Enhancing riverine load prediction of anthropogenic pollutants: Harnessing the potential of feed-forward backpropagation (FFBP) artificial neural network (ANN) models
Assessing riverine pollutant loads is a more realistic method for analysing point and non-point anthropogenic pollution sources throughout a watershed. This study compares numerous mathematical modelling strategies for estimating riverine loads based on the chosen water quality parameters: Biochemic...
Uloženo v:
| Vydáno v: | Results in engineering Ročník 22; s. 102072 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2024
Elsevier |
| Témata: | |
| ISSN: | 2590-1230, 2590-1230 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!