Time-Optimal Path Tracking for Robots: A Convex Optimization Approach

This paper focuses on time-optimal path tracking, a subproblem in time-optimal motion planning of robot systems. Through a nonlinear change of variables, the time-optimal path tracking problem is transformed here into a convex optimal control problem with a single state. Various convexity-preserving...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automatic control Ročník 54; číslo 10; s. 2318 - 2327
Hlavní autori: Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter, J., Diehl, M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.10.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9286, 1558-2523
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper focuses on time-optimal path tracking, a subproblem in time-optimal motion planning of robot systems. Through a nonlinear change of variables, the time-optimal path tracking problem is transformed here into a convex optimal control problem with a single state. Various convexity-preserving extension are introduced, resulting in a versatile approach for optimal path tracking. A direct transcription method is presented that reduces finding the globally optimal trajectory to solving a second-order cone program using robust numerical algorithms that are freely available. Validation against known examples and application to a more complex example illustrate the versatility and practicality of the new method.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2009.2028959