Measure Identification for the Choquet Integral: A Python Module

Fuzzy integrals are common concepts which are used to aggregate input values in practical applications. Aggregation of inputs using fuzzy integrals opens up numerous possibilities for modeling interaction, redundancy, and synergy of inputs. However, fuzzy integrals need a fuzzy measure to start this...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computational intelligence systems Ročník 15; číslo 1; s. 1 - 10
Hlavní autori: Türkarslan, Ezgi, Torra, Vicenç
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 21.10.2022
Springer Nature B.V
Springer
Predmet:
ISSN:1875-6883, 1875-6891, 1875-6883
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Fuzzy integrals are common concepts which are used to aggregate input values in practical applications. Aggregation of inputs using fuzzy integrals opens up numerous possibilities for modeling interaction, redundancy, and synergy of inputs. However, fuzzy integrals need a fuzzy measure to start this aggregation process. This situation pushes us into the fuzzy measure identification process. This process becomes difficult due to the monotony condition of the fuzzy measure and the exponential increase on the number of measure parameters. There are in the literature many ways to determine fuzzy measures. One of them is learning from data. In this paper, our aim is to introduce a new fuzzy measure identification tool to learn measures from empirical data. It is a Python module which finds the measure that minimizes the difference between the computed and expected outputs of the Choquet integral. In addition, we study some properties of the learning process. In particular, we consider k -additive fuzzy measures and belief functions as well as arbitrary fuzzy measures. Using these variety of measures we examine the effect of k and noisy data on the learning process.
AbstractList Abstract Fuzzy integrals are common concepts which are used to aggregate input values in practical applications. Aggregation of inputs using fuzzy integrals opens up numerous possibilities for modeling interaction, redundancy, and synergy of inputs. However, fuzzy integrals need a fuzzy measure to start this aggregation process. This situation pushes us into the fuzzy measure identification process. This process becomes difficult due to the monotony condition of the fuzzy measure and the exponential increase on the number of measure parameters. There are in the literature many ways to determine fuzzy measures. One of them is learning from data. In this paper, our aim is to introduce a new fuzzy measure identification tool to learn measures from empirical data. It is a Python module which finds the measure that minimizes the difference between the computed and expected outputs of the Choquet integral. In addition, we study some properties of the learning process. In particular, we consider k-additive fuzzy measures and belief functions as well as arbitrary fuzzy measures. Using these variety of measures we examine the effect of k and noisy data on the learning process.
Fuzzy integrals are common concepts which are used to aggregate input values in practical applications. Aggregation of inputs using fuzzy integrals opens up numerous possibilities for modeling interaction, redundancy, and synergy of inputs. However, fuzzy integrals need a fuzzy measure to start this aggregation process. This situation pushes us into the fuzzy measure identification process. This process becomes difficult due to the monotony condition of the fuzzy measure and the exponential increase on the number of measure parameters. There are in the literature many ways to determine fuzzy measures. One of them is learning from data. In this paper, our aim is to introduce a new fuzzy measure identification tool to learn measures from empirical data. It is a Python module which finds the measure that minimizes the difference between the computed and expected outputs of the Choquet integral. In addition, we study some properties of the learning process. In particular, we consider k -additive fuzzy measures and belief functions as well as arbitrary fuzzy measures. Using these variety of measures we examine the effect of k and noisy data on the learning process.
Fuzzy integrals are common concepts which are used to aggregate input values in practical applications. Aggregation of inputs using fuzzy integrals opens up numerous possibilities for modeling interaction, redundancy, and synergy of inputs. However, fuzzy integrals need a fuzzy measure to start this aggregation process. This situation pushes us into the fuzzy measure identification process. This process becomes difficult due to the monotony condition of the fuzzy measure and the exponential increase on the number of measure parameters. There are in the literature many ways to determine fuzzy measures. One of them is learning from data. In this paper, our aim is to introduce a new fuzzy measure identification tool to learn measures from empirical data. It is a Python module which finds the measure that minimizes the difference between the computed and expected outputs of the Choquet integral. In addition, we study some properties of the learning process. In particular, we consider k-additive fuzzy measures and belief functions as well as arbitrary fuzzy measures. Using these variety of measures we examine the effect of k and noisy data on the learning process.
ArticleNumber 89
Author Torra, Vicenç
Türkarslan, Ezgi
Author_xml – sequence: 1
  givenname: Ezgi
  surname: Türkarslan
  fullname: Türkarslan, Ezgi
  email: ezgi.turkarslan@tedu.edu.tr
  organization: Department of Mathematics, Ankara University, Faculty of Science, Department of Mathematics, TED University, Faculty of Arts and Science
– sequence: 2
  givenname: Vicenç
  orcidid: 0000-0002-0368-8037
  surname: Torra
  fullname: Torra, Vicenç
  organization: Department of Computing Sciences, Umeå University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-200662$$DView record from Swedish Publication Index (Umeå universitet)
BookMark eNp9kU1P4zAQhi3ESnz-AU6ROIcdO47tcKIqsFsJxB6Aq-U4kzZViYvtqOq_x23Qslz2ZMt65vHMvCfksHc9EnJB4YoCyJ-Bc1qJHBjLASgX-eaAHFMly1woVRz-cz8i5yEsAYBRDsD5Mbl5RBMGj9mswT52bWdN7Fyftc5ncYHZdOHeB4zZrI8492Z1nU2yP9u4SMija4YVnpEfrVkFPP88T8nL_d3z9Hf-8PRrNp085JZTFfPWqNra2lBWlCiFrCjIsqpNxa1sJAMwYArFVMFMY5VCRm1V8YpaUTCUDS9OyWz0Ns4s9dp3b8ZvtTOd3j84P9fGx86uUO8-MFxg2TbARUFVWxshmbA0qWtLkysfXWGD66H-ZrvtXid72_A26NSXECzxlyO_9rtthKiXbvB9GlczJXhZMqHKRLGRst6F4LH966Wgd0HpMSidgtL7oPQmFRWfrSS4n6P_Uv-n6gMgn5Y9
Cites_doi 10.1016/j.ins.2019.04.042
10.5802/aif.53
10.1016/j.inffus.2019.10.005
10.1016/j.ins.2021.10.016
10.1109/IFIC.2000.862689
10.1007/978-3-540-72434-6
10.1007/978-3-319-03155-2
10.1017/CBO9781139644150
10.1142/S0218488519400038
10.1016/j.ejor.2005.10.059
10.1016/0377-2217(95)00176-X
10.1142/S0218488599000489
10.1016/S0165-0114(97)00168-1
10.1007/978-3-540-68791-7
10.1016/j.fss.2008.07.004
10.1016/j.fss.2017.04.011
10.1007/BF00531932
10.1016/j.cor.2005.02.034
10.1016/j.ejor.2007.02.025
ContentType Journal Article
Copyright The Author(s) 2022
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DOA
DOI 10.1007/s44196-022-00146-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1875-6883
EndPage 10
ExternalDocumentID oai_doaj_org_article_5e76a46e5fd046318fba6726c1dc8bc1
oai_DiVA_org_umu_200662
10_1007_s44196_022_00146_w
GrantInformation_xml – fundername: Knut och Alice Wallenbergs Stiftelse
  grantid: WASP
  funderid: http://dx.doi.org/10.13039/501100004063
– fundername: Scientific and Technological Research Council of Turkey (TUBITAK)
  grantid: 2214 Doctoral Research Grant 1059B142100223
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
AENEX
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
HCIFZ
HZ~
J~4
K7-
O9-
OK1
PIMPY
RSV
SOJ
TFW
TR2
AASML
AAYXX
AFFHD
CCPQU
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
ADHXS
ADMSI
ADTPV
AHDSZ
AOWAS
AQTUD
D8T
D93
H13
IL9
IPNFZ
M4Z
RIG
TDBHL
TFL
ZZAVC
ID FETCH-LOGICAL-c418t-fa8bccba1235e767910759ba94c7d7200a0a382832adc88e21c99491c632e7d43
IEDL.DBID K7-
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871046700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1875-6883
1875-6891
IngestDate Fri Oct 03 12:51:04 EDT 2025
Tue Nov 04 16:58:10 EST 2025
Tue Oct 21 12:46:27 EDT 2025
Sat Nov 29 02:36:53 EST 2025
Fri Feb 21 02:47:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Belief functions
additive fuzzy measure
Möbius transform
Fuzzy measure identification
Python
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-fa8bccba1235e767910759ba94c7d7200a0a382832adc88e21c99491c632e7d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0368-8037
OpenAccessLink https://link.springer.com/10.1007/s44196-022-00146-w
PQID 2864552685
PQPubID 4869256
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_5e76a46e5fd046318fba6726c1dc8bc1
swepub_primary_oai_DiVA_org_umu_200662
proquest_journals_2864552685
crossref_primary_10_1007_s44196_022_00146_w
springer_journals_10_1007_s44196_022_00146_w
PublicationCentury 2000
PublicationDate 2022-10-21
PublicationDateYYYYMMDD 2022-10-21
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-21
  day: 21
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References Grabisch, M.: New algorithm for identifying fuzzy measures and its application to pattern recognition. IEEE International Conference on Fuzzy Systems (1995)
JavierMSergeGPilarBk-maxitive fuzzy measures: A scalable approach to model interactionsFuzzy Sets and Systems20173243348368550010.1016/j.fss.2017.04.0111382.28021
GrabischMk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-order additive discrete fuzzy measures and their representationFuzzy Sets and Systems199792167189148641710.1016/S0165-0114(97)00168-10927.28014
DimuroPGFernandezJBedregalBMesiarRSanzJALuccaGBustinceHThe state-of-art of the generalizations of the choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functionsInf. Sci.202057274310.1016/j.inffus.2019.10.005
Marco-DetchartCLuccaGLopez-MolinaCDe MiguelLDimuroPGBustinceHNeuro-inspired edge feature fusion using choquet integralsInf. Sci.202158174075410.1016/j.ins.2021.10.016
Torra, V., Narukawa, Y., Sugeno, M.: Non-Additive Measures, Theory and Applications, Studies in Fuzziness and Soft Computing. Springer, Berlin (2013). https://doi.org/10.1007/978-3-319-03155-2
ChoquetGTheory of capacitiesAnnales de L’Institut Fourier195451312958076010.5802/aif.530064.35101
BeliakovGWuJZLearning fuzzy measures from data: Simplifications and optimisation strategiesInformation Sciences201949410011310.1016/j.ins.2019.04.0421451.68221
http://www.mdai.cat/ifao
MesiarRGeneralizations of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-order additive discrete fuzzy measuresFuzzy Sets and Systems1999102423428167690910.1142/S02184885990004890936.28014
Saleh, E., Valls, A., Moreno, A., Romero-Aroca, P., Bustince, H., Torra, V.: A hierarchically ⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\perp $$\end{document}-decomposable fuzzy measure-based approach for fuzzy rules aggregation. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 27, 59–76 (2019). https://doi.org/10.1142/S0218488519400038
KojadinovicIMinimum variance capacity identificationEuropean Journal of Operational Research2007177498514227862910.1016/j.ejor.2005.10.0591111.90055
Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-68791-7
Rota, G.C.: On the foundations of combinatorial theory. i. the theory of möbius functions. Z. Wahrscheinlichkeitstheorie verw Gebiete 2, 340–368 (1964). https://doi.org/10.1007/BF00531932
Sugeno, M.: Theory of Fuzzy Integrals and Its Applications. Tokyo Institute of Technology,, Ph.D. Thesis (1974)
Torra, V.: On a family of fuzzy measures for data fusion with reduced complexity. Proc. 3rd Int. Conf on Information Fusion, TuCa17-23 (2000). https://doi.org/10.1109/IFIC.2000.862689
BeliakovGConstruction of aggregation functions from data using linear programmingFuzzy Sets and Systems20091606575246943210.1016/j.fss.2008.07.0041183.62006
GrabischMKojadinovicIMeyerPA review of methods for capacity identification in choquet integral based multi-attribute utility theory: Applications of the kappalab r packageEuropean Journal of Operational Research2008186766785236371810.1016/j.ejor.2007.02.0251138.90407
Grabisch, M., Kojadinovic, I., Meyer, P.: Non-Additive Measure and Integral Manipulation Functions, (kappalab package in R). https://CRAN.R-project.org/package=kappalab (2015)
Imai, D. H. Asano, Sato, Y.:An algorithm based on alternative projections for a fuzzy measure identification problem. In:Torra, V. (ed.) Information Fusion in Data Mining. Studies in Fuzziness and Soft Computing, pp. 149–158. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/978-3-540-72434-6
Grabisch, M., Marichal, J.L., Mesiar, R.: Aggregation Functions, Encyclopedia of Mathematics and Its Applications. Cambridge University Pres, ??? (2009). https://doi.org/10.1017/CBO9781139644150
GrabischMThe application of fuzzy integrals in multi criteria decision makingEuropean Journal of Operational Research19968944545610.1016/0377-2217(95)00176-X0916.90164
CombarroEFIdentification of fuzzy measures from sample data with genetic algorithmsComputers & Operations Research2006333046306610.1016/j.cor.2005.02.0341086.90069
G Beliakov (146_CR9) 2019; 494
146_CR13
146_CR23
M Javier (146_CR8) 2017; 324
146_CR15
146_CR1
146_CR2
PG Dimuro (146_CR3) 2020; 57
C Marco-Detchart (146_CR6) 2021; 581
146_CR22
146_CR10
146_CR21
146_CR5
M Grabisch (146_CR14) 2008; 186
G Beliakov (146_CR7) 2009; 160
EF Combarro (146_CR12) 2006; 33
I Kojadinovic (146_CR11) 2007; 177
146_CR4
M Grabisch (146_CR19) 1997; 92
G Choquet (146_CR20) 1954; 5
R Mesiar (146_CR18) 1999; 102
M Grabisch (146_CR17) 1996; 89
146_CR16
References_xml – reference: Marco-DetchartCLuccaGLopez-MolinaCDe MiguelLDimuroPGBustinceHNeuro-inspired edge feature fusion using choquet integralsInf. Sci.202158174075410.1016/j.ins.2021.10.016
– reference: ChoquetGTheory of capacitiesAnnales de L’Institut Fourier195451312958076010.5802/aif.530064.35101
– reference: JavierMSergeGPilarBk-maxitive fuzzy measures: A scalable approach to model interactionsFuzzy Sets and Systems20173243348368550010.1016/j.fss.2017.04.0111382.28021
– reference: GrabischMk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-order additive discrete fuzzy measures and their representationFuzzy Sets and Systems199792167189148641710.1016/S0165-0114(97)00168-10927.28014
– reference: Grabisch, M., Kojadinovic, I., Meyer, P.: Non-Additive Measure and Integral Manipulation Functions, (kappalab package in R). https://CRAN.R-project.org/package=kappalab (2015)
– reference: BeliakovGConstruction of aggregation functions from data using linear programmingFuzzy Sets and Systems20091606575246943210.1016/j.fss.2008.07.0041183.62006
– reference: DimuroPGFernandezJBedregalBMesiarRSanzJALuccaGBustinceHThe state-of-art of the generalizations of the choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functionsInf. Sci.202057274310.1016/j.inffus.2019.10.005
– reference: Torra, V.: On a family of fuzzy measures for data fusion with reduced complexity. Proc. 3rd Int. Conf on Information Fusion, TuCa17-23 (2000). https://doi.org/10.1109/IFIC.2000.862689
– reference: Imai, D. H. Asano, Sato, Y.:An algorithm based on alternative projections for a fuzzy measure identification problem. In:Torra, V. (ed.) Information Fusion in Data Mining. Studies in Fuzziness and Soft Computing, pp. 149–158. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/978-3-540-72434-6
– reference: Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-68791-7
– reference: Sugeno, M.: Theory of Fuzzy Integrals and Its Applications. Tokyo Institute of Technology,, Ph.D. Thesis (1974)
– reference: KojadinovicIMinimum variance capacity identificationEuropean Journal of Operational Research2007177498514227862910.1016/j.ejor.2005.10.0591111.90055
– reference: Saleh, E., Valls, A., Moreno, A., Romero-Aroca, P., Bustince, H., Torra, V.: A hierarchically ⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\perp $$\end{document}-decomposable fuzzy measure-based approach for fuzzy rules aggregation. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 27, 59–76 (2019). https://doi.org/10.1142/S0218488519400038
– reference: CombarroEFIdentification of fuzzy measures from sample data with genetic algorithmsComputers & Operations Research2006333046306610.1016/j.cor.2005.02.0341086.90069
– reference: BeliakovGWuJZLearning fuzzy measures from data: Simplifications and optimisation strategiesInformation Sciences201949410011310.1016/j.ins.2019.04.0421451.68221
– reference: Grabisch, M.: New algorithm for identifying fuzzy measures and its application to pattern recognition. IEEE International Conference on Fuzzy Systems (1995)
– reference: Grabisch, M., Marichal, J.L., Mesiar, R.: Aggregation Functions, Encyclopedia of Mathematics and Its Applications. Cambridge University Pres, ??? (2009). https://doi.org/10.1017/CBO9781139644150
– reference: Rota, G.C.: On the foundations of combinatorial theory. i. the theory of möbius functions. Z. Wahrscheinlichkeitstheorie verw Gebiete 2, 340–368 (1964). https://doi.org/10.1007/BF00531932
– reference: GrabischMThe application of fuzzy integrals in multi criteria decision makingEuropean Journal of Operational Research19968944545610.1016/0377-2217(95)00176-X0916.90164
– reference: GrabischMKojadinovicIMeyerPA review of methods for capacity identification in choquet integral based multi-attribute utility theory: Applications of the kappalab r packageEuropean Journal of Operational Research2008186766785236371810.1016/j.ejor.2007.02.0251138.90407
– reference: http://www.mdai.cat/ifao/
– reference: Torra, V., Narukawa, Y., Sugeno, M.: Non-Additive Measures, Theory and Applications, Studies in Fuzziness and Soft Computing. Springer, Berlin (2013). https://doi.org/10.1007/978-3-319-03155-2
– reference: MesiarRGeneralizations of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-order additive discrete fuzzy measuresFuzzy Sets and Systems1999102423428167690910.1142/S02184885990004890936.28014
– volume: 494
  start-page: 100
  year: 2019
  ident: 146_CR9
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.04.042
– ident: 146_CR10
– volume: 5
  start-page: 131
  year: 1954
  ident: 146_CR20
  publication-title: Annales de L’Institut Fourier
  doi: 10.5802/aif.53
– volume: 57
  start-page: 27
  year: 2020
  ident: 146_CR3
  publication-title: Inf. Sci.
  doi: 10.1016/j.inffus.2019.10.005
– volume: 581
  start-page: 740
  year: 2021
  ident: 146_CR6
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.10.016
– ident: 146_CR1
– ident: 146_CR4
  doi: 10.1109/IFIC.2000.862689
– ident: 146_CR21
  doi: 10.1007/978-3-540-72434-6
– ident: 146_CR2
  doi: 10.1007/978-3-319-03155-2
– ident: 146_CR13
  doi: 10.1017/CBO9781139644150
– ident: 146_CR5
  doi: 10.1142/S0218488519400038
– ident: 146_CR23
– volume: 177
  start-page: 498
  year: 2007
  ident: 146_CR11
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.10.059
– volume: 89
  start-page: 445
  year: 1996
  ident: 146_CR17
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(95)00176-X
– volume: 102
  start-page: 423
  year: 1999
  ident: 146_CR18
  publication-title: Fuzzy Sets and Systems
  doi: 10.1142/S0218488599000489
– volume: 92
  start-page: 167
  year: 1997
  ident: 146_CR19
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(97)00168-1
– ident: 146_CR15
– ident: 146_CR22
  doi: 10.1007/978-3-540-68791-7
– volume: 160
  start-page: 65
  year: 2009
  ident: 146_CR7
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2008.07.004
– volume: 324
  start-page: 33
  year: 2017
  ident: 146_CR8
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2017.04.011
– ident: 146_CR16
  doi: 10.1007/BF00531932
– volume: 33
  start-page: 3046
  year: 2006
  ident: 146_CR12
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2005.02.034
– volume: 186
  start-page: 766
  year: 2008
  ident: 146_CR14
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.02.025
SSID ssj0002140044
ssib050732782
Score 2.295614
Snippet Fuzzy integrals are common concepts which are used to aggregate input values in practical applications. Aggregation of inputs using fuzzy integrals opens up...
Abstract Fuzzy integrals are common concepts which are used to aggregate input values in practical applications. Aggregation of inputs using fuzzy integrals...
SourceID doaj
swepub
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Artificial Intelligence
Belief functions
Computational Intelligence
Control
Engineering
Fuzzy measure identification
Integrals
k-additive fuzzy measure
Learning
Mathematical Logic and Foundations
Mechatronics
Modules
Monotony
Möbius transform
Python
Redundancy
Research Article
Robotics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1EoyANigYjacfxgohQqGIoYALFZfkVUKi1qGyr-PbaTFsoAC2sSKafvO-fuHN93ABwRhx3GnoFMpyQhyqSJRr5KEdQoRS1nzuZx2AS7u-PPz-L-26ivcCaslAcugTvLHKOKUJflNohbIZ5rRRmmBlnDtYmFj896vhVT4RuMUfBNUnXJxF45H_fjeVuchLKAJtOFSBQF-xeyzPmP0R8iojHwdNbBapUxwlZp6QZYcoNNsDabxgCrxbkFLrrldh8se2_zajMO-qwU-iwPtl_COyfwthSI6J_DFrz_CNIBsDu0Rd9tg8fO9UP7JqnmIySGID5JcuUBMFqFdlePEvORn2VCK0EMs8y7v2qqlIdZRMpjxR1GRggikKEpdsySdAfUBsOB2wWQmabJuELC4pRolPFUYydSp2mTIGd5HZzMsJJvpQyGnAseR2SlR1ZGZOW0Di4DnPMng4R1vOCJlRWx8i9i66AxI0NW62osMackCwo1WR2czgj6uv2bSccliQtGXfWeWtGo4rWQ8TcU3vsP2_fBCg6e5mMcRg1Qm4wKdwCWzfukNx4dRlf9BK3w6pQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7R0EM5NECLCKXIB8SlXSn2ev3oqWlaBAcQB6i4WX4tRIIE5VHUf4_t9aZNVVUq133p0zw8sx7PNwCH1BNPSNBAZUpaUG3LwuDwlyKZ1Zo5wb2r07AJfn4urq_lRW4Km7Wn3duSZFqpl81uIXCnA7OkiHk9Kx5fwHqFhYx2Pcw9DnH9JTjaJc0dMn9_dSUKJbL-lQxzWRT9g0A0BZ3j7vPgbsLrnGSiQWMVW7Dmx9vQbQc4oOzP27DxGxvhG_h81uwXoqZ5t867eSiktSikiWh4G4HP0WnDMHH3CQ3Qxc_IPYDOJm5x59_C1fG3y-FJkQcsFJZiMS9qLYy1Rsd-Wc8ZD6kDr6TRklruePAf3deliMOMtLNCeIKtlFRiy0riuaPlDnTGk7HfBcRt31ZCY-lISQ2uRGmIl6U3rE-xd6IHH1qBq4eGR0MtGZOTqFQQlUqiUo89-BJ1snwycmCnC5PpjcoupSJkTZmvahdpz7CojWacMIsDWGNxD_ZbjarsmDNFBKNVpLipevCxVdyv2_-CdNRYwgqor6PvgwRqcb9QqY5F9v7vu-_gFYlGEsIhwfvQmU8X_j28tD_mo9n0IFn2Eycg8t8
  priority: 102
  providerName: Springer Nature
Title Measure Identification for the Choquet Integral: A Python Module
URI https://link.springer.com/article/10.1007/s44196-022-00146-w
https://www.proquest.com/docview/2864552685
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-200662
https://doaj.org/article/5e76a46e5fd046318fba6726c1dc8bc1
Volume 15
WOSCitedRecordID wos000871046700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050732782
  issn: 1875-6891
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: K7-
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: C24
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RlgMXWl4iUCIfEBewiL1eP7iUNLQCoUYRAtSb5deWSiUpeVDx72t7vanSQy9cd1fy7H5j-9sZzzcAr1mggdKIQG0rhplxFbYk_qUo7ozhXorgm9xsQozH8vRUTUrAbVGOVXZrYl6o_cylGPl7KjmrkzZJfXD5B6euUSm7WlpobMEOoZQkP_8qcOdPkepUtFNrTyszJcljc6I50nTMpSKljiZX00VmkE_kUpx-HDi-2tirsqT_Bg9dp05vyYzmrel4939fag8eFlKKhq0XPYJ7YfoYdruGD6jM_yfw8aSNKKK2vLcp8T4UiS-KRBKNfqXRl-hLq0Fx8QEN0eRfUidAJzO_ughP4cfx0ffRZ1xaMGDHiFzixkjrnDWpojYILiK5ELWyRjEnvIgzzAxMJVO7I-OdlIESpxRTxPGKBuFZ9Qy2p7NpeA5IuIGrpSHK04pZUsvK0qCqYPmAkeBlD952H1tftkobeq2pnKHRERqdodFXPThMeKyfTCrZ-cJsfqbLpNPJZMN4qBufhNGIbKzhgnJHorHWkR7sd7DoMnUX-gaTHrzrEL65fZdJb1ov2DDq0_nPYTZq9Xulc6aLvrh72JfwgCYnjBskJfuwvZyvwiu47_4uzxfzPuwcHo0n3_qwNaKsn0MI_ez111k1AOc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qLRJcKKsIFPABuMCIeBkvSAjSTY3aRBEqqDfjLVCpJCULUf8UvxHbM5MqHHrrgevMaOZ5_L3N9vsewEsWSCAkzkBpKSuYcbSwOGYpijtjuJci-GFuNiH6fXlyogZr8KephUnHKhubmA21H7u0Rv6OSM7KxE1Sfjz_VaSuUWl3tWmhUcHiMFwsYso2_dDdjfP7ipD9veOdg6LuKlA4huWsGBppnbMmFYkGwUX0l6JU1ijmhBcRNKZtqEwdfIx3UgaCnVJMYccpCcIzGt97AzYYZSLq1cb2Xn_wuUFwDK4oafjhky8gOOlI3tqOiUHBpcJ15U6u34uxSD4DTIqUqvBiseIdcxOBlch3uVn7D7Fpdob7m__bb7wLd-qwG3UqPbkHa2F0HzablhaotnAP4FOvWjNFVQHzsF7RRDG0RzFURjs_0mhnqFuxbJy9Rx00uEj8C6g39vOz8BC-XMs4HsH6aDwKjwEJ13alNFh5QpnFpaSWBEWD5W2Gg5cteNNMrj6vuET0kjU6Q0FHKOgMBb1owXaa_-WTiQc8XxhPvuvarOgksmE8lEOfqN-wHFrDBeEOR2Gtwy3YamCga-M01ZcYaMHbBlGXt68S6XWFuhWhdk-_drJQ859znffyyJOrP_sCbh0c9470Ubd_-BRuk6QAMRwgeAvWZ5N5eAY33e_Z6XTyvNYvBN-uG4t_AUitWqo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK4IGiMHUMC4gNgHw0UmbPf09IOT6-IGomz2gIZbp1-jJLhLllkI_57unpmVNcbEcJ1XauoxVdPV31cA76knnpBggcLkNKPa5pnB4S9FMqs1c4J7V6ZhE3w4FOfncvQAxZ92u7ctyRrTEFmaxtXBlSsP5sC3kMTT5lmSxRqfZbdL8DR2pOLvV7_BO8RvMcHRR2mDlvn7rQsZKRH3L1Sb8wbpH2SiKQEN1h4v-ktYbYpP1Ku95RU88eN1WGsHO6Amztdh5QFL4QZ8PK3XEVEN6i2bVT4Uyl0UykfU_xlfokInNfPE5SHqodFd5CRApxM3u_Sb8G3w-ax_nDWDFzJLsaiyUgtjrdERR-s546Gk4IU0WlLLHQ9xpbs6F3HIkXZWCE-wlZJKbFlOPHc0fw3L48nYvwHEbdcWQmPpSE4NLkRuiJe5N6xLsXeiAx9a5aurml9DzZmUk6pUUJVKqlK3HfgU7TO_MnJjpwOT6Q_VhJqKImvKfFG6SIeGRWk044RZHIQ1Fndgp7WuagL2WhHBaBGpb4oO7LdG_H36XyLt1V6xINTRxfdeEmr2a6ZSf4ts_d9z38Hz0dFAfT0ZftmGFyT6S8iYBO_AcjWd-bfwzN5UF9fT3eTw9z3T_qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measure+Identification+for+the+Choquet+Integral%3A+A+Python+Module&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=T%C3%BCrkarslan%2C+Ezgi&rft.au=Torra%2C+Vicen%C3%A7&rft.date=2022-10-21&rft.pub=Springer+Nature+B.V&rft.issn=1875-6891&rft.eissn=1875-6883&rft.volume=15&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1007%2Fs44196-022-00146-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon