Low-Complexity Soft-Decoding Algorithms for Reed-Solomon Codes-Part I: An Algebraic Soft-In Hard-Out Chase Decoder

In this paper, we present an algebraic methodology for implementing low-complexity, Chase-type, decoding of Reed-Solomon (RS) codes of length n . In such, a set of 2 ¿ test-vectors that are equivalent on all except ¿ ¿ n coordinate positions is first produced. The similarity of the test-vectors is u...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on information theory Ročník 56; číslo 3; s. 945 - 959
Hlavní autori: Bellorado, J., Kavcic, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.03.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9448, 1557-9654
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we present an algebraic methodology for implementing low-complexity, Chase-type, decoding of Reed-Solomon (RS) codes of length n . In such, a set of 2 ¿ test-vectors that are equivalent on all except ¿ ¿ n coordinate positions is first produced. The similarity of the test-vectors is utilized to reduce the complexity of interpolation, the process of constructing a set of polynomials that obey constraints imposed by each test-vector. By first considering the equivalent indices, a polynomial common to all test-vectors is constructed. The required set of polynomials is then produced by interpolating the final ¿ dissimilar indices utilizing a binary-tree structure. In the second decoding step ( factorization ) a candidate message is extracted from each interpolation polynomial such that one may be chosen as the decoded message. Although an expression for the direct evaluation of each candidate message is provided, carrying out this computation for each polynomial is extremely complex. Thus, a novel, reduced-complexity, methodology is also given. Although suboptimal, simulation results affirm that the loss in performance incurred by this procedure is decreasing with increasing code length n , and negligible for long (n > 100) codes. Significant coding gains are shown to be achievable over traditional hard-in hard-out decoding procedures (e.g., Berlekamp-Massey) at an equivalent (and, in some cases, lower) computational complexity. Furthermore, these gains are shown to be similar to the recently proposed soft-in-hard-out algebraic techniques (e.g., Sudan, Ko¿tter-Vardy) that bear significantly more complex implementations than the proposed algorithm.
AbstractList In this paper, we present an algebraic methodology for implementing low-complexity, Chase-type, decoding of Reed-Solomon (RS) codes of length n . In such, a set of 2 eta test-vectors that are equivalent on all except eta [Lt] n coordinate positions is first produced. The similarity of the test-vectors is utilized to reduce the complexity of interpolation, the process of constructing a set of polynomials that obey constraints imposed by each test-vector. By first considering the equivalent indices, a polynomial common to all test-vectors is constructed. The required set of polynomials is then produced by interpolating the final eta dissimilar indices utilizing a binary-tree structure. In the second decoding step (factorization) a candidate message is extracted from each interpolation polynomial such that one may be chosen as the decoded message. Although an expression for the direct evaluation of each candidate message is provided, carrying out this computation for each polynomial is extremely complex. Thus, a novel, reduced-complexity, methodology is also given. Although suboptimal, simulation results affirm that the loss in performance incurred by this procedure is decreasing with increasing code length n , and negligible for long ( n Unknown character 100 ) codes. Significant coding gains are shown to be achievable over traditional hard-in hard-out decoding procedures (e.g., Berlekamp-Massey) at an equivalent (and, in some cases, lower) computational complexity. Furthermore, these gains are shown to be similar to the recently proposed soft-in-hard-out algebraic techniques (e.g., Sudan, Koetter-Vardy) that bear significantly more complex implementations than the proposed algorithm.
In this paper, we present an algebraic methodology for implementing low-complexity, Chase-type, decoding of Reed-Solomon (RS) codes of length n . In such, a set of 2 ¿ test-vectors that are equivalent on all except ¿ ¿ n coordinate positions is first produced. The similarity of the test-vectors is utilized to reduce the complexity of interpolation, the process of constructing a set of polynomials that obey constraints imposed by each test-vector. By first considering the equivalent indices, a polynomial common to all test-vectors is constructed. The required set of polynomials is then produced by interpolating the final ¿ dissimilar indices utilizing a binary-tree structure. In the second decoding step ( factorization ) a candidate message is extracted from each interpolation polynomial such that one may be chosen as the decoded message. Although an expression for the direct evaluation of each candidate message is provided, carrying out this computation for each polynomial is extremely complex. Thus, a novel, reduced-complexity, methodology is also given. Although suboptimal, simulation results affirm that the loss in performance incurred by this procedure is decreasing with increasing code length n , and negligible for long (n > 100) codes. Significant coding gains are shown to be achievable over traditional hard-in hard-out decoding procedures (e.g., Berlekamp-Massey) at an equivalent (and, in some cases, lower) computational complexity. Furthermore, these gains are shown to be similar to the recently proposed soft-in-hard-out algebraic techniques (e.g., Sudan, Ko¿tter-Vardy) that bear significantly more complex implementations than the proposed algorithm.
In this paper, we present an algebraic methodology for implementing low-complexity, Chase-type, decoding of Reed-Solomon (RS) codes of length n . In such, a set of 2 ... test-vectors that are equivalent on all except ... n coordinate positions is first produced. The similarity of the test-vectors is utilized to reduce the complexity of interpolation, the process of constructing a set of polynomials that obey constraints imposed by each test-vector. By first considering the equivalent indices, a polynomial common to all test-vectors is constructed. The required set of polynomials is then produced by interpolating the final ... dissimilar indices utilizing a binary-tree structure. In the second decoding step (factorization) a candidate message is extracted from each interpolation polynomial such that one may be chosen as the decoded message. Although an expression for the direct evaluation of each candidate message is provided, carrying out this computation for each polynomial is extremely complex. Thus, a novel, reduced-complexity, methodology is also given. Although suboptimal, simulation results affirm that the loss in performance incurred by this procedure is decreasing with increasing code length n, and negligible for long (n > 100) codes. Significant coding gains are shown to be achievable over traditional hard-in hard-out decoding procedures (e.g., Berlekamp-Massey) at an equivalent (and, in some cases, lower) computational complexity. Furthermore, these gains are shown to be similar to the recently proposed soft-in-hard-out algebraic techniques (e.g., Sudan, Ko...tter-Vardy) that bear significantly more complex implementations than the proposed algorithm. (ProQuest: ... denotes formulae/symbols omitted.)
Author Kavcic, A.
Bellorado, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Bellorado
  fullname: Bellorado, J.
  organization: Link-A-Media Devices, Santa Clara, CA, USA
– sequence: 2
  givenname: A.
  surname: Kavcic
  fullname: Kavcic, A.
  organization: Dept. of Electr. Eng., Univ. of Hawaii, Honolulu, HI, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22729593$$DView record in Pascal Francis
BookMark eNp9kc1rGzEQxUVJoU7ae6EXUSg9KdXH7krqzWw_YjCkNO5ZaLWzicJaciWZNP995drtIYdeZhj4vcfMvHN0FmIAhF4zeskY1R82q80lp1TXIjSV4hlasLaVRHdtc4YWlDJFdNOoF-g85_s6Ni3jC5TW8YH0cbub4Zcvj_gmToV8AhdHH27xcr6NyZe7bcZTTPg7wEhu4hy3MeA-jpDJN5sKXn3Ey3CAYUjWu6PJKuArm0ZyvS-4v7MZ8B9bSC_R88nOGV6d-gX68eXzpr8i6-uvq365Jq5hqhCnuFbNoBTYSY51YRiZcoOTXcf1ZDsxSTvyYeo6qSVVw9goUK1TWgAAt0xcoPdH312KP_eQi9n67GCebYC4z0a2QvJON7ySb5-Q93GfQl3OMC2UEoKLCr07QTY7O0_JBuez2SW_tenRcC65bvWB646cSzHnBJNxvtjiYyj1ObNh1BwCMzUwcwjMnAKrQvpE-Nf7P5I3R4mvN__D24ZrxpX4DW0eoUA
CODEN IETTAW
CitedBy_id crossref_primary_10_1049_iet_com_2015_0873
crossref_primary_10_1049_iet_com_2019_0064
crossref_primary_10_1109_LCOMM_2011_122010_100864
crossref_primary_10_1109_TCOMM_2020_3011991
crossref_primary_10_1109_LCOMM_2021_3054753
crossref_primary_10_1109_TIT_2011_2165524
crossref_primary_10_1109_TIT_2020_2978383
crossref_primary_10_1109_TIT_2022_3140678
crossref_primary_10_1109_TIT_2023_3263185
crossref_primary_10_1109_ACCESS_2020_3022460
crossref_primary_10_1109_TCOMM_2012_100912_110752
crossref_primary_10_1109_TCOMM_2019_2927207
crossref_primary_10_1109_TCOMM_2017_2786667
crossref_primary_10_1109_TCSI_2018_2882876
crossref_primary_10_1109_TCOMM_2012_100912_110834
crossref_primary_10_1109_TCOMM_2018_2872033
crossref_primary_10_1109_TCOMM_2024_3524035
crossref_primary_10_1109_TIT_2025_3566240
crossref_primary_10_1109_ACCESS_2019_2905966
crossref_primary_10_1109_TCSII_2012_2184376
crossref_primary_10_1145_2590810
crossref_primary_10_1109_TVLSI_2011_2150254
crossref_primary_10_1109_LCOMM_2015_2477495
crossref_primary_10_1631_FITEE_2000323
crossref_primary_10_3390_electronics8010010
crossref_primary_10_1109_TCOMM_2019_2915224
crossref_primary_10_1109_TCSII_2020_2982496
crossref_primary_10_1109_TIT_2010_2095202
Cites_doi 10.1109/TIT.1972.1054746
10.1137/0108018
10.1109/TIT.1969.1054260
10.1109/18.335962
10.1109/TIT.1968.1054109
10.1109/TIT.1960.1057586
10.1023/B:VLSI.0000047274.68702.8d
10.1109/TCOMM.2007.900539
10.1109/18.904511
10.1109/18.817522
10.1109/18.623146
10.1006/jcom.1997.0439
10.1109/TIT.1966.1053873
10.1017/CBO9780511800467
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TIT.2009.2039073
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1557-9654
EndPage 959
ExternalDocumentID 2020546761
22729593
10_1109_TIT_2009_2039073
5429128
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c418t-c82984b88eaf7d001ed18cbc76629fa63f7ad2bf6679708bd48e85c893eee2a13
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000275561000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Wed Oct 01 14:41:21 EDT 2025
Sun Nov 30 05:14:48 EST 2025
Mon Jul 21 09:11:59 EDT 2025
Sat Nov 29 03:53:08 EST 2025
Tue Nov 18 22:32:50 EST 2025
Tue Aug 26 16:40:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Reed Solomon code
Performance evaluation
reduced-complexity factorization
Similarity
chase decoding
hard-decision decoding
Reed-Solomon (RS) codes
Tree structure
polynomial factorization
Decoding
Algorithm
Computational complexity
Factorization
Implementation
Binary tree
Simulation
Coding
Polynomial interpolation
soft decoding
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-c82984b88eaf7d001ed18cbc76629fa63f7ad2bf6679708bd48e85c893eee2a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 193883323
PQPubID 36024
PageCount 15
ParticipantIDs proquest_miscellaneous_753726942
pascalfrancis_primary_22729593
ieee_primary_5429128
proquest_journals_193883323
crossref_citationtrail_10_1109_TIT_2009_2039073
crossref_primary_10_1109_TIT_2009_2039073
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref20
ref11
ref10
bellorado (ref19) 2006
ref1
ref16
ref8
wicker (ref2) 1994
nielsen (ref18) 1998
haykin (ref17) 2001
ref9
ref4
ref3
ref6
ref5
ktter (ref7) 2000
xia (ref13) 2003
References_xml – year: 1998
  ident: ref18
  publication-title: Decoding AG-Codes Beyond Half the Minimum Distance
– year: 2006
  ident: ref19
  publication-title: Low-complexity soft decoding algorithms for Reed-Solomon codes
– year: 2001
  ident: ref17
  publication-title: Communication Systems
– ident: ref9
  doi: 10.1109/TIT.1972.1054746
– year: 2000
  ident: ref7
  publication-title: Algebraic soft-decision decoding of Reed-Solomon codes
– ident: ref1
  doi: 10.1137/0108018
– ident: ref5
  doi: 10.1109/TIT.1969.1054260
– ident: ref10
  doi: 10.1109/18.335962
– ident: ref4
  doi: 10.1109/TIT.1968.1054109
– year: 1994
  ident: ref2
  publication-title: Reed-Solomon Codes and Their Applications
– ident: ref3
  doi: 10.1109/TIT.1960.1057586
– ident: ref15
  doi: 10.1023/B:VLSI.0000047274.68702.8d
– ident: ref14
  doi: 10.1109/TCOMM.2007.900539
– ident: ref12
  doi: 10.1109/18.904511
– ident: ref20
  doi: 10.1109/18.817522
– start-page: 1751
  year: 2003
  ident: ref13
  article-title: a chase-type algorithm for soft-decision reed-solomon decoding on rayleigh fading channels
  publication-title: Proc IEEE Global Commun Conf (GLOBECOM)
– ident: ref11
  doi: 10.1109/18.623146
– ident: ref6
  doi: 10.1006/jcom.1997.0439
– ident: ref8
  doi: 10.1109/TIT.1966.1053873
– ident: ref16
  doi: 10.1017/CBO9780511800467
SSID ssj0014512
Score 2.2291105
Snippet In this paper, we present an algebraic methodology for implementing low-complexity, Chase-type, decoding of Reed-Solomon (RS) codes of length n . In such, a...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 945
SubjectTerms Algebra
Algorithms
Applied sciences
Artificial satellites
chase decoding
Codes
Coding, codes
Computational complexity
Computational modeling
Construction
Decoding
Equivalence
Exact sciences and technology
Gain
hard-decision decoding
Information theory
Information, signal and communications theory
Interpolation
Magnetic memory
Messages
Methodology
Methods
Optical feedback
Performance loss
polynomial factorization
polynomial interpolation
Polynomials
reduced-complexity factorization
Reed-Solomon (RS) codes
Signal and communications theory
soft decoding
Telecommunications and information theory
Testing
Title Low-Complexity Soft-Decoding Algorithms for Reed-Solomon Codes-Part I: An Algebraic Soft-In Hard-Out Chase Decoder
URI https://ieeexplore.ieee.org/document/5429128
https://www.proquest.com/docview/193883323
https://www.proquest.com/docview/753726942
Volume 56
WOSCitedRecordID wos000275561000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_a4oM-WG0Vz2rZB18E10s2H7vx7TgtHkgt9oS-hd3NxB7URJKc4n_vTJILFkXwIRDY2STszOzsZD5-AC8w9ljQJSOvvCR_Q0kXIkrrEpWg1VGYFD3YhD4_N1dX2cUevJpqYRCxTz7D13zbx_KL2m_5V9mcsZVoP92Hfa31UKs1RQziJBw6g4ekwORz7EKSQTZfr9ZDY0oVkIevo1smqMdU4YxI29KilAOaxR8bc29tzg7_7zsfwP3xVCkWgxg8hD2sjuBwh9ggRgU-gnu_tR88huZD_UMyETfF7H6KS9qS5VvyR9meicXNl7rZdNdfW0EHW_GJzJy8pK2S5FYs6wJbeUFiJ1ZvxKJiYo5Ab_zwkFUlOCVAftx2YnlNhlL0j8XmEXw-e7devpcjBoP0cWg66Y3KTOyMQVvqglYXi9B453Waqqy0aVRqWyhXpqnOdGBcERs0iadTEK2KsmH0GA6qusInIMKSi3xTHxEtCUVsrbYujYPSJy50STqD-Y4tuR8blDNOxk3eOypBlhMjGTYzy0dGzuDlNOPb0JzjH7THzKiJbuTRDE5vcX4aV4rcjiSjeSc7UchH9W5zOvUySLOiUTGNkl5ysMVWWG_bnNxAzVXC6unfX3wCd4dEBE5newYHXbPF53DHf-82bXPay_YvK0P2hg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgcR42GBjWtkYfuAFCdPYsWOHt6owraKUiRVpb5HjOKzSlqAkBfHfc07SiAmExEOkSD4nke_O58t9_ABeOmFdhhcNLbcU_Q1OU-YcNank0hkVMpm1YBNqsdBXV_HFFrweamGcc23ymXvjb9tYflbatf9VNvbYSrif3oP7UgjOumqtIWYgJOt6gzNUYfQ6NkHJIB4vZ8uuNSUP0MdX4R0j1KKq-JxIU-Oy5B2exR9bc2tvzvb-70sfw25_riSTThCewJYr9mFvg9lAehXeh0e_NSA8gGpe_qCeyLfFbH6SS9yU6Tv0SL1FI5Obr2W1aq5va4JHW_IZDR29xM0SJZdMy8zV9AIFj8zekknhiX0MemW7h8wK4pMC6Kd1Q6bXaCpJ-1hXPYUvZ--X03PaozBQK5huqNU81iLV2plcZbi6LmPaplZFEY9zE4W5MhlP8yhSsQp0mgnttLR4DsJV4YaFh7BdlIU7AsJyX-Yb2RBpUSyEMcqkkQhyK1OWymgE4w1bEtu3KPdIGTdJ66oEcYKM9MCZcdIzcgSvhhnfuvYc_6A98Iwa6HoejeD0DueHcc7R8ZAxzjveiELSK3id4LnXwzRzHCXDKGqmD7eYwpXrOkFHUPk6Yf7s7y9-AQ_Plx_nyXy2-HAMO11agk9uO4Htplq75_DAfm9WdXXayvkvICL5zQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Complexity+Soft-Decoding+Algorithms+for+Reed%E2%80%93Solomon+Codes%E2%80%94Part+I%3A+An+Algebraic+Soft-In+Hard-Out+Chase+Decoder&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Bellorado%2C+Jason&rft.au=Kavcic%2C+Aleksandar&rft.date=2010-03-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=56&rft.issue=3&rft.spage=945&rft.epage=959&rft_id=info:doi/10.1109%2FTIT.2009.2039073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2009_2039073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon