Evaluating and minimizing batch effects in metabolomics
Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh‐resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high...
Uložené v:
| Vydané v: | Mass spectrometry reviews Ročník 41; číslo 3; s. 421 - 442 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Wiley Subscription Services, Inc
01.05.2022
|
| Predmet: | |
| ISSN: | 0277-7037, 1098-2787, 1098-2787 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh‐resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype‐related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods. |
|---|---|
| AbstractList | Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh‐resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype‐related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods. Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh-resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype-related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods.Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh-resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype-related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods. |
| Author | Han, Wei Li, Liang |
| Author_xml | – sequence: 1 givenname: Wei surname: Han fullname: Han, Wei organization: University of Alberta – sequence: 2 givenname: Liang surname: Li fullname: Li, Liang email: liang.li@ualberta.ca organization: University of Alberta |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33238061$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90E1LwzAYwPEgE_eiB7-AFLzooVte2qQ9DpkvMPGgnsPTJNWMNplNq-int3PTg6Cn8MDveQj_MRo47wxCxwRPCcZ0VkOYUsIF3UMjgvMspiITAzTCVIhYYCaGaBzCCmNCUkIO0JAxyjLMyQiJxStUHbTWPUXgdFRbZ2v7sRkLaNVzZMrSqDZE1kW1aaHwla-tCodov4QqmKPdO0GPl4uHi-t4eXd1czFfxiohOY2BaFykDIBTY7TCwmgoclGSTCumM0VTpUBlmlGTFJDmecI1S6GgosyKnCVsgs62d9eNf-lMaGVtgzJVBc74Lkia8IRjwTDp6ekvuvJd4_rfScoTwUma84062amuqI2W68bW0LzL7yQ9ON8C1fgQGlP-EILlJrfsc8uv3L2d_bLKtn1M79oGbPXfxputzPvfp-Xt_H678QmdT4-L |
| CitedBy_id | crossref_primary_10_1016_j_ebiom_2023_104553 crossref_primary_10_1016_j_talanta_2024_126109 crossref_primary_10_1038_s41467_025_62237_4 crossref_primary_10_1016_j_csbj_2025_03_030 crossref_primary_10_1186_s40168_022_01450_5 crossref_primary_10_1016_j_drudis_2023_103661 crossref_primary_10_1016_j_foodchem_2024_138525 crossref_primary_10_1016_j_envres_2025_122737 crossref_primary_10_1002_etc_5776 crossref_primary_10_3390_metabo15080514 crossref_primary_10_1007_s11306_021_01796_1 crossref_primary_10_1016_j_tifs_2025_104878 crossref_primary_10_3390_nu15163576 crossref_primary_10_1038_s41467_025_62616_x crossref_primary_10_1016_j_tifs_2024_104558 crossref_primary_10_3389_fcvm_2025_1568528 crossref_primary_10_1039_D3FO01982A crossref_primary_10_1002_mnfr_202400112 crossref_primary_10_1002_mrc_5350 crossref_primary_10_1186_s13059_024_03401_9 crossref_primary_10_1007_s00192_025_06069_2 crossref_primary_10_1186_s13059_023_03047_z crossref_primary_10_3390_metabo14110633 crossref_primary_10_3390_jcm10091826 crossref_primary_10_1007_s00216_023_04511_2 crossref_primary_10_3389_fmolb_2022_930204 crossref_primary_10_3389_fonc_2021_789248 crossref_primary_10_3390_foods14152655 crossref_primary_10_1038_s41598_024_67459_y crossref_primary_10_3390_metabo15070434 crossref_primary_10_1007_s00394_024_03511_x crossref_primary_10_1016_j_kint_2023_11_007 crossref_primary_10_1038_s41467_024_48177_5 crossref_primary_10_3390_metabo12060519 crossref_primary_10_3390_biom15040477 crossref_primary_10_1093_ije_dyac062 crossref_primary_10_1016_j_trac_2023_117225 crossref_primary_10_1038_s41598_021_84824_3 crossref_primary_10_1093_clinchem_hvae141 crossref_primary_10_1016_j_trac_2023_117009 crossref_primary_10_1038_s41593_023_01361_0 crossref_primary_10_3390_metabo14010077 crossref_primary_10_3389_frai_2023_1098308 crossref_primary_10_1021_jasms_4c00467 crossref_primary_10_1021_jasms_5c00073 |
| Cites_doi | 10.1021/ac0352427 10.1093/nar/gks1004 10.1021/ac101216e 10.1039/b604498k 10.1016/j.chroma.2017.09.023 10.1007/s11306-015-0826-3 10.1002/elps.201400600 10.1039/C1AN15605E 10.1016/j.copbio.2016.08.001 10.1007/BF02289588 10.1002/jssc.200900152 10.1093/nar/gkx449 10.1007/s10337-013-2429-3 10.1093/biostatistics/kxv027 10.1016/j.aca.2018.04.055 10.1016/j.aca.2018.08.002 10.1111/j.1478-3231.2012.02781.x 10.1007/s11306-014-0707-1 10.1007/s11306-016-1015-8 10.1021/acs.analchem.5b03912 10.1016/j.talanta.2014.07.031 10.1021/ac302877x 10.1038/sj.ki.5000273 10.1016/j.jpba.2010.04.025 10.1093/bioinformatics/btx196 10.1021/ac3025625 10.1039/C5AN01638J 10.1021/ac302748b 10.1093/jnci/dji054 10.1016/j.chroma.2012.01.076 10.1093/bioinformatics/btt480 10.1016/j.chroma.2010.09.055 10.1161/CIRCGENETICS.114.000216 10.1021/acs.analchem.9b05460 10.1371/journal.pone.0179530 10.1093/bioinformatics/btu423 10.1021/ac5011684 10.1021/acs.analchem.0c01610 10.1016/j.copbio.2014.08.006 10.1038/nprot.2011.454 10.1016/j.aca.2019.02.010 10.1016/j.trac.2009.12.003 10.1016/j.jchromb.2008.04.044 10.1371/journal.pone.0138965 10.1007/s11306-012-0482-9 10.1086/626134 10.1002/(SICI)1097-0231(19990815)13:15<1580::AID-RCM679>3.0.CO;2-V 10.1016/j.jprot.2012.05.005 10.1038/srep39921 10.1016/j.jchromb.2008.04.031 10.1007/s11306-016-1026-5 10.3390/metabo2040775 10.1007/s11306-016-1124-4 10.1371/journal.pone.0116221 10.1186/1471-2105-8-93 10.1016/j.aca.2015.07.008 10.1021/ac901143w 10.1007/978-1-4939-9744-2_16 10.1021/acs.analchem.7b02240 10.1039/C1MB05350G 10.1007/s11306-006-0042-2 10.1021/ac201065j 10.1016/j.aca.2013.01.015 10.1038/nprot.2011.335 10.1007/s11306-016-1030-9 10.1677/erc.1.00868 10.1021/acs.analchem.5b04491 10.1016/j.jpba.2016.07.008 10.1093/bioinformatics/bth270 10.1016/j.trac.2008.01.008 10.1007/s00216-013-6856-7 10.1021/ac070212f 10.1016/j.chemolab.2011.08.009 10.1093/nar/gkaa258 10.1016/j.drudis.2006.10.004 10.1093/nar/gkv1042 10.1186/1471-2105-12-337 10.1038/nrn3475 10.1016/j.ab.2004.09.001 10.1002/rcm.1790 10.1016/j.ab.2007.07.022 10.1016/j.tibtech.2017.02.012 10.1016/j.chroma.2015.02.025 10.1007/s11306-014-0712-4 10.1016/j.aca.2018.02.053 10.1016/j.ymgme.2015.04.008 10.15252/emmm.201606798 10.1021/ac051972y 10.1093/bioinformatics/btg385 10.1038/nbt.4091 10.1038/nrd.2016.32 10.1021/ac502439y 10.1016/j.chroma.2015.12.007 10.1007/s00216-014-7797-5 10.1021/ac051495j 10.1089/omi.2013.0010 10.1038/nrg2825 10.1021/acs.analchem.7b04400 10.1093/biostatistics/kxj037 10.1016/j.ab.2015.01.003 10.1016/j.jchromb.2008.04.049 10.1186/s12859-017-1501-7 10.3390/metabo9110247 10.1021/ac900166a 10.1016/j.talanta.2018.11.019 10.1007/s00216-019-02073-w 10.1021/acs.analchem.8b05592 10.1093/bioinformatics/btp426 10.3390/metabo10020051 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley Periodicals LLC 2020 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC |
| Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2020 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
| DOI | 10.1002/mas.21672 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1098-2787 |
| EndPage | 442 |
| ExternalDocumentID | 33238061 10_1002_mas_21672 MAS21672 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM K9. 7X8 |
| ID | FETCH-LOGICAL-c4192-a1d0b53aa62eedc07edab97f18dc3d8c25ccac8d32e4ba59946d35ab27f8b9343 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0277-7037 1098-2787 |
| IngestDate | Thu Jul 10 17:46:52 EDT 2025 Sat Nov 29 14:45:55 EST 2025 Mon Jul 21 06:00:21 EDT 2025 Sat Nov 29 07:03:27 EST 2025 Tue Nov 18 19:47:20 EST 2025 Wed Jan 22 16:26:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | batch effect mass spectrometry NMR metabolome analysis metabolomics |
| Language | English |
| License | 2020 Wiley Periodicals LLC. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4192-a1d0b53aa62eedc07edab97f18dc3d8c25ccac8d32e4ba59946d35ab27f8b9343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 33238061 |
| PQID | 2647615961 |
| PQPubID | 1016389 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_2464607301 proquest_journals_2647615961 pubmed_primary_33238061 crossref_primary_10_1002_mas_21672 crossref_citationtrail_10_1002_mas_21672 wiley_primary_10_1002_mas_21672_MAS21672 |
| PublicationCentury | 2000 |
| PublicationDate | May/June 2022 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May/June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Mass spectrometry reviews |
| PublicationTitleAlternate | Mass Spectrom Rev |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 140 2010; 11 2019; 91 2004; 20 2013; 1 2009; 81 2013; 768 2013; 405 2005; 336 2017; 89 2010; 1217 2020; 10 2014; 130 2007; 79 2013; 9 2012; 1255 2014; 406 2010; 29 2020; 92 2015; 88 2008; 27 2015; 87 2007; 8 2020b 2007; 3 2008; 871 2012; 137 2018; 36 2019; 9 2017; 1523 2011; 83 2019; 1061 2015; 887 2016; 17 2011; 6 2018; 1019 2016; 15 2012; 32 2016; 12 2005; 19 2015; 115 1967; 32 2013; 76 2020a; 92 2015; 475 2018; 90 2005; 97 2016; 1430 2014; 30 2016; 8 2012; 41 2013; 29 2017; 7 2015; 36 2010; 53 2018; 1036 2006; 78 2015; 31 2017; 43 2017; 45 2006; 131 2011; 12 2004; 76 2013; 14 2013; 17 2018; 1026 2007; 370 2017; 33 2017; 35 2015; 44 2006; 69 1999; 13 2015; 1389 2020; 48 2019; 195 2014; 9 2016; 88 2009; 25 2006; 11 1954; 62 2015; 11 2015; 10 2015; 8 2012; 75 2010; 82 2014; 86 2004; 11 2011; 109 2012; 2 2009; 32 2020 2017; 12 2019; 411 2017; 18 2012; 7 2016; 130 2012; 85 2012; 8 2012; 84 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_29_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_102_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_59_1 Worley B (e_1_2_11_100_1) 2013; 1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_16_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_2_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 Chen D (e_1_2_11_18_1) 2020 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_37_1 e_1_2_11_112_1 |
| References_xml | – volume: 336 start-page: 164 year: 2005 end-page: 171 article-title: Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly C‐labeled cell extracts as internal standards publication-title: Analytical Biochemistry – volume: 17 start-page: 29 year: 2016 end-page: 39 article-title: Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses publication-title: Biostatistics – volume: 62 start-page: 74 year: 1954 end-page: 91 article-title: Operator variation in experimental research publication-title: The Journal of Geology – volume: 12 start-page: 173 year: 2016 article-title: Large‐scale untargeted LC‐MS metabolomics data correction using between‐batch feature alignment and cluster‐based within‐batch signal intensity drift correction publication-title: Metabolomics – volume: 85 start-page: 1037 year: 2012 end-page: 1046 article-title: Batch Normalizer: a fast total abundance regression calibration method to simultaneously adjust batch and injection order effects in liquid chromatography/time‐of‐flight mass spectrometry‐based metabolomics data and comparison with current calibration methods publication-title: Analytical Chemistry – volume: 11 start-page: 1085 year: 2006 end-page: 1092 article-title: Systems biology, metabolic modelling and metabolomics in drug discovery and development publication-title: Drug Discovery Today – volume: 130 start-page: 442 year: 2014 end-page: 448 article-title: Detection of batch effects in liquid chromatography‐mass spectrometry metabolomic data using guided principal component analysis publication-title: Talanta – volume: 17 start-page: 473 year: 2013 end-page: 485 article-title: Evaluation of normalization methods to pave the way towards large‐scale LC‐MS‐based metabolomics profiling experiments publication-title: Omics: A Journal of Integrative Biology – volume: 140 start-page: 7810 year: 2015 end-page: 7817 article-title: Intra‐batch effect correction in liquid chromatography‐mass spectrometry using quality control samples and support vector regression (QC‐SVRC) publication-title: Analyst – volume: 30 start-page: 2899 year: 2014 end-page: 2905 article-title: Intensity drift removal in LC/MS metabolomics by common variance compensation publication-title: Bioinformatics – volume: 1 start-page: 92 year: 2013 end-page: 107 article-title: Multivariate analysis in metabolomics publication-title: Current Metabolomics – volume: 12 start-page: 88 year: 2016 article-title: Improved batch correction in untargeted MS‐based metabolomics publication-title: Metabolomics – volume: 83 start-page: 5864 year: 2011 end-page: 5872 article-title: Optimized preprocessing of ultra‐performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery publication-title: Analytical Chemistry – volume: 18 start-page: 84 year: 2017 article-title: Mixture model normalization for non‐targeted gas chromatography/mass spectrometry metabolomics data publication-title: BMC Bioinformatics – volume: 1217 start-page: 7401 year: 2010 end-page: 7410 article-title: Streamlined pentafluorophenylpropyl column liquid chromatography–tandem quadrupole mass spectrometry and global C‐labeled internal standards improve performance for quantitative metabolomics in bacteria publication-title: Journal of Chromatography A – volume: 11 start-page: 518 year: 2015 end-page: 528 article-title: Controlling the quality of metabolomics data: new strategies to get the best out of the QC sample publication-title: Metabolomics – volume: 33 start-page: 2539 year: 2017 end-page: 2546 article-title: Removal of batch effects using distribution‐matching residual networks publication-title: Bioinformatics – volume: 79 start-page: 5204 year: 2007 end-page: 5211 article-title: Experimental and analytical variation in human urine in 1H NMR spectroscopy‐based metabolic phenotyping studies publication-title: Analytical Chemistry – volume: 7 year: 2017 article-title: Batch effects and the effective design of single‐cell gene expression studies publication-title: Scientific Reports – volume: 32 start-page: 241 year: 1967 end-page: 254 article-title: Hierarchical clustering schemes publication-title: Psychometrika – year: 2020b article-title: High tolerance to instrument drifts by differential chemical isotope labeling LC‐MS: A case study of the effect of LC leak in long‐term sample runs on quantitative metabolome analysis publication-title: Journal of Mass Spectrometry – volume: 78 start-page: 4307 year: 2006 end-page: 4318 article-title: Impact of analytical bias in metabonomic studies of human blood serum and plasma publication-title: Analytical Chemistry – volume: 88 start-page: 524 year: 2015 end-page: 545 article-title: Toward merging untargeted and targeted methods in mass spectrometry‐based metabolomics and lipidomics publication-title: Analytical chemistry – volume: 12 start-page: 337 year: 2011 article-title: IQMNMR: open source software using time‐domain NMR data for automated identification and quantification of metabolites in batches publication-title: BMC Bioinformatics – volume: 45 start-page: W162 year: 2017 end-page: W170 article-title: NOREVA: normalization and evaluation of MS‐based metabolomics data publication-title: Nucleic Acids Research – volume: 1389 start-page: 112 year: 2015 end-page: 119 article-title: Isotopologue ratio normalization for non‐targeted metabolomics publication-title: Journal of Chromatography A – volume: 871 start-page: 191 year: 2008 end-page: 201 article-title: Standardizing GC–MS metabolomics publication-title: Journal of Chromatography B – volume: 9 start-page: 280 year: 2013 end-page: 299 article-title: Translational biomarker discovery in clinical metabolomics: an introductory tutorial publication-title: Metabolomics – volume: 90 start-page: 1363 year: 2018 end-page: 1369 article-title: Best‐matched internal standard normalization in liquid chromatography–mass spectrometry metabolomics applied to environmental samples publication-title: Analytical Chemistry – volume: 12 start-page: 93 year: 2016 article-title: Non‐targeted UHPLC‐MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling publication-title: Metabolomics – volume: 76 start-page: 1738 year: 2004 end-page: 1745 article-title: A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS publication-title: Analytical Chemistry – volume: 1523 start-page: 265 year: 2017 end-page: 274 article-title: Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi‐batch metabolomics data publication-title: Journal of Chromatography A – volume: 12 year: 2017 article-title: RRmix: a method for simultaneous batch effect correction and analysis of metabolomics data in the absence of internal standards publication-title: PLOS One – volume: 109 start-page: 162 year: 2011 end-page: 170 article-title: Quantification and statistical significance analysis of group separation in NMR‐based metabonomics studies publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 12 start-page: 89 year: 2016 article-title: Normalization and integration of large‐scale metabolomics data using support vector regression publication-title: Metabolomics – volume: 11 start-page: 583 year: 2004 end-page: 584 article-title: High‐resolution serum proteomic patterns for ovarian cancer detection publication-title: Endocrine‐Related Cancer – volume: 10 year: 2015 article-title: Metabolomic profiling of 13 diatom cultures and their adaptation to nitrate‐limited growth conditions publication-title: PLOS One – volume: 1019 start-page: 38 year: 2018 end-page: 48 article-title: Evaluation of batch effect elimination using quality control replicates in LC‐MS metabolite profiling publication-title: Analytica Chimica Acta – volume: 31 start-page: 73 year: 2015 end-page: 78 article-title: High‐throughput discovery metabolomics publication-title: Current Opinion in Biotechnology – volume: 19 start-page: 401 year: 2005 end-page: 407 article-title: Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? publication-title: Rapid Communications in Mass Spectrometry: an International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry – volume: 6 start-page: 1060 year: 2011 end-page: 1083 article-title: Procedures for large‐scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry publication-title: Nature Protocols – volume: 89 start-page: 9424 year: 2017 end-page: 9431 article-title: Overcoming sample matrix effect in quantitative blood metabolomics using chemical isotope labeling liquid chromatography‐mass spectrometry publication-title: Analytical Chemistry – volume: 1036 start-page: 66 year: 2018 end-page: 72 article-title: statTarget: a streamlined tool for signal drift correction and interpretations of quantitative mass spectrometry‐based omics data publication-title: Analytica Chimica Acta – volume: 370 start-page: 17 year: 2007 end-page: 25 article-title: Microbial metabolomics: toward a platform with full metabolome coverage publication-title: Analytical Biochemistry – volume: 88 start-page: 2234 year: 2016 end-page: 2242 article-title: A novel strategy for large‐scale metabolomics study by calibrating gross and systematic errors in gas chromatography–mass spectrometry publication-title: Analytical Chemistry – volume: 81 start-page: 3919 year: 2009 end-page: 3932 article-title: Differential C‐/ C‐isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome publication-title: Analytical Chemistry – volume: 131 start-page: 1075 year: 2006 end-page: 1078 article-title: A pragmatic and readily implemented quality control strategy for HPLC‐MS and GC‐MS‐based metabonomic analysis publication-title: Analyst – volume: 76 start-page: 1295 year: 2013 end-page: 1305 article-title: Targeted metabolomics of dried blood spot extracts publication-title: Chromatographia – volume: 8 start-page: 470 year: 2012 end-page: 481 article-title: LC‐MS‐based metabolomics publication-title: Molecular BioSystems – volume: 36 start-page: 421 year: 2018 end-page: 427 article-title: Batch effects in single‐cell RNA‐sequencing data are corrected by matching mutual nearest neighbors publication-title: Nature Biotechnology – volume: 27 start-page: 251 year: 2008 end-page: 260 article-title: LC‐MS‐based methodology for global metabolite profiling in metabonomics/metabolomics publication-title: Trends in Analytical Chemistry – volume: 10 start-page: 51 year: 2020 article-title: Toward a standardized strategy of clinical metabolomics for the advancement of precision medicine publication-title: Metabolites – volume: 53 start-page: 623 year: 2010 end-page: 630 article-title: Strategies to minimize variability and bias associated with manual pipetting in ligand binding assays to assure data quality of protein therapeutic quantification publication-title: Journal of Pharmaceutical and Biomedical Analysis – volume: 75 start-page: 3938 year: 2012 end-page: 3951 article-title: Batch effects correction improves the sensitivity of significance tests in spectral counting‐based comparative discovery proteomics publication-title: Journal of Proteomics – volume: 8 start-page: 93 year: 2007 article-title: Normalization method for metabolomics data using optimal selection of multiple internal standards publication-title: BMC Bioinformatics – volume: 1430 start-page: 80 year: 2016 end-page: 95 article-title: Sample normalization methods in quantitative metabolomics publication-title: Journal of Chromatography A – volume: 81 start-page: 7974 year: 2009 end-page: 7980 article-title: Compensation for systematic cross‐contribution improves normalization of mass spectrometry based metabolomics data publication-title: Analytical Chemistry – volume: 35 start-page: 498 year: 2017 end-page: 507 article-title: Why batch effects matter in omics data, and how to avoid them publication-title: Trends in Biotechnology – volume: 1255 start-page: 228 year: 2012 end-page: 236 article-title: A novel approach to transforming a non‐targeted metabolic profiling method to a pseudo‐targeted method using the retention time locking gas chromatography/mass spectrometry‐selected ions monitoring publication-title: Journal of Chromatography A – volume: 29 start-page: 111 year: 2010 end-page: 119 article-title: Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation publication-title: Trends in Analytical Chemistry – volume: 84 start-page: 10723 year: 2012 end-page: 10731 article-title: Determination of total concentration of chemically labeled metabolites as a means of metabolome sample normalization and sample loading optimization in mass spectrometry‐based metabolomics publication-title: Analytical Chemistry – volume: 25 start-page: 2573 year: 2009 end-page: 2580 article-title: Normalization of peak intensities in bottom‐up MS‐based proteomics using singular value decomposition publication-title: Bioinformatics – volume: 195 start-page: 77 year: 2019 end-page: 86 article-title: Removal of batch effects using stratified subsampling of metabolomic data for in vitro endocrine disruptors screening publication-title: Talanta – volume: 91 start-page: 3590 year: 2019 end-page: 3596 article-title: Systematic error removal using random forest for normalizing large‐scale untargeted lipidomics data publication-title: Analytical Chemistry – volume: 15 start-page: 473 year: 2016 end-page: 484 article-title: Emerging applications of metabolomics in drug discovery and precision medicine publication-title: Nature Reviews Drug Discovery – volume: 11 start-page: 9 year: 2015 end-page: 26 article-title: Molecular phenotyping of a UK population: defining the human serum metabolome publication-title: Metabolomics – volume: 11 start-page: 1733 year: 2015 end-page: 1742 article-title: Matrix effect on chemical isotope labeling and its implication in metabolomic sample preparation for quantitative metabolomics publication-title: Metabolomics – volume: 86 start-page: 6540 year: 2014 end-page: 6547 article-title: Development of a universal metabolome‐standard method for long‐term LC–MS metabolome profiling and its application for bladder cancer urine‐metabolite‐biomarker discovery publication-title: Analytical chemistry – volume: 8 start-page: 192 year: 2015 end-page: 206 article-title: Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics publication-title: Circulation: Cardiovascular Genetics – volume: 14 start-page: 365 year: 2013 end-page: 376 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nature Reviews Neuroscience – volume: 69 start-page: 1471 year: 2006 end-page: 1476 article-title: Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery publication-title: Kidney International – volume: 1026 start-page: 62 year: 2018 end-page: 68 article-title: Model selection for within‐batch effect correction in UPLC‐MS metabolomics using quality control‐support vector regression publication-title: Analytica Chimica Acta – volume: 9 start-page: 247 year: 2019 article-title: Troubleshooting in large‐scale LC‐ToF‐MS metabolomics analysis: solving complex issues in big cohorts publication-title: Metabolites – volume: 20 start-page: 105 year: 2004 end-page: 114 article-title: Adjustment of systematic microarray data biases publication-title: Bioinformatics – volume: 768 start-page: 118 year: 2013 end-page: 128 article-title: UPLC‐ESI‐QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: effect of experimental artefacts and anticoagulant publication-title: Analytica Chimica Acta – volume: 3 start-page: 19 year: 2007 end-page: 27 article-title: Urine stability for metabolomic studies: effects of preparation and storage publication-title: Metabolomics – volume: 115 start-page: 91 year: 2015 end-page: 94 article-title: Aromatic L‐amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma publication-title: Molecular Genetics and Metabolism – volume: 29 start-page: 2877 year: 2013 end-page: 2883 article-title: A new statistic for identifying batch effects in high‐throughput genomic data that uses guided principal component analysis publication-title: Bioinformatics – volume: 92 start-page: 5082 year: 2020 end-page: 5090 article-title: NormAE: deep adversarial learning model to remove batch effects in liquid chromatography mass spectrometry‐based metabolomics data publication-title: Analytical Chemistry – volume: 1061 start-page: 60 year: 2019 end-page: 69 article-title: WaveICA: a novel algorithm to remove batch effects for large‐scale untargeted metabolomics data based on wavelet analysis publication-title: Analytica Chimica Acta – volume: 7 start-page: 508 year: 2012 end-page: 516 article-title: Meta‐analysis of untargeted metabolomic data from multiple profiling experiments publication-title: Nature Protocols – volume: 8 start-page: 118 year: 2007 end-page: 127 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics – volume: 43 start-page: 34 year: 2017 end-page: 40 article-title: The future of NMR‐based metabolomics publication-title: Current Opinion in Biotechnology – volume: 78 start-page: 567 year: 2006 end-page: 574 article-title: Large‐scale human metabolomics studies: a strategy for data (pre‐) processing and validation publication-title: Analytical Chemistry – volume: 44 start-page: D463 year: 2015 end-page: D470 article-title: Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools publication-title: Nucleic Acids Research – volume: 11 start-page: 733 year: 2010 end-page: 739 article-title: Tackling the widespread and critical impact of batch effects in high‐throughput data publication-title: Nature Reviews Genetics – volume: 2 start-page: 775 year: 2012 end-page: 795 article-title: A guideline to univariate statistical analysis for LC/MS‐based untargeted metabolomics‐derived data publication-title: Metabolites – volume: 130 start-page: 141 year: 2016 end-page: 168 article-title: Metabolomics studies in brain tissue: a review publication-title: Journal of Pharmaceutical and Biomedical Analysis – volume: 475 start-page: 22 year: 2015 end-page: 28 article-title: Extraction parameters for metabolomics from cultured cells publication-title: Analytical Biochemistry – volume: 32 start-page: 2183 year: 2009 end-page: 2199 article-title: Analytical and statistical approaches to metabolomics research publication-title: Journal of Separation Science – volume: 84 start-page: 10768 year: 2012 end-page: 10776 article-title: Normalizing and integrating metabolomics data publication-title: Analytical Chemistry – volume: 8 start-page: 1134 year: 2016 end-page: 1142 article-title: Meta‐analysis of clinical metabolic profiling studies in cancer: challenges and opportunities publication-title: EMBO Molecular Medicine – volume: 92 start-page: 9265 year: 2020a end-page: 9272 article-title: Effects of freeze‐thaw cycles of blood samples on high‐coverage quantitative metabolomics publication-title: Analytical Chemistry – volume: 411 start-page: 6983 year: 2019 end-page: 6994 article-title: Optimal inter‐batch normalization method for GC/MS/MS‐based targeted metabolomics with special attention to centrifugal concentration publication-title: Analytical and Bioanalytical Chemistry – volume: 82 start-page: 9177 year: 2010 end-page: 9187 article-title: Evaluation of peak picking quality in LC‐MS metabolomics data publication-title: Analytical Chemistry – volume: 887 start-page: 118 year: 2015 end-page: 126 article-title: Development of a method for metabolomic analysis of human exhaled breath condensate by gas chromatography–mass spectrometry in high resolution mode publication-title: Analytica Chimica Acta – volume: 36 start-page: 2148 year: 2015 end-page: 2155 article-title: Effects of processing and storage conditions on charged metabolomic profiles in blood publication-title: Electrophoresis – volume: 405 start-page: 5147 year: 2013 end-page: 5157 article-title: Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow publication-title: Analytical and Bioanalytical Chemistry – volume: 13 start-page: 1580 year: 1999 end-page: 1585 article-title: Reproducibility of matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for replicate bacterial culture analysis publication-title: Rapid Communications in Mass Spectrometry – volume: 871 start-page: 236 year: 2008 end-page: 242 article-title: Analytical strategies for LC–MS‐based targeted metabolomics publication-title: Journal of chromatography B – volume: 97 start-page: 315 year: 2005 end-page: 319 article-title: Lessons from controversy: ovarian cancer screening and serum proteomics publication-title: Journal of the National Cancer Institute – volume: 9 year: 2014 article-title: Metabolomics data normalization with EigenMS publication-title: PLOS One – volume: 32 start-page: 902 year: 2012 end-page: 910 article-title: Controlled attenuation parameter (CAP): a noninvasive method for the detection of hepatic steatosis based on transient elastography publication-title: Liver International – volume: 41 start-page: D781 year: 2012 end-page: D786 article-title: MetaboLights—an open‐access general‐purpose repository for metabolomics studies and associated meta‐data publication-title: Nucleic acids research – year: 2020 – volume: 871 start-page: 227 year: 2008 end-page: 235 article-title: Instrumental and experimental effects in LC–MS‐based metabolomics publication-title: Journal of Chromatography B – volume: 20 start-page: 2447 year: 2004 end-page: 2454 article-title: Metabolite fingerprinting: detecting biological features by independent component analysis publication-title: Bioinformatics – volume: 137 start-page: 293 year: 2012 end-page: 300 article-title: Modern analytical techniques in metabolomics analysis publication-title: Analyst – volume: 406 start-page: 3723 year: 2014 end-page: 3733 article-title: Comprehensive and simultaneous coverage of lipid and polar metabolites for endogenous cellular metabolomics using HILIC‐TOF‐MS publication-title: Analytical and Bioanalytical Chemistry – volume: 87 start-page: 3606 year: 2015 end-page: 3615 article-title: Statistical methods for handling unwanted variation in metabolomics data publication-title: Analytical Chemistry – volume: 48 start-page: W436 year: 2020 end-page: W448 article-title: NOREVA: enhanced normalization and evaluation of time‐course and multi‐class metabolomic data publication-title: Nucleic Acids Research – ident: e_1_2_11_45_1 doi: 10.1021/ac0352427 – ident: e_1_2_11_40_1 doi: 10.1093/nar/gks1004 – volume: 1 start-page: 92 year: 2013 ident: e_1_2_11_100_1 article-title: Multivariate analysis in metabolomics publication-title: Current Metabolomics – ident: e_1_2_11_10_1 doi: 10.1021/ac101216e – ident: e_1_2_11_78_1 doi: 10.1039/b604498k – ident: e_1_2_11_91_1 doi: 10.1016/j.chroma.2017.09.023 – ident: e_1_2_11_39_1 doi: 10.1007/s11306-015-0826-3 – ident: e_1_2_11_41_1 doi: 10.1002/elps.201400600 – ident: e_1_2_11_108_1 doi: 10.1039/C1AN15605E – ident: e_1_2_11_61_1 doi: 10.1016/j.copbio.2016.08.001 – ident: e_1_2_11_43_1 doi: 10.1007/BF02289588 – ident: e_1_2_11_42_1 doi: 10.1002/jssc.200900152 – ident: e_1_2_11_54_1 doi: 10.1093/nar/gkx449 – ident: e_1_2_11_112_1 doi: 10.1007/s10337-013-2429-3 – ident: e_1_2_11_63_1 doi: 10.1093/biostatistics/kxv027 – ident: e_1_2_11_76_1 doi: 10.1016/j.aca.2018.04.055 – ident: e_1_2_11_59_1 doi: 10.1016/j.aca.2018.08.002 – ident: e_1_2_11_62_1 doi: 10.1111/j.1478-3231.2012.02781.x – ident: e_1_2_11_24_1 doi: 10.1007/s11306-014-0707-1 – ident: e_1_2_11_97_1 doi: 10.1007/s11306-016-1015-8 – ident: e_1_2_11_109_1 doi: 10.1021/acs.analchem.5b03912 – ident: e_1_2_11_51_1 doi: 10.1016/j.talanta.2014.07.031 – ident: e_1_2_11_96_1 doi: 10.1021/ac302877x – ident: e_1_2_11_111_1 doi: 10.1038/sj.ki.5000273 – ident: e_1_2_11_64_1 doi: 10.1016/j.jpba.2010.04.025 – ident: e_1_2_11_81_1 doi: 10.1093/bioinformatics/btx196 – ident: e_1_2_11_102_1 doi: 10.1021/ac3025625 – ident: e_1_2_11_52_1 doi: 10.1039/C5AN01638J – ident: e_1_2_11_20_1 doi: 10.1021/ac302748b – ident: e_1_2_11_68_1 doi: 10.1093/jnci/dji054 – ident: e_1_2_11_55_1 doi: 10.1016/j.chroma.2012.01.076 – ident: e_1_2_11_70_1 doi: 10.1093/bioinformatics/btt480 – ident: e_1_2_11_106_1 doi: 10.1016/j.chroma.2010.09.055 – ident: e_1_2_11_83_1 doi: 10.1161/CIRCGENETICS.114.000216 – ident: e_1_2_11_73_1 doi: 10.1021/acs.analchem.9b05460 – ident: e_1_2_11_75_1 doi: 10.1371/journal.pone.0179530 – ident: e_1_2_11_28_1 doi: 10.1093/bioinformatics/btu423 – ident: e_1_2_11_66_1 doi: 10.1021/ac5011684 – ident: e_1_2_11_17_1 doi: 10.1021/acs.analchem.0c01610 – ident: e_1_2_11_29_1 doi: 10.1016/j.copbio.2014.08.006 – ident: e_1_2_11_65_1 doi: 10.1038/nprot.2011.454 – ident: e_1_2_11_21_1 doi: 10.1016/j.aca.2019.02.010 – ident: e_1_2_11_2_1 doi: 10.1016/j.trac.2009.12.003 – ident: e_1_2_11_13_1 doi: 10.1016/j.jchromb.2008.04.044 – ident: e_1_2_11_11_1 doi: 10.1371/journal.pone.0138965 – ident: e_1_2_11_104_1 doi: 10.1007/s11306-012-0482-9 – ident: e_1_2_11_36_1 doi: 10.1086/626134 – ident: e_1_2_11_74_1 doi: 10.1002/(SICI)1097-0231(19990815)13:15<1580::AID-RCM679>3.0.CO;2-V – ident: e_1_2_11_35_1 doi: 10.1016/j.jprot.2012.05.005 – ident: e_1_2_11_92_1 doi: 10.1038/srep39921 – year: 2020 ident: e_1_2_11_18_1 article-title: High tolerance to instrument drifts by differential chemical isotope labeling LC‐MS: A case study of the effect of LC leak in long‐term sample runs on quantitative metabolome analysis publication-title: Journal of Mass Spectrometry – ident: e_1_2_11_58_1 doi: 10.1016/j.jchromb.2008.04.031 – ident: e_1_2_11_82_1 doi: 10.1007/s11306-016-1026-5 – ident: e_1_2_11_95_1 doi: 10.3390/metabo2040775 – ident: e_1_2_11_12_1 doi: 10.1007/s11306-016-1124-4 – ident: e_1_2_11_47_1 doi: 10.1371/journal.pone.0116221 – ident: e_1_2_11_88_1 doi: 10.1186/1471-2105-8-93 – ident: e_1_2_11_67_1 doi: 10.1016/j.aca.2015.07.008 – ident: e_1_2_11_69_1 doi: 10.1021/ac901143w – ident: e_1_2_11_19_1 doi: 10.1007/978-1-4939-9744-2_16 – ident: e_1_2_11_16_1 doi: 10.1021/acs.analchem.7b02240 – ident: e_1_2_11_110_1 doi: 10.1039/C1MB05350G – ident: e_1_2_11_87_1 doi: 10.1007/s11306-006-0042-2 – ident: e_1_2_11_94_1 doi: 10.1021/ac201065j – ident: e_1_2_11_5_1 doi: 10.1016/j.aca.2013.01.015 – ident: e_1_2_11_23_1 doi: 10.1038/nprot.2011.335 – ident: e_1_2_11_22_1 doi: 10.1007/s11306-016-1030-9 – ident: e_1_2_11_4_1 doi: 10.1677/erc.1.00868 – ident: e_1_2_11_15_1 doi: 10.1021/acs.analchem.5b04491 – ident: e_1_2_11_32_1 doi: 10.1016/j.jpba.2016.07.008 – ident: e_1_2_11_79_1 doi: 10.1093/bioinformatics/bth270 – ident: e_1_2_11_90_1 doi: 10.1016/j.trac.2008.01.008 – ident: e_1_2_11_50_1 doi: 10.1007/s00216-013-6856-7 – ident: e_1_2_11_60_1 doi: 10.1021/ac070212f – ident: e_1_2_11_33_1 doi: 10.1016/j.chemolab.2011.08.009 – ident: e_1_2_11_105_1 doi: 10.1093/nar/gkaa258 – ident: e_1_2_11_49_1 doi: 10.1016/j.drudis.2006.10.004 – ident: e_1_2_11_86_1 doi: 10.1093/nar/gkv1042 – ident: e_1_2_11_84_1 doi: 10.1186/1471-2105-12-337 – ident: e_1_2_11_14_1 doi: 10.1038/nrn3475 – ident: e_1_2_11_101_1 doi: 10.1016/j.ab.2004.09.001 – ident: e_1_2_11_85_1 doi: 10.1002/rcm.1790 – ident: e_1_2_11_93_1 doi: 10.1016/j.ab.2007.07.022 – ident: e_1_2_11_31_1 doi: 10.1016/j.tibtech.2017.02.012 – ident: e_1_2_11_98_1 doi: 10.1016/j.chroma.2015.02.025 – ident: e_1_2_11_30_1 doi: 10.1007/s11306-014-0712-4 – ident: e_1_2_11_77_1 doi: 10.1016/j.aca.2018.02.053 – ident: e_1_2_11_3_1 doi: 10.1016/j.ymgme.2015.04.008 – ident: e_1_2_11_34_1 doi: 10.15252/emmm.201606798 – ident: e_1_2_11_89_1 doi: 10.1021/ac051972y – ident: e_1_2_11_6_1 doi: 10.1093/bioinformatics/btg385 – ident: e_1_2_11_38_1 doi: 10.1038/nbt.4091 – ident: e_1_2_11_99_1 doi: 10.1038/nrd.2016.32 – ident: e_1_2_11_56_1 doi: 10.1021/ac502439y – ident: e_1_2_11_103_1 doi: 10.1016/j.chroma.2015.12.007 – ident: e_1_2_11_27_1 doi: 10.1007/s00216-014-7797-5 – ident: e_1_2_11_7_1 doi: 10.1021/ac051495j – ident: e_1_2_11_25_1 doi: 10.1089/omi.2013.0010 – ident: e_1_2_11_53_1 doi: 10.1038/nrg2825 – ident: e_1_2_11_9_1 doi: 10.1021/acs.analchem.7b04400 – ident: e_1_2_11_44_1 doi: 10.1093/biostatistics/kxj037 – ident: e_1_2_11_80_1 doi: 10.1016/j.ab.2015.01.003 – ident: e_1_2_11_46_1 doi: 10.1016/j.jchromb.2008.04.049 – ident: e_1_2_11_71_1 doi: 10.1186/s12859-017-1501-7 – ident: e_1_2_11_72_1 doi: 10.3390/metabo9110247 – ident: e_1_2_11_37_1 doi: 10.1021/ac900166a – ident: e_1_2_11_8_1 doi: 10.1016/j.talanta.2018.11.019 – ident: e_1_2_11_107_1 doi: 10.1007/s00216-019-02073-w – ident: e_1_2_11_26_1 doi: 10.1021/acs.analchem.8b05592 – ident: e_1_2_11_48_1 doi: 10.1093/bioinformatics/btp426 – ident: e_1_2_11_57_1 doi: 10.3390/metabo10020051 |
| SSID | ssj0011511 |
| Score | 2.5798986 |
| SecondaryResourceType | review_article |
| Snippet | Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 421 |
| SubjectTerms | batch effect Mass Spectrometry Mass spectroscopy Metabolome metabolome analysis Metabolomics Metabolomics - methods NMR Phenotypes |
| Title | Evaluating and minimizing batch effects in metabolomics |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmas.21672 https://www.ncbi.nlm.nih.gov/pubmed/33238061 https://www.proquest.com/docview/2647615961 https://www.proquest.com/docview/2464607301 |
| Volume | 41 |
| WOSCitedRecordID | wos000592061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-2787 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011511 issn: 0277-7037 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-ydIO9dN9rui54Yw958WpLZ8mmT6Vr2MMWxrZC3sxZUrpA45Y63cP--p5kx6Wsg8LebHSHjO4T3-l3AB9cUmWEDmNhsyRGRyomxCxWNiHtJ14hLsKwCT2b5fN58W0AB5u7MC0-RP_DzVtG8NfewKlq9m9AQ1fUfBSp0ux_twTrbTaErU_fpydf-iICB7MwMM9XKZlAb4CFErHfM98OR3_lmLdT1hBzpk_-62ufwnaXakaHrW48g4Grn8Oj0PJpmhegjzug7_o0otpGHmRktfzjXyv2z7-irtUjWtbRyq1ZWc78DebmJZxMj38efY67MQqx8SXemFLLApFESnBANIl2lqpCL9LcGmlzIzKWosmtFA4ryooClZUZVUIv8qqQKF_BsD6v3Q5EiIJZVEYGOY2SKTlhK4thXD2SVSOYbE6zNB3GuB91cVa26Mii5HMowzmM4H1PetECa9xFtLcRSdnZFq8o1JyHFSodwbt-ma3ClzqodudXTIMKVfBeI3jdirLfRUpOUxLPPQkS-_f25dfDH-Fh9_6kb-Cx8DckQk_kHgzXl1fuLTw0v9fL5nIMD_Q8H3eKeg1tk-jT |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9CdNO4wGADOtgIaAcuoYn9YicSF8SoQJRqYiBxixzbhUo0oLZw4K_fs5MGIUCatFssP8vR-5af_XsAP21UJAothswkUYhWiVAhJqEwkZKu4xXiwDebkP1-enWV_Z6D_dlbmAofojlwc5bh_bUzcHcg3XlGDR2pyR6LhSQH3EJSI9Lv1q_z7mWvqSJQNPMd81yZkjRbzpCFItZpFr-MR6-SzJc5qw863aX_-93PsFgnm8FBpR3LMGfLFfjoL33qyReQRzXUd3kdqNIEDmZkNHxyw4I89E1QX_YIhmUwslNSl1v3hnnyFS67RxeHx2HdSCHUrsgbqtiQSLhSglFI1JG0RhWZHMSp0dykmiUkR50aziwWKskyFIYnqmBykBYZR74K8-VdadchQGS0RCRKIyVSPFaWmcKgb1iPyog27M7YmesaZdw1u7jNK3xklhMfcs-HNuw0pPcVtMZbRJszmeS1ddGMQEmZWCbiNmw302QXrtihSnv3QDQoUHj_1Ya1SpbNLpxTohK51bteZO9vn58d_PEf3_6ddAs-HV-c9fLeSf90AxaYey_hb0huwvx0_GC_wwf9OB1Oxj9qff0L56zr2w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IpuKL98u8VvHBl7o2OU1a8EXUoahDvIBvJU0yHbg63PTBX2-SdhVRQfCtJSek5FzpSb4PYFcHWSRQo09UFPioBfMFYuQzFQhuGa8QO45sgrfb8f19cjUGB6O7MAU-RPXDzXqGi9fWwXVfdZqfqKE9MdgnIeMmANfRksjUoH583bq7qLoIJps5xjzbpjSWzUfIQgFpVpO_5qNvRebXmtUlndbM_z53FqbLYtM7LKxjDsZ0Pg8T7tCnHCwAPymhvvMHT-TKszAjve67fc1MhH70ysMeXjf3enpozOXJ3mEeLMJd6-T26NQviRR8aZu8vgiVUQkVghGTEmXAtRJZwjthrCRVsSSR0aOMFSUaMxElCTJFI5ER3omzhCJdglr-nOsV8BCJmcIiIdEUUjQUmqhMoSOsR6FYA_ZG25nKEmXckl08pQU-MknNPqRuHxqwU4n2C2iNn4TWRzpJS-8yIwy5qcQSFjZguxo2fmGbHSLXz69GBhkyF78asFzoslqFUlOoBHb2nlPZ78unl4c37mH176JbMHl13EovztrnazBF7HUJd0ByHWrDl1e9AePybdgdvGyW5voBkB7rVg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+and+minimizing+batch+effects+in+metabolomics&rft.jtitle=Mass+spectrometry+reviews&rft.au=Han%2C+Wei&rft.au=Li%2C+Liang&rft.date=2022-05-01&rft.issn=1098-2787&rft.eissn=1098-2787&rft.volume=41&rft.issue=3&rft.spage=421&rft_id=info:doi/10.1002%2Fmas.21672&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-7037&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-7037&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-7037&client=summon |