Varstrometry for Off-nucleus and Dual Sub-Kpc AGN (VODKA): Long-slit Optical Spectroscopic Follow-up with Gemini/GMOS and Hubble Space Telescope/STIS
High spatial and spectral resolution observations are essential for identifying subarcsecond dual and lensed quasars and confirming their redshifts. We present Gemini/Gemini Multi-Object Spectrograph and Hubble Space Telescope/STIS optical spectra for 27 dual quasar candidates selected based on thei...
Gespeichert in:
| Veröffentlicht in: | The Astrophysical journal Jg. 988; H. 1; S. 126 - 136 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
The American Astronomical Society
20.07.2025
IOP Publishing |
| Schlagworte: | |
| ISSN: | 0004-637X, 1538-4357 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | High spatial and spectral resolution observations are essential for identifying subarcsecond dual and lensed quasars and confirming their redshifts. We present Gemini/Gemini Multi-Object Spectrograph and Hubble Space Telescope/STIS optical spectra for 27 dual quasar candidates selected based on their variability-induced astrometric noise or double detections in Gaia (the Varstrometry for Off-nucleus and Dual sub-Kpc AGN (VODKA) project). From this follow-up, we spectroscopically identify 11 star superpositions and seven dual/lensed quasars. Among the remaining targets, two are likely dual/lensed quasars based on additional radio imaging, while the rest are quasars with unknown companions. Without prior photometric or spectroscopic selection, we find the star contamination rate to be 41%–67%, while the dual/lensed quasar fraction is ≳26% in the follow-up VODKA sample. However, when combined with existing unresolved spectra and spatially resolved two-band color cuts, the dual/lensed quasar fraction can be increased to ≳67%. Our study highlights the need for high-quality spectral data, including a signal-to-noise ratio of at least 20, spatial resolution that is at least twice finer than the source separation, and a spectral resolution of R ≳ 1000, in order to separate close sources, exclude stellar superpositions, and reliably identify dual quasars. |
|---|---|
| Bibliographie: | Galaxies and Cosmology AAS58366 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0004-637X 1538-4357 |
| DOI: | 10.3847/1538-4357/ade23b |