The generalized odd log-logistic family of distributions: properties, regression models and applications

We propose a new class of continuous distributions with two extra shape parameters named the generalized odd log-logistic family of distributions. The proposed family contains as special cases the proportional reversed hazard rate and odd log-logistic classes. Its density function can be expressed a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical computation and simulation Ročník 87; číslo 5; s. 908 - 932
Hlavní autoři: Cordeiro, Gauss Moutinho, Alizadeh, Morad, Ozel, Gamze, Hosseini, Bistoon, Ortega, Edwin Moises Marcos, Altun, Emrah
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 24.03.2017
Taylor & Francis Ltd
Témata:
ISSN:0094-9655, 1563-5163
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose a new class of continuous distributions with two extra shape parameters named the generalized odd log-logistic family of distributions. The proposed family contains as special cases the proportional reversed hazard rate and odd log-logistic classes. Its density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. Some of its mathematical properties including ordinary moments, quantile and generating functions, two entropy measures and order statistics are obtained. We derive a power series for the quantile function. We discuss the method of maximum likelihood to estimate the model parameters. We study the behaviour of the estimators by means of Monte Carlo simulations. We introduce the log-odd log-logistic Weibull regression model with censored data based on the odd log-logistic-Weibull distribution. The importance of the new family is illustrated using three real data sets. These applications indicate that this family can provide better fits than other well-known classes of distributions. The beauty and importance of the proposed family lies in its ability to model different types of real data.
AbstractList We propose a new class of continuous distributions with two extra shape parameters named the generalized odd log-logistic family of distributions. The proposed family contains as special cases the proportional reversed hazard rate and odd log-logistic classes. Its density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. Some of its mathematical properties including ordinary moments, quantile and generating functions, two entropy measures and order statistics are obtained. We derive a power series for the quantile function. We discuss the method of maximum likelihood to estimate the model parameters. We study the behaviour of the estimators by means of Monte Carlo simulations. We introduce the log-odd log-logistic Weibull regression model with censored data based on the odd log-logistic-Weibull distribution. The importance of the new family is illustrated using three real data sets. These applications indicate that this family can provide better fits than other well-known classes of distributions. The beauty and importance of the proposed family lies in its ability to model different types of real data.
Author Alizadeh, Morad
Altun, Emrah
Hosseini, Bistoon
Ortega, Edwin Moises Marcos
Ozel, Gamze
Cordeiro, Gauss Moutinho
Author_xml – sequence: 1
  givenname: Gauss Moutinho
  surname: Cordeiro
  fullname: Cordeiro, Gauss Moutinho
  organization: Departamento de Estatística, Universidade Federal de Pernambuco
– sequence: 2
  givenname: Morad
  surname: Alizadeh
  fullname: Alizadeh, Morad
  organization: Department of Statistics, Persian Gulf University
– sequence: 3
  givenname: Gamze
  surname: Ozel
  fullname: Ozel, Gamze
  email: gamzeozl@hacettepe.edu.tr
  organization: Department of Statistics, Hacettepe University
– sequence: 4
  givenname: Bistoon
  surname: Hosseini
  fullname: Hosseini, Bistoon
  organization: Department of Statistics, Persian Gulf University
– sequence: 5
  givenname: Edwin Moises Marcos
  surname: Ortega
  fullname: Ortega, Edwin Moises Marcos
  organization: Departamento de Ciências Exatas, ESALQ-USP, Universidade de São Paulo
– sequence: 6
  givenname: Emrah
  surname: Altun
  fullname: Altun, Emrah
  organization: Department of Statistics, Hacettepe University
BookMark eNqFkU1vFDEMhiNUJLalPwEpEhcOzJKPmWwGLqAKWqRKXNpz5Ek821SZZEhmhba_vtluufQAB8uS_byW7feUnMQUkZB3nK050-wTY33bq65bC8bVmgupmdavyIp3SjYdV_KErA5Mc4DekNNS7hljnHdiRe5u7pBuMWKG4B_Q0eQcDWnb1PBl8ZaOMPmwp2mkrhayH3aLT7F8pnNOM-bFY_lIM24zllIbdEoOQ6EQHYV5Dt7CE_-WvB4hFDx_zmfk9sf3m4ur5vrX5c-Lb9eNbbleGrRu1B23gjmUg9CsE1JaqRxslBqQb6BVw6YHDUM7om2ZRTVIh8wBV1xqeUY-HOfW9X7vsCxm8sViCBAx7YrhPWuF7HshKvr-BXqfdjnW7QzXqv5SCLGp1JcjZXMqJeNorF-ebloy-GA4MwcXzF8XzMEF8-xCVXcv1HP2E-T9f3Vfjzofx5Qn-JNycGaBfUh5zBCtL0b-e8QjJjGh7Q
CitedBy_id crossref_primary_10_3390_sym14061222
crossref_primary_10_1080_03610918_2023_2277658
crossref_primary_10_1007_s40305_021_00349_6
crossref_primary_10_18187_pjsor_v16i1_3112
crossref_primary_10_1007_s40745_019_00203_w
crossref_primary_10_1186_s40488_018_0085_8
crossref_primary_10_1111_anzs_12359
crossref_primary_10_1080_03610918_2019_1636995
crossref_primary_10_1007_s10651_020_00453_5
crossref_primary_10_1080_03610926_2022_2042561
crossref_primary_10_3390_e21121177
crossref_primary_10_1007_s40995_018_0524_x
crossref_primary_10_1080_03610918_2023_2296857
crossref_primary_10_3390_math7100985
crossref_primary_10_1007_s11009_023_10039_w
crossref_primary_10_1088_1402_4896_ad77fa
crossref_primary_10_1155_2022_1444859
crossref_primary_10_1016_j_heliyon_2024_e35851
crossref_primary_10_1016_j_jrras_2025_101836
crossref_primary_10_15446_rce_v42n1_66205
crossref_primary_10_3390_math9161837
crossref_primary_10_3390_su14148942
crossref_primary_10_1007_s40745_018_00190_4
crossref_primary_10_1016_j_ress_2024_110291
crossref_primary_10_1080_03610926_2025_2538538
crossref_primary_10_1080_03610926_2024_2371487
crossref_primary_10_1186_s40488_017_0079_y
crossref_primary_10_1515_eqc_2017_0004
crossref_primary_10_1080_02664763_2022_2163229
crossref_primary_10_3390_axioms12040379
crossref_primary_10_1155_2022_6600278
crossref_primary_10_15446_rce_v47n2_112929
crossref_primary_10_61186_jss_19_1_6
crossref_primary_10_1016_j_kjs_2025_100385
crossref_primary_10_1371_journal_pone_0246969
crossref_primary_10_1002_eng2_70242
crossref_primary_10_1080_03610926_2022_2117987
crossref_primary_10_3390_stats1010004
crossref_primary_10_3390_math8020264
crossref_primary_10_3390_math12213386
crossref_primary_10_1007_s40745_019_00200_z
crossref_primary_10_4236_jmf_2021_114036
crossref_primary_10_1063_5_0192518
crossref_primary_10_18187_pjsor_v18i1_3930
crossref_primary_10_1080_02331888_2024_2341792
crossref_primary_10_32604_cmes_2021_012169
crossref_primary_10_18187_pjsor_v17i4_3471
crossref_primary_10_1016_j_sciaf_2025_e02927
crossref_primary_10_1109_ACCESS_2023_3287926
crossref_primary_10_18187_pjsor_v16i2_3298
crossref_primary_10_3390_math11092179
crossref_primary_10_1080_00949655_2017_1406938
crossref_primary_10_1155_2022_6040943
crossref_primary_10_1155_2021_5461130
crossref_primary_10_1007_s40745_020_00288_8
crossref_primary_10_3390_mca30010004
crossref_primary_10_1109_ACCESS_2025_3561150
crossref_primary_10_1016_j_apm_2020_12_003
crossref_primary_10_3390_axioms11080399
crossref_primary_10_1080_02664763_2023_2230533
crossref_primary_10_3390_math11030507
crossref_primary_10_1080_03610926_2020_1795681
crossref_primary_10_1088_1402_4896_ad8b73
crossref_primary_10_1155_2020_9136513
crossref_primary_10_1155_2022_1910909
crossref_primary_10_15446_rce_v44n2_89320
crossref_primary_10_3390_e23040446
crossref_primary_10_3233_MAS_221419
crossref_primary_10_3390_e27020125
crossref_primary_10_1080_02664763_2021_1922994
crossref_primary_10_1016_j_sciaf_2025_e02892
crossref_primary_10_1016_j_ress_2018_03_034
crossref_primary_10_1080_02664763_2021_1973385
crossref_primary_10_1080_03610918_2022_2112601
Cites_doi 10.1016/j.csda.2011.11.015
10.18187/pjsor.v8i3.510
10.1109/TR.1987.5222310
10.1016/j.amc.2014.09.004
10.1093/biomet/84.3.641
10.1016/j.jspi.2007.03.029
10.1155/2014/864396
10.1007/s40300-013-0007-y
10.1080/00949655.2015.1071376
10.1081/STA-120003130
10.1080/00224065.1995.11979578
10.1080/00949650903530745
10.1007/s10985-010-9161-1
10.1002/j.1538-7305.1951.tb01366.x
10.1016/j.jfranklin.2012.01.006
10.1109/24.229504
10.1080/02331888.2012.748769
10.1002/env.739
10.1080/00401706.1995.10484376
10.6339/JDS.201401_12(1).0004
10.1177/0008068320070103
10.1007/s00362-012-0466-x
10.1007/s10440-006-9055-0
10.1016/j.csda.2009.10.014
ContentType Journal Article
Copyright 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
2016 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
– notice: 2016 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2016.1238088
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 932
ExternalDocumentID 4305175081
10_1080_00949655_2016_1238088
1238088
Genre Article
Feature
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c418t-ecdf851c20de3b2805233c36da766be17a46b79a8ab4fec40ce6b3de0da161383
IEDL.DBID TFW
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399502100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-9655
IngestDate Sun Sep 28 08:24:56 EDT 2025
Sun Nov 09 06:55:54 EST 2025
Sat Nov 29 06:27:54 EST 2025
Tue Nov 18 22:36:06 EST 2025
Mon Oct 20 23:47:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-ecdf851c20de3b2805233c36da766be17a46b79a8ab4fec40ce6b3de0da161383
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1080/00949655.2016.1238088
PQID 1860162227
PQPubID 53118
PageCount 25
ParticipantIDs crossref_citationtrail_10_1080_00949655_2016_1238088
crossref_primary_10_1080_00949655_2016_1238088
proquest_miscellaneous_1904239922
proquest_journals_1860162227
informaworld_taylorfrancis_310_1080_00949655_2016_1238088
PublicationCentury 2000
PublicationDate 2017-03-24
PublicationDateYYYYMMDD 2017-03-24
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-24
  day: 24
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Chen G (CIT0019) 1995; 27
CIT0030
Lawless JF (CIT0021) 2003
Gleaton JU (CIT0010) 2006; 4
Nelson WB (CIT0031) 2004
CIT0012
CIT0011
Bourguignon M (CIT0006) 2014; 12
CIT0014
CIT0013
Rényi A (CIT0017) 1961
CIT0016
CIT0018
Gradshteyn IS (CIT0015) 2007
CIT0001
CIT0023
Doornik J (CIT0020) 2007
CIT0022
Tahir MH (CIT0008) 2014
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0028
CIT0009
References_xml – ident: CIT0004
  doi: 10.1016/j.csda.2011.11.015
– ident: CIT0026
  doi: 10.18187/pjsor.v8i3.510
– ident: CIT0029
  doi: 10.1109/TR.1987.5222310
– ident: CIT0009
  doi: 10.1016/j.amc.2014.09.004
– ident: CIT0001
  doi: 10.1093/biomet/84.3.641
– ident: CIT0011
  doi: 10.1016/j.jspi.2007.03.029
– ident: CIT0007
  doi: 10.1155/2014/864396
– ident: CIT0005
  doi: 10.1007/s40300-013-0007-y
– ident: CIT0025
  doi: 10.1080/00949655.2015.1071376
– ident: CIT0002
  doi: 10.1081/STA-120003130
– volume: 27
  start-page: 154
  year: 1995
  ident: CIT0019
  publication-title: J. Qual. Technol
  doi: 10.1080/00224065.1995.11979578
– ident: CIT0003
  doi: 10.1080/00949650903530745
– volume-title: Accelerated testing: statistical models, test plans, and data analysis
  year: 2004
  ident: CIT0031
– ident: CIT0030
  doi: 10.1007/s10985-010-9161-1
– ident: CIT0018
  doi: 10.1002/j.1538-7305.1951.tb01366.x
– ident: CIT0028
  doi: 10.1016/j.jfranklin.2012.01.006
– year: 2014
  ident: CIT0008
  publication-title: Commun Stat – Theory Methods
– ident: CIT0012
  doi: 10.1109/24.229504
– ident: CIT0027
  doi: 10.1080/02331888.2012.748769
– ident: CIT0013
  doi: 10.1002/env.739
– ident: CIT0022
  doi: 10.1080/00401706.1995.10484376
– volume: 12
  start-page: 53
  year: 2014
  ident: CIT0006
  publication-title: J Data Sci
  doi: 10.6339/JDS.201401_12(1).0004
– volume-title: Table of integrals, series, and products
  year: 2007
  ident: CIT0015
– ident: CIT0014
  doi: 10.1177/0008068320070103
– ident: CIT0024
  doi: 10.1007/s00362-012-0466-x
– volume: 4
  start-page: 51
  year: 2006
  ident: CIT0010
  publication-title: J Probab Statist Sci
– ident: CIT0016
  doi: 10.1007/s10440-006-9055-0
– ident: CIT0023
  doi: 10.1016/j.csda.2009.10.014
– start-page: 547
  volume-title: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability
  year: 1961
  ident: CIT0017
– volume-title: Ox 5: object-oriented matrix programming language
  year: 2007
  ident: CIT0020
– volume-title: Statistical models and methods for lifetime data
  year: 2003
  ident: CIT0021
SSID ssj0001152
Score 2.4599097
Snippet We propose a new class of continuous distributions with two extra shape parameters named the generalized odd log-logistic family of distributions. The proposed...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 908
SubjectTerms Computer simulation
Density
Entropy
Generated family
Logistics
Mathematical analysis
Mathematical models
maximum likelihood
moment
odd log-logistic
order statistic
Parameters
quantile function
Quantiles
Regression
Regression analysis
Rényi entropy
Title The generalized odd log-logistic family of distributions: properties, regression models and applications
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2016.1238088
https://www.proquest.com/docview/1860162227
https://www.proquest.com/docview/1904239922
Volume 87
WOSCitedRecordID wos000399502100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: TFW
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB2hikM5UBpApC3VInFkg-3d2OveECLqpVUPRfRm7WeIhJwqTjnw6zvjXVupEOqBnuNJnPXM27fr2fcAPhbCOjmXmjucb7i0yOFqZS1XpqgzEQrvrezNJqrLS3VzU1-lbsIutVXSGjpEoYgeq6m4temGjrjP1A1Xl_M5NWaVM4RehaWCKIzMnnL8evFjxOI8eu5QBKeQ4QzPv77lwez0QLv0L6zuJ6DFwRPc-it4mdgn-xLT5RCe-XYCB4OzA0uFPoEXF6OaazeBfWKkUdD5NfzExGLLKFa9-uMdWzvHEEB5PEu0sizumbB1YI5UeZOhVnfGbmnjf0MKrp_Yxi9jB27LejOejuF_Yruv09_A98W366_nPNk1cCtzteXeuoD8zRaZ88IU5JUghBWl01VZGp9XWpamqrXSRgZMgcz60gjnM6eRduJK-S3stevWvwOmhEbiaXDpKEsZdFABaRwicaXmQRpnpyCHx9TYpGVOlhq_mnyUPI0D3dBAN2mgpzAbw26jmMdjAfVuDjTbfhclRMuTRjwSezIkTJNwoWtyRfI3dP54Ch_Gj7Gi6TWNbv36Dq-pqVeJ9IKP_uPnj2G_IAaSCV7IE9jbbu78e3huf2O-bE77KrkHUf4OvA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9RAFH9RNBEPIquEVdQh8ehA25m2U2_GuMEIe1oit8l0PpCEdMnuwoG_nvc6bbOEGA56bl8_pu9rXt_7_QA-Z8I6mUvDHcYbLi3mcJWylqs6qxIRMu-tbMkmyulUnZ1V67Mw1FZJe-gQgSJaX03GTcXoviXukNrhqiLPqTOrOEDfq9BWnsKzHGMttfXNJr8Hb5xG1h0S4STTT_H87TL34tM99NIH3roNQZOt__Hwr-FVl4Cyb1FjtuGJb0aw1ZM7sM7WR_DyZAB0XY5gk5LSiOn8Bv6gbrHziFd9cesdmzvH0IfyOE50YVksm7B5YI6AeTtOreVXdkW1_wWBuH5hC38em3Ab1vLxLBm-FFv_o_4WTic_Zt-PeMfYwK1M1Yp76wKmcDZLnBd1RnQJQlhROFMWRe3T0siiLiujTC0DakFifVEL5xNnMPPEzfIObDTzxu8CU8Jg7lnj7lEWMpigAmZy6IxLlQdZOzsG2X8nbTs4c2LVuNTpgHoaF1rTQutuocdwMIhdRTyPxwSqdSXQq7aQEiLriRaPyO71GqM717DUqSIEHBpBHsP-cBiNmv7UmMbPr_GcitqVCDL43T_c_hO8OJqdHOvjn9Nf72Ezo4QkETyTe7CxWlz7D_Dc3qDuLD62JnMHUb8S3Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BQagcWlhALBQwEkfcJrE3cbhVhRUIWPVQRG-W449SCWVXmy0Hfj0zsRO1QlUPcN7MbtZ5M352xu8BvCmEdXImDXc433BpkcPVylqumqLORCi8t7I3m6gWC3V6Wh-nbsIutVXSGjpEoYi-VlNyr1wYOuIOqBuuLmczaswq97H0KkyV23CnF8dCSJ_Mv4_FOI-mOxTCKWY4xHPd11yZnq6Il_5VrPsZaL77H-79Aewk-skOI14ewi3fTmB3sHZgKdMncP_rKOfaTWCbKGlUdH4EPxBZ7CyqVZ__9o4tnWNYQXk8THRuWdw0YcvAHMnyJket7h1b0c7_miRc37K1P4stuC3r3Xg6hv-JXX6f_hi-zT-cHH3kya-BW5mrDffWBSRwtsicF01BZglCWFE6U5Vl4_PKyLKpaqNMIwNiILO-bITzmTPIO3Gp_AS22mXrnwJTwiDzbHDtKEsZTFABeRyW4krNgmycnYIcHpO2ScycPDV-6nzUPI0DrWmgdRroKeyPYauo5nFTQH0ZA3rTb6OE6HmixQ2xewNgdCoMnc4VoZQOIE_h9fgxpjS9pzGtX17gNTU1K5Fg8LN_-PlXcO_4_Vx_-bT4_By2C2IjmeCF3IOtzfrCv4C79hdCZ_2yT5g_1OkRgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+generalized+odd+log-logistic+family+of+distributions%3A+properties%2C+regression+models+and+applications&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Cordeiro%2C+Gauss+Moutinho&rft.au=Alizadeh%2C+Morad&rft.au=Ozel%2C+Gamze&rft.au=Hosseini%2C+Bistoon&rft.date=2017-03-24&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=87&rft.issue=5&rft.spage=908&rft.epage=932&rft_id=info:doi/10.1080%2F00949655.2016.1238088&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon