10.1002%252Faisy.202000085&rft.externalDocID=AISY202000085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-4567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-4567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-4567&client=summon