Deep template matching for offline handwritten Chinese character recognition
Just like its remarkable achievements in many computer vision tasks, the convolutional neural networks provide an end-to-end solution in handwritten Chinese character recognition (HCCR) with great success. However, the process of learning discriminative features for image recognition is difficult in...
Uloženo v:
| Vydáno v: | Journal of engineering (Stevenage, England) Ročník 2020; číslo 4; s. 120 - 124 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
01.04.2020
Wiley |
| Témata: | |
| ISSN: | 2051-3305, 2051-3305 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Just like its remarkable achievements in many computer vision tasks, the convolutional neural networks provide an end-to-end solution in handwritten Chinese character recognition (HCCR) with great success. However, the process of learning discriminative features for image recognition is difficult in cases where little data is available. In this study, the authors propose a novel method for learning siamese neural network which employs a special structure to predict the similarity between handwritten Chinese characters and template images. The optimisation of siamese neural network can be treated as a simple binary classification problem. When the training process finished, the powerful discriminative features will help to generalise the predictive power not just to new data, but to entirely new classes that never appear in the training set. Experiments performed on the ICDAR-2013 offline HCCR datasets have shown that the proposed method has a very promising generalisation ability for new classes that never appear in the training set. |
|---|---|
| AbstractList | Just like its remarkable achievements in many computer vision tasks, the convolutional neural networks provide an end-to-end solution in handwritten Chinese character recognition (HCCR) with great success. However, the process of learning discriminative features for image recognition is difficult in cases where little data is available. In this study, the authors propose a novel method for learning siamese neural network which employs a special structure to predict the similarity between handwritten Chinese characters and template images. The optimisation of siamese neural network can be treated as a simple binary classification problem. When the training process finished, the powerful discriminative features will help to generalise the predictive power not just to new data, but to entirely new classes that never appear in the training set. Experiments performed on the ICDAR-2013 offline HCCR datasets have shown that the proposed method has a very promising generalisation ability for new classes that never appear in the training set. |
| Author | Wu, Qi Jin, Min Lu, Huaxiang Li, Zhiyuan Xiao, Yi |
| Author_xml | – sequence: 1 givenname: Zhiyuan surname: Li fullname: Li, Zhiyuan organization: 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China – sequence: 2 givenname: Yi surname: Xiao fullname: Xiao, Yi organization: 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China – sequence: 3 givenname: Qi surname: Wu fullname: Wu, Qi organization: 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China – sequence: 4 givenname: Min surname: Jin fullname: Jin, Min email: jinmin08@semi.ac.cn organization: 3Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology, Beijing, People's Republic of China – sequence: 5 givenname: Huaxiang surname: Lu fullname: Lu, Huaxiang organization: 4CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, People's Republic of China |
| BookMark | eNp9kEtrGzEURkVJoGmSZfaz7WLcq8e8lq3rtAmGbJK1uCNd2TJjyWhUjP99x3EKJeCsJKTvfFc6X9hFiIEYu-Mw46C6b5tIMwG8m0HbVZ_YlYCKl1JCdfHf_jO7HccNAHCpBCh-xZY_iXZFpu1uwEzFFrNZ-7AqXExFdG7wgYo1BrtPPmcKxXy6pZEKs8aEJlMqEpm4Cj77GG7YpcNhpNu39Zq93C-e57_L5dOvh_n3ZWkU72Rpay662oIy1Lre1E1ljVVKCtEDp6Zpaqp60bXWcEWuEr2zaHtHVgrueunkNXs49dqIG71LfovpoCN6_XoQ00pjyt4MpC32hK2FthZWNapqAUhZgz02pBpbT13y1GVSHMdEThuf8fibnNAPmoM--tWTX330q49-J6p8R_17xbl8fcrv_UCHj8P6-XEhftyDmLgJ_HoCPeUp9ieFSeyZIX8BbyieGQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3509605 crossref_primary_10_1049_ipr2_12521 crossref_primary_10_1016_j_compeleceng_2024_109794 crossref_primary_10_3390_app13063500 crossref_primary_10_14201_adcaij_31218 crossref_primary_10_32604_cmc_2023_032288 crossref_primary_10_20965_jaciii_2023_p0567 crossref_primary_10_1016_j_ins_2022_07_070 |
| Cites_doi | 10.1109/CVPR.2016.90 10.1109/CVPR.2015.7298594 10.1109/CVPR.2012.6248110 10.1109/ICDAR.2013.218 10.1109/ICDAR.2015.7333881 10.1109/ICFHR.2014.56 10.1007/s10032-018-0311-4 10.1016/j.patcog.2016.08.005 10.1142/S0218001493000339 10.1109/5.726791 10.1109/IJCNN.2015.7280516 10.1109/ICDAR.2011.17 10.1109/TPAMI.1987.4767881 10.1016/j.patcog.2017.06.032 10.1016/S0031-3203(03)00224-3 |
| ContentType | Journal Article |
| Copyright | 2021 The Institution of Engineering and Technology |
| Copyright_xml | – notice: 2021 The Institution of Engineering and Technology |
| DBID | IDLOA 24P AAYXX CITATION DOA |
| DOI | 10.1049/joe.2019.0895 |
| DatabaseName | IET Digital Library Open Access Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2051-3305 |
| EndPage | 124 |
| ExternalDocumentID | oai_doaj_org_article_dabea8d0862d4745800e4dcaba7e47d6 10_1049_joe_2019_0895 TJE2BF02953 |
| Genre | article |
| GrantInformation_xml | – fundername: Strategic Pilot Special Science and Technology Project of Chinese Academy of Sciences grantid: XDA18000000 – fundername: Strategic Pilot Special Science and Technology Project of Chinese Academy of Sciences funderid: XDA18000000 |
| GroupedDBID | 24P 5VS AAJGR ADACO ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BFFAM GROUPED_DOAJ IDLOA KQ8 OCL OK1 RIE RIG RNS RUI 0R~ 1OC AAHJG ABJCF ABQXS ACCMX ACESK ACXQS AFKRA ARAPS AVUZU BENPR BGLVJ CCPQU EBS HCIFZ IAO IGS IPNFZ ITC M43 M7S M~E PIMPY PTHSS ROL AAMMB AAYXX ADMLS AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c4193-d61296d04ce8fbc675dcd44322b01e7776e5b298dc14ef52bfdadbfed321fb3f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531351000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2051-3305 |
| IngestDate | Fri Oct 03 12:48:31 EDT 2025 Wed Oct 29 21:06:03 EDT 2025 Tue Nov 18 21:56:03 EST 2025 Wed Jan 22 16:30:42 EST 2025 Tue Jan 05 21:44:09 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | ICDAR-2013 offline HCCR datasets training set handwritten character recognition image classification offline handwritten Chinese character recognition deep template template images computer vision tasks training process predictive power Siamese neural network feature extraction simple binary classification problem computer vision remarkable achievements convolutional neural nets convolutional neural networks learning (artificial intelligence) image recognition powerful discriminative features |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4193-d61296d04ce8fbc675dcd44322b01e7776e5b298dc14ef52bfdadbfed321fb3f3 |
| OpenAccessLink | https://doaj.org/article/dabea8d0862d4745800e4dcaba7e47d6 |
| PageCount | 5 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dabea8d0862d4745800e4dcaba7e47d6 crossref_citationtrail_10_1049_joe_2019_0895 iet_journals_10_1049_joe_2019_0895 wiley_primary_10_1049_joe_2019_0895_TJE2BF02953 crossref_primary_10_1049_joe_2019_0895 |
| ProviderPackageCode | IDLOA RUI |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of engineering (Stevenage, England) |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology Wiley |
| Publisher_xml | – name: The Institution of Engineering and Technology – name: Wiley |
| References | Zhang, X.; Bengio, Y.; Liu, C. (C11) 2017; 61 Bromley, J.; Guyon, I.; Lecun, Y. (C14) 1993; 7 Kimura, F.; Takashina, K.; Tsuruoka, S. (C1) 1987; 9 Lecun, Y.; Bottou, L.; Bengio, Y. (C20) 1998; 86 Xiao, X.; Jin, L.; Yang, Y. (C12) 2017; 72 Liu, C.; Nakashima, K.; Sako, H. (C18) 2004; 37 Li, Z.; Teng, N.; Jin, M. (C13) 2018; 21 1993; 7 2017; 61 2017; 72 2012 1987; 9 2011 2004; 37 2016 2005 2015 2014 2013 2018; 21 1998; 86 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_21_1 e_1_2_7_20_1 |
| References_xml | – volume: 9 start-page: 149 issue: 1 year: 1987 end-page: 153 ident: C1 article-title: Modified quadratic discriminant functions and the application to Chinese character recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 ident: C20 article-title: Gradient-based learning applied to document recognition publication-title: Proc. of the IEEE – volume: 21 start-page: 233 issue: 4 year: 2018 end-page: 240 ident: C13 article-title: Building efficient Cnn architecture for offline handwritten Chinese character recognition publication-title: Int. J. Doc. Anal. Recognit. (IJDAR) – volume: 7 start-page: 669 issue: 4 year: 1993 end-page: 688 ident: C14 article-title: Signature verification using a ‘siamese’ time delay neural network publication-title: Int. J. Pattern Recognit. Artif. Intell. – volume: 61 start-page: 348 issue: 61 year: 2017 end-page: 360 ident: C11 article-title: Online and offline handwritten Chinese character recognition: a comprehensive study and new benchmark publication-title: Pattern Recognit. – volume: 37 start-page: 265 issue: 2 year: 2004 end-page: 279 ident: C18 article-title: Handwritten digit recognition: investigation of normalization and feature extraction techniques publication-title: Pattern Recognit. – volume: 72 start-page: 72 year: 2017 end-page: 81 ident: C12 article-title: Building fast and compact convolutional neural networks for offline handwritten Chinese character recognition publication-title: Pattern Recognit. – year: 2015 article-title: High performance offline handwritten Chinese character recognition using googlenet and directional feature maps – start-page: 265 year: 2016 end-page: 283 article-title: Tensorflow: a system for large‐scale machine learning – year: 2015 article-title: Very deep convolutional networks for large‐scale image recognition – start-page: 448 year: 2015 end-page: 456 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – start-page: 1 year: 2015 end-page: 9 article-title: Going deeper with convolutions – start-page: 3642 year: 2012 end-page: 3649 article-title: Multi‐column deep neural networks for image classification – year: 2012 article-title: Imagenet classification with deep convolutional neural networks – volume: 21 start-page: 233 issue: 4 year: 2018 end-page: 240 article-title: Building efficient Cnn architecture for offline handwritten Chinese character recognition publication-title: Int. J. Doc. Anal. Recognit. (IJDAR) – volume: 7 start-page: 669 issue: 4 year: 1993 end-page: 688 article-title: Signature verification using a ‘siamese’ time delay neural network publication-title: Int. J. Pattern Recognit. Artif. Intell. – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 article-title: Gradient‐based learning applied to document recognition publication-title: Proc. of the IEEE – start-page: 1 year: 2015 end-page: 6 article-title: Multi‐column deep neural networks for offline handwritten Chinese character classification – year: 2005 article-title: Learning a similarity metric discriminatively, with application to face verification – year: 2011 article-title: Casia online and offline Chinese handwriting databases – volume: 37 start-page: 265 issue: 2 year: 2004 end-page: 279 article-title: Handwritten digit recognition: investigation of normalization and feature extraction techniques publication-title: Pattern Recognit. – volume: 72 start-page: 72 year: 2017 end-page: 81 article-title: Building fast and compact convolutional neural networks for offline handwritten Chinese character recognition publication-title: Pattern Recognit. – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – year: 2014 – volume: 61 start-page: 348 issue: 61 year: 2017 end-page: 360 article-title: Online and offline handwritten Chinese character recognition: a comprehensive study and new benchmark publication-title: Pattern Recognit. – volume: 9 start-page: 149 issue: 1 year: 1987 end-page: 153 article-title: Modified quadratic discriminant functions and the application to Chinese character recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2013 – ident: e_1_2_7_6_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_7_5_1 doi: 10.1109/CVPR.2015.7298594 – ident: e_1_2_7_16_1 – ident: e_1_2_7_20_1 – ident: e_1_2_7_7_1 doi: 10.1109/CVPR.2012.6248110 – ident: e_1_2_7_9_1 doi: 10.1109/ICDAR.2013.218 – ident: e_1_2_7_11_1 doi: 10.1109/ICDAR.2015.7333881 – ident: e_1_2_7_3_1 – ident: e_1_2_7_10_1 doi: 10.1109/ICFHR.2014.56 – ident: e_1_2_7_14_1 doi: 10.1007/s10032-018-0311-4 – ident: e_1_2_7_12_1 doi: 10.1016/j.patcog.2016.08.005 – ident: e_1_2_7_18_1 – ident: e_1_2_7_15_1 doi: 10.1142/S0218001493000339 – ident: e_1_2_7_21_1 doi: 10.1109/5.726791 – ident: e_1_2_7_4_1 – ident: e_1_2_7_8_1 doi: 10.1109/IJCNN.2015.7280516 – ident: e_1_2_7_17_1 doi: 10.1109/ICDAR.2011.17 – ident: e_1_2_7_2_1 doi: 10.1109/TPAMI.1987.4767881 – ident: e_1_2_7_13_1 doi: 10.1016/j.patcog.2017.06.032 – ident: e_1_2_7_19_1 doi: 10.1016/S0031-3203(03)00224-3 |
| SSID | ssj0001342041 |
| Score | 2.1998377 |
| Snippet | Just like its remarkable achievements in many computer vision tasks, the convolutional neural networks provide an end-to-end solution in handwritten Chinese... Just like its remarkable achievements in many computer vision tasks, the convolutional neural networks provide an end‐to‐end solution in handwritten Chinese... |
| SourceID | doaj crossref wiley iet |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 120 |
| SubjectTerms | computer vision computer vision tasks convolutional neural nets convolutional neural networks deep template feature extraction handwritten character recognition ICDAR‐2013 offline HCCR datasets image classification image recognition learning (artificial intelligence) offline handwritten Chinese character recognition powerful discriminative features predictive power remarkable achievements Research Article Siamese neural network simple binary classification problem template images training process training set |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagcKAHHi1Vw0sWQpzYdu21Y_tIHxFCVdVDkXqz_BijSFW2SgL8fWacbWgORUJcV17bmvHY3_jxfYx9SEqEnGKLuYnWjSq2bVwppKGRs9EmaiiVMv_MnJ_bqyt3Meic0luYFT_EesONIqPO1xTgIa5USBDUUpD3xHIp3EFrnX7IHgnRWdJukOrizyZLp2Rb1SslDr4Gc3c98GxiHYcbNWysS5W-H1ebKSw3QWtddSbP_ru_z9nTAXDyz6sR8oI9gNkO275DQ7jLzk4AbjiRVF0j8uSIYesFS454lvelUNOcNth_zadLhNicNLdhATzdkj3z9TWkfvaSfZucXh5_aQaVhQb95LomI8Zx49yqBLbEhAlETlkpDPTYCjDGjEFH6WxOQkHRMpYcciyQOylK7Eq3x7Zm_Qz2GQ9a2NC1mRJuJaULY4XzaRFS0kGOhRH7dGtjnwYKclLCuPb1KFw5j0byZCRPRhqxj-viNyvujfsKHpHD1oWIMrt-6Off_RCBPocIwWZK4bIySiNSBpVTiMGAMnk8Yu_R3X4I4cV9LR1WH_-9P_7y66k8mrTS6e7VP__xmj2RlNTX60Fv2NZy_gPessfp53K6mL-rA_w3M_b51Q priority: 102 providerName: Wiley-Blackwell |
| Title | Deep template matching for offline handwritten Chinese character recognition |
| URI | http://digital-library.theiet.org/content/journals/10.1049/joe.2019.0895 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fjoe.2019.0895 https://doaj.org/article/dabea8d0862d4745800e4dcaba7e47d6 |
| Volume | 2020 |
| WOSCitedRecordID | wos000531351000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2051-3305 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELVK1QMcUPkSgVJZqOLEkl2vHa-PFBJBVaIeiujNsj1jqVWVVE2AW397Z5xtFA6FCxcfViPt6M165409eiPEQdJNgBRrqk2MqXTu6srlzDM0AKyx0WAukvnHdjrtzs7cycaoL-4JW8kDr4AbQogYOmDmDdpqQwQHNaQQg0VtoYhtE-vZKKbK6UqrVa2bXlSTWPDwYs6imI37UHc8S2IjCRWtfkot57j8k6GWFDPZFY97big_rnx6IrZw9lQ82lAMfCaOPyNeSdaTuiSSKIlull5ISdRTznNmzij5LPw31fzEhiWPx8YFynSnyyzXHUPz2XPxfTI-_fSl6gciVASpaysgOuJGUOuEXY6JuD4k0Jr2ZKwbtNaO0ETlOkiNxmxUzBAgZoRWNTm2uX0htmfzGb4UMpimC20NXBtrpVwYafr15UYpvnPpcCDe3yHkU68WzkMrLn25tdbOE6CeAfUM6EC8W5tfrWQy7jM8ZLjXRqxuXR5QzH0fc_-vmA_EWwqW73fb4r43DUss_-6PPz0aq8NJrZxpX_0P316Lh4pL8tLcsye2l9c_8Y3YSb-W54vrffFA6ZP98q3S-u1mTOuPr9NbSxztiw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZKi0R74F01PIqFECeW7nrteH2k0KiFEHEIojfLjzEKqrJVkpa_z4yzDc2hSKjXlddezXjs7xt7v2HsTZCVi8GXyE2UKmRqysKkRDU0YtRKewUpS-YP9WjUnJ6ab9f-4l_qQ6wSbhQZeb2mAKeE9JJwShLJ_NWSzGVl3peNUXfYlkSwQcUbfpyM_mZZainKXL5S4OwrkLyrTmgT-zhY62FtY8r6_bjdTGCxjlrztjN4cPsPfsjud5CTf1jOkUdsA6aP2c41IcInbPgJ4JyTTNUZYk-OKDZfseSIaHmbEo3NKcX-ezZZIMjmVHUb5sDDldwzX11EaqdP2ffB0fjjcdHVWSjQU6YuIqIc04-lDNAkH5BCxBClxFD3ZQVa6z4oL0wTQyUhKeFTdNEniLWokq9Tvcs2p-0U9hh3qmpcXUai3FII4_oSV9RUCUFHOQ302LsrI9vQiZBTLYwzmw_DpbFoJEtGsmSkHnu7an6-VN-4qeEheWzViESz84N29tN2MWij8-CaSCQuSi0VYmWQMTjvNEgd-z32Gv1tuyCe3zTSQXbyv7_Hjj8ficNBKYyqn_33G6_YvePx16Ednoy-PGfbgih-viz0gm0uZhfwkt0Nl4vJfLafZ_sfxY_-LQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELVKQQgOfKMGaLFQxYmlu147Xh8pbQRtFOXQSr1ZtmeMgqpslKTw9_E429AcioR6XXnt1XzY79neN4ztB1k5CL5M3ESpQsamLEyMVEMDQCvtFcYsmT_Uo1FzcWHGN_7iX-lDrDfcKDPyfE0JjjOIK8IpSSTzZ0syl5X5XDZG3WP3pdIVxbWQ47-7LLUUZS5fKVL0FYm8q05oM_VxsNHDxsKU9fvTcjPB5SZqzcvO4OndP_gZe9JBTv5lFSPP2RZOX7DHN4QIX7LhEeKMk0zVZcKePKHYfMWSJ0TL2xhpbE5b7L_nk2UC2ZyqbuMCebiWe-bri0jt9BU7Hxyfff1WdHUWiuQpUxeQUI7pQykDNtGHRCEggJQp1X1Zoda6j8oL00CoJEYlfAQHPiLUooq-jvVrtj1tp7jDuFNV4-oSiHJLIYzryzSjxkoIOsppsMc-XRvZhk6EnGphXNp8GC6NTUayZCRLRuqxj-vms5X6xm0ND8lj60Ykmp0ftPMftstBC86ja4BIHEgtVcLKKCE47zRKDf0e-5D8bbskXtw20kF28r-_x56dHIvDQSmMqt_89xvv2cPx0cAOv49O37JHghh-viv0jm0v51e4yx6EX8vJYr6Xg_0P0BX9RA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+template+matching+for+offline+handwritten+Chinese+character+recognition&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Li%2C+Zhiyuan&rft.au=Xiao%2C+Yi&rft.au=Wu%2C+Qi&rft.au=Jin%2C+Min&rft.date=2020-04-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.eissn=2051-3305&rft.volume=2020&rft.issue=4&rft.spage=120&rft.epage=124&rft_id=info:doi/10.1049%2Fjoe.2019.0895&rft.externalDocID=10_1049_joe_2019_0895 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon |