A fast instance selection method for support vector machines in building extraction

Training support vector machines (SVMs) for pixel-based feature extraction purposes from aerial images requires selecting representative pixels (instances) as a training dataset. In this research, locality-sensitive hashing (LSH) is adopted for developing a new instance selection method which is ref...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 97; no. B; p. 106716
Main Authors: Aslani, Mohammad, Seipel, Stefan
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2020
Subjects:
ISSN:1568-4946, 1872-9681, 1872-9681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Training support vector machines (SVMs) for pixel-based feature extraction purposes from aerial images requires selecting representative pixels (instances) as a training dataset. In this research, locality-sensitive hashing (LSH) is adopted for developing a new instance selection method which is referred to as DR.LSH. The intuition of DR.LSH rests on rapidly finding similar and redundant training samples and excluding them from the original dataset. The simple idea of this method alongside its linear computational complexity make it expeditious in coping with massive training data (millions of pixels). DR.LSH is benchmarked against two recently proposed methods on a dataset for building extraction with 23,750,000 samples obtained from the fusion of aerial images and point clouds. The results reveal that DR.LSH outperforms them in terms of both preservation rate and maintaining the generalization ability (classification loss). The source code of DR.LSH can be found in https://github.com/mohaslani/DR.LSH. •The linear time complexity of DR.LSH makes it suitable for handling big datasets.•DR.LSH is competitive with other state-of-the-art methods in building extraction.•DR.LSH can significantly reduce the number of instances and execution time.
AbstractList Training support vector machines (SVMs) for pixel-based feature extraction purposes from aerial images requires selecting representative pixels (instances) as a training dataset. In this research, locality-sensitive hashing (LSH) is adopted for developing a new instance selection method which is referred to as DR.LSH. The intuition of DR.LSH rests on rapidly finding similar and redundant training samples and excluding them from the original dataset. The simple idea of this method alongside its linear computational complexity make it expeditious in coping with massive training data (millions of pixels). DR.LSH is benchmarked against two recently proposed methods on a dataset for building extraction with 23,750,000 samples obtained from the fusion of aerial images and point clouds. The results reveal that DR.LSH outperforms them in terms of both preservation rate and maintaining the generalization ability (classification loss). The source code of DR.LSH can be found in https://github.com/mohaslani/DR.LSH.
Training support vector machines (SVMs) for pixel-based feature extraction purposes from aerial images requires selecting representative pixels (instances) as a training dataset. In this research, locality-sensitive hashing (LSH) is adopted for developing a new instance selection method which is referred to as DR.LSH. The intuition of DR.LSH rests on rapidly finding similar and redundant training samples and excluding them from the original dataset. The simple idea of this method alongside its linear computational complexity make it expeditious in coping with massive training data (millions of pixels). DR.LSH is benchmarked against two recently proposed methods on a dataset for building extraction with 23,750,000 samples obtained from the fusion of aerial images and point clouds. The results reveal that DR.LSH outperforms them in terms of both preservation rate and maintaining the generalization ability (classification loss). The source code of DR.LSH can be found in https://github.com/mohaslani/DR.LSH. •The linear time complexity of DR.LSH makes it suitable for handling big datasets.•DR.LSH is competitive with other state-of-the-art methods in building extraction.•DR.LSH can significantly reduce the number of instances and execution time.
ArticleNumber 106716
Author Aslani, Mohammad
Seipel, Stefan
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Aslani
  fullname: Aslani, Mohammad
  email: mohammad.aslani@hig.se
  organization: Department of Computer and Geo-spatial Sciences, University of Gävle, Gävle, Sweden
– sequence: 2
  givenname: Stefan
  surname: Seipel
  fullname: Seipel, Stefan
  email: Stefan.Seipel@hig.se
  organization: Department of Computer and Geo-spatial Sciences, University of Gävle, Gävle, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-34022$$DView record from Swedish Publication Index (Högskolan i Gävle)
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425980$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqNkbtOwzAUhi1UJErhBZj8AKTYTurYEktVrlIlBi6r5Tgnras0ruykwNvjEMTAUDH5XP7vDJ9P0ahxDSB0QcmUEsqvNlMdnJkywvoBzyk_QmMqcpZILugo1jMukkxm_ASdhrAhEZJMjNHzHFc6tNg2odWNARygBtNa1-AttGtX4sp5HLrdzvkW7-Mqtltt1raBEClcdLYubbPC8NF6_U2eoeNK1wHOf94Jer27fVk8JMun-8fFfJmYjIo2Mammecp1ZSgznBNdkoqbEgyVRBPDRSHSVMs8k3qWs5QzAVzmRDIjyrwAkk7Q5XA3vMOuK9TO2632n8ppq27s21w5v1JdpzI2k-Kf8bVdqTQjjMU4G-LGuxA8VL8AJaqXrjaql6566WqQHiHxBzK21b2UKMfWh9HrAYWobG_Bq2AsxC8prY_aVensIfwLyYKgmw
CitedBy_id crossref_primary_10_1016_j_ins_2024_121738
crossref_primary_10_1016_j_jocm_2023_100467
crossref_primary_10_3390_atmos14071174
crossref_primary_10_1007_s10115_024_02302_4
crossref_primary_10_1016_j_cola_2024_101301
crossref_primary_10_1007_s10115_023_02043_w
crossref_primary_10_1007_s00521_022_07974_z
crossref_primary_10_1016_j_ins_2021_07_015
crossref_primary_10_1016_j_neunet_2023_07_018
crossref_primary_10_1186_s40537_022_00640_0
crossref_primary_10_1007_s43674_022_00033_z
crossref_primary_10_1016_j_asoc_2024_111638
crossref_primary_10_1016_j_ins_2021_06_052
crossref_primary_10_1109_JSTARS_2025_3538662
crossref_primary_10_1109_TKDE_2023_3328952
crossref_primary_10_1016_j_asoc_2022_109695
crossref_primary_10_3390_app15084432
crossref_primary_10_1016_j_patcog_2025_112390
crossref_primary_10_3390_s23187760
Cites_doi 10.1016/j.rse.2004.06.017
10.1016/j.patrec.2014.08.003
10.4018/jamc.2010102604
10.1162/089976601750264965
10.1109/TGRS.2003.810682
10.1016/j.patrec.2013.01.003
10.1109/JPROC.2015.2487976
10.1137/1.9781611972740.12
10.1109/JSTARS.2017.2768541
10.1109/TNN.2006.883722
10.1109/TGRS.2012.2202912
10.1109/TGRS.2013.2249522
10.1016/j.knosys.2016.05.056
10.1016/j.neucom.2014.10.102
10.1109/JPROC.2015.2494218
10.1016/j.neucom.2007.07.028
10.1162/neco.2007.19.3.816
10.1016/j.asoc.2018.04.016
10.3233/IDA-2012-00558
10.1007/s10462-017-9611-1
10.1016/j.patcog.2017.03.025
10.1109/JSTARS.2009.2012488
10.1109/ACCESS.2018.2819705
10.1016/j.neucom.2013.05.040
10.1016/j.knosys.2016.10.031
10.1016/j.geoderma.2008.05.010
10.1016/S0034-4257(01)00295-4
10.1109/72.809092
10.1016/j.neucom.2007.09.008
10.1016/j.isprsjprs.2010.06.001
10.1016/j.advengsoft.2016.01.008
10.1023/A:1022643204877
10.1109/MGRS.2016.2641240
10.1023/A:1018054314350
10.3390/rs10020303
10.1016/j.asoc.2012.11.005
10.1007/s10462-010-9165-y
10.1109/TPAMI.2011.142
10.1016/j.isprsjprs.2013.10.011
10.1016/j.asoc.2015.08.048
10.1007/s10044-008-0142-x
10.1016/j.knosys.2019.105196
10.1109/TPAMI.2010.188
10.1109/IGARSS.2015.7326952
10.1016/j.rse.2006.03.004
10.1109/TIT.1967.1053964
10.1016/j.knosys.2013.09.023
10.1023/A:1022627411411
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTPV
ALQMA
AOWAS
D8T
D8W
ZZAVC
ACNBI
DF2
DOI 10.1016/j.asoc.2020.106716
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SwePub
SWEPUB Högskolan i Gävle full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Högskolan i Gävle
SwePub Articles full text
SWEPUB Uppsala universitet full text
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID oai_DiVA_org_uu_425980
oai_DiVA_org_hig_34022
10_1016_j_asoc_2020_106716
S1568494620306542
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTPV
ALQMA
AOWAS
D8T
D8W
ZZAVC
ACNBI
DF2
ID FETCH-LOGICAL-c418t-c3a1736afc12c660ad0f6cdec190a0c68b833a9749a5723628e697092c8d7be03
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603366700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
1872-9681
IngestDate Tue Nov 04 16:43:33 EST 2025
Tue Nov 04 16:41:57 EST 2025
Sat Nov 29 07:03:40 EST 2025
Tue Nov 18 22:37:09 EST 2025
Fri Feb 23 02:46:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue B
Keywords Support vector machines
Instance selection
Big data
Data reduction
Building extraction
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-c3a1736afc12c660ad0f6cdec190a0c68b833a9749a5723628e697092c8d7be03
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425980
ParticipantIDs swepub_primary_oai_DiVA_org_uu_425980
swepub_primary_oai_DiVA_org_hig_34022
crossref_primary_10_1016_j_asoc_2020_106716
crossref_citationtrail_10_1016_j_asoc_2020_106716
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106716
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mirjalili, Lewis (b83) 2016; 95
Keller (b77) 2017
Turker, Koc-San (b65) 2015; 34
Platt (b14) 1999
Salvador, Chan (b79) 2004
Cervantes, Li, Yu (b33) 2006
G.M. Foody, The effect of mis-labeled training data on the accuracy of supervised image classification by SVM, in: 2015 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, 2015, pp. 4987–4990.
Antunes, Gomes, Aguiar (b59) 2018
Gao, Wang, Yang, Li (b63) 2018; 6
Schölkopf, Platt, Shawe-Taylor, Smola, Williamson (b71) 2001; 13
Wang, Kwong (b46) 2010
Arnaiz-González, Díez-Pastor, Rodríguez, García-Osorio (b55) 2016; 107
Cai, Shi, Miao, Hao (b80) 2018; 10
Lyhyaoui, Martinez, Mora, Vaquez, Sancho, Figueiras-Vidal (b29) 1999; 10
López Chau, Li, Yu (b40) 2013; 122
Li, Maguire (b47) 2011; 33
Wang, Shi (b37) 2008; 71
Hastie, Tibshirani, Friedman (b75) 2009
Vapnik (b5) 1998
M.B. de Almeida, A.d.P. Braga, J.P. Braga, SVM-KM: speeding SVMs learning with a priori cluster selection and k-means, in: Proceedings. Vol. 1. Sixth Brazilian Symposium on Neural Networks, RJ, Brazil, 2000, pp. 162–167.
Olvera-López, Carrasco-Ochoa, Martínez-Trinidad (b39) 2010; 13
Awrangjeb, Ravanbakhsh, Fraser (b62) 2010; 65
Carbonera, Abel (b44) 2015
Wang, Liu, Kumar, Chang (b57) 2016; 104
Gerke, Xiao (b61) 2014; 87
Nalepa, Kawulok (b19) 2018; 52
Demir, Minello, Bruzzone (b7) 2014; 52
Liu, Wang, Wang, Lv, Konan (b18) 2017; 116
Cervantes, García Lamont, López-Chau, Rodríguez Mazahua, Sergio Ruíz (b22) 2015; 37
Wang, Neskovic, Cooper (b27) 2007
Derrac, García, Herrera (b25) 2010; 1
Cortes, Vapnik (b1) 1995; 20
Zeng, Xu, Xie, Gao (b38) 2008
Foody (b6) 2002; 80
Jiang, Wang (b70) 2017; 69
Guo, Boukir, Chehata (b49) 2010
Breiman (b50) 1996; 24
Guo, Boukir (b52) 2013; 34
Quinlan (b53) 1986; 1
Zhu, Wang, Li, Du (b48) 2020; 190
Garcia, Derrac, Cano, Herrera (b24) 2012; 34
Shin, Cho (b45) 2002
Liu, Huang, Wang (b3) 2018; 11
Shahriari, Swersky, Wang, Adams, de Freitas (b74) 2016; 104
Foody, Mathur (b8) 2004; 93
Yu, Yang, Han (b36) 2003
Foody, Mathur, Sanchez-Hernandez, Boyd (b9) 2006; 104
Huang, Zhang (b64) 2013; 51
Shin, Cho (b41) 2007; 19
D. Boley, D. Cao, Training support vector machine using adaptive clustering, in: Proceedings of the Fourth SIAM International Conference on Data Mining, Florida, USA, 2004.
Chang, Guo, Lin, Liu, Lu (b10) 2010
Schmidt, Behrens, Scholten (b21) 2008; 146
Leo Breiman, Jerome Friedman, Charles J. Stone (b51) 1984
Satopaa, Albrecht, Irwin, Raghavan (b78) 2011
Li, Cervantes, Yu (b28) 2012; 16
Abe, Inoue (b42) 2001
Koggalage, Halgamuge (b31) 2004; 2
Cervantes, Li, Yu, Li (b35) 2008; 71
Feurer, Hutter (b72) 2019
Marone, Camara, Ndiaye (b16) 2017
García, Luengo, Herrera (b20) 2015
Olvera-López, Carrasco-Ochoa, Martínez-Trinidad, Kittler (b23) 2010; 34
Gonzalez, Woods (b67) 2008
Pavlov, Mao, Dom (b13) 2000
Rutzinger, Rottensteiner, Pfeifer (b81) 2009; 2
Abe (b11) 2010
Carbonera, Abel (b54) 2018
A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via hashing, in: VLDB ’99 Proceedings of the 25th International Conference on Very Large Data Bases, Edinburgh, Scotland, 1999, pp. 518–529.
Ehrgott (b58) 2005
Maulik, Chakraborty (b4) 2017; 5
Zhang, Chen, Whitman, Shyu, Yan, Zhang (b66) 2003; 41
Guo, Boukir (b17) 2015; 51
Clerc (b82) 2011
Kaufmann (b12) 1999
Arnaiz-González, Díez-Pastor, Rodríguez, García-Osorio (b15) 2018; 68
Ishibuchi, Nojima (b69) 2013; 54
Cover, Hart (b84) 1967; 13
Datar, Immorlica, Indyk, Mirrokni (b60) 2004
Shen, Mu, Li, Wu, Gou, Chen (b32) 2016; 172
Wang, Yu, Lapira, Lee (b73) 2013; 13
Roijers, Whiteson (b76) 2017; vol. 11
Liu, Chen, Yu (b43) 2003
Lee, Huang (b26) 2007; 18
Riley, Degloria, Elliot (b68) 1999; 5
10.1016/j.asoc.2020.106716_b56
Hastie (10.1016/j.asoc.2020.106716_b75) 2009
Zeng (10.1016/j.asoc.2020.106716_b38) 2008
Awrangjeb (10.1016/j.asoc.2020.106716_b62) 2010; 65
Jiang (10.1016/j.asoc.2020.106716_b70) 2017; 69
Mirjalili (10.1016/j.asoc.2020.106716_b83) 2016; 95
Shen (10.1016/j.asoc.2020.106716_b32) 2016; 172
Huang (10.1016/j.asoc.2020.106716_b64) 2013; 51
Feurer (10.1016/j.asoc.2020.106716_b72) 2019
Cover (10.1016/j.asoc.2020.106716_b84) 1967; 13
Ishibuchi (10.1016/j.asoc.2020.106716_b69) 2013; 54
10.1016/j.asoc.2020.106716_b2
Guo (10.1016/j.asoc.2020.106716_b17) 2015; 51
Li (10.1016/j.asoc.2020.106716_b47) 2011; 33
Guo (10.1016/j.asoc.2020.106716_b49) 2010
Gonzalez (10.1016/j.asoc.2020.106716_b67) 2008
Satopaa (10.1016/j.asoc.2020.106716_b78) 2011
Marone (10.1016/j.asoc.2020.106716_b16) 2017
Liu (10.1016/j.asoc.2020.106716_b43) 2003
Nalepa (10.1016/j.asoc.2020.106716_b19) 2018; 52
Salvador (10.1016/j.asoc.2020.106716_b79) 2004
Kaufmann (10.1016/j.asoc.2020.106716_b12) 1999
Riley (10.1016/j.asoc.2020.106716_b68) 1999; 5
Demir (10.1016/j.asoc.2020.106716_b7) 2014; 52
Liu (10.1016/j.asoc.2020.106716_b18) 2017; 116
Abe (10.1016/j.asoc.2020.106716_b11) 2010
Cervantes (10.1016/j.asoc.2020.106716_b35) 2008; 71
Shahriari (10.1016/j.asoc.2020.106716_b74) 2016; 104
Schmidt (10.1016/j.asoc.2020.106716_b21) 2008; 146
Wang (10.1016/j.asoc.2020.106716_b27) 2007
Shin (10.1016/j.asoc.2020.106716_b45) 2002
Olvera-López (10.1016/j.asoc.2020.106716_b23) 2010; 34
Derrac (10.1016/j.asoc.2020.106716_b25) 2010; 1
Vapnik (10.1016/j.asoc.2020.106716_b5) 1998
Leo Breiman, Jerome Friedman, Charles J. Stone (10.1016/j.asoc.2020.106716_b51) 1984
Yu (10.1016/j.asoc.2020.106716_b36) 2003
Carbonera (10.1016/j.asoc.2020.106716_b44) 2015
Wang (10.1016/j.asoc.2020.106716_b46) 2010
10.1016/j.asoc.2020.106716_b34
Li (10.1016/j.asoc.2020.106716_b28) 2012; 16
López Chau (10.1016/j.asoc.2020.106716_b40) 2013; 122
Cortes (10.1016/j.asoc.2020.106716_b1) 1995; 20
Zhang (10.1016/j.asoc.2020.106716_b66) 2003; 41
Arnaiz-González (10.1016/j.asoc.2020.106716_b55) 2016; 107
Cervantes (10.1016/j.asoc.2020.106716_b33) 2006
Keller (10.1016/j.asoc.2020.106716_b77) 2017
Koggalage (10.1016/j.asoc.2020.106716_b31) 2004; 2
Liu (10.1016/j.asoc.2020.106716_b3) 2018; 11
Pavlov (10.1016/j.asoc.2020.106716_b13) 2000
Shin (10.1016/j.asoc.2020.106716_b41) 2007; 19
Zhu (10.1016/j.asoc.2020.106716_b48) 2020; 190
Gao (10.1016/j.asoc.2020.106716_b63) 2018; 6
García (10.1016/j.asoc.2020.106716_b20) 2015
Abe (10.1016/j.asoc.2020.106716_b42) 2001
Maulik (10.1016/j.asoc.2020.106716_b4) 2017; 5
Guo (10.1016/j.asoc.2020.106716_b52) 2013; 34
Rutzinger (10.1016/j.asoc.2020.106716_b81) 2009; 2
Garcia (10.1016/j.asoc.2020.106716_b24) 2012; 34
Arnaiz-González (10.1016/j.asoc.2020.106716_b15) 2018; 68
10.1016/j.asoc.2020.106716_b30
Wang (10.1016/j.asoc.2020.106716_b57) 2016; 104
Ehrgott (10.1016/j.asoc.2020.106716_b58) 2005
Cervantes (10.1016/j.asoc.2020.106716_b22) 2015; 37
Antunes (10.1016/j.asoc.2020.106716_b59) 2018
Gerke (10.1016/j.asoc.2020.106716_b61) 2014; 87
Lee (10.1016/j.asoc.2020.106716_b26) 2007; 18
Olvera-López (10.1016/j.asoc.2020.106716_b39) 2010; 13
Foody (10.1016/j.asoc.2020.106716_b8) 2004; 93
Wang (10.1016/j.asoc.2020.106716_b37) 2008; 71
Foody (10.1016/j.asoc.2020.106716_b9) 2006; 104
Wang (10.1016/j.asoc.2020.106716_b73) 2013; 13
Clerc (10.1016/j.asoc.2020.106716_b82) 2011
Foody (10.1016/j.asoc.2020.106716_b6) 2002; 80
Breiman (10.1016/j.asoc.2020.106716_b50) 1996; 24
Schölkopf (10.1016/j.asoc.2020.106716_b71) 2001; 13
Roijers (10.1016/j.asoc.2020.106716_b76) 2017; vol. 11
Datar (10.1016/j.asoc.2020.106716_b60) 2004
Cai (10.1016/j.asoc.2020.106716_b80) 2018; 10
Lyhyaoui (10.1016/j.asoc.2020.106716_b29) 1999; 10
Quinlan (10.1016/j.asoc.2020.106716_b53) 1986; 1
Carbonera (10.1016/j.asoc.2020.106716_b54) 2018
Turker (10.1016/j.asoc.2020.106716_b65) 2015; 34
Platt (10.1016/j.asoc.2020.106716_b14) 1999
Chang (10.1016/j.asoc.2020.106716_b10) 2010
References_xml – volume: 34
  start-page: 133
  year: 2010
  end-page: 143
  ident: b23
  article-title: A review of instance selection methods
  publication-title: Artif. Intell. Rev.
– year: 2009
  ident: b75
  article-title: The Elements of Statistical Learning. Data Mining, Inference, and Prediction
– volume: 116
  start-page: 58
  year: 2017
  end-page: 73
  ident: b18
  article-title: An efficient instance selection algorithm to reconstruct training set for support vector machine
  publication-title: Knowl.-Based Syst.
– volume: 69
  start-page: 94
  year: 2017
  end-page: 106
  ident: b70
  article-title: Error estimation based on variance analysis of k-fold cross-validation
  publication-title: Pattern Recognit.
– volume: 146
  start-page: 138
  year: 2008
  end-page: 146
  ident: b21
  article-title: Instance selection and classification tree analysis for large spatial datasets in digital soil mapping
  publication-title: Geoderma
– volume: 13
  start-page: 131
  year: 2010
  end-page: 141
  ident: b39
  article-title: A new fast prototype selection method based on clustering
  publication-title: Pattern Anal. Appl.
– volume: 34
  start-page: 417
  year: 2012
  end-page: 435
  ident: b24
  article-title: Prototype selection for nearest neighbor classification: Taxonomy and empirical study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 1
  start-page: 60
  year: 2010
  end-page: 92
  ident: b25
  article-title: A survey on evolutionary instance selection and generation
  publication-title: Int. J. Appl. Metaheuristic Comput.
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  ident: b74
  article-title: Taking the human out of the loop: A review of Bayesian optimization
  publication-title: Proc. IEEE
– volume: 2
  start-page: 11
  year: 2009
  end-page: 20
  ident: b81
  article-title: A comparison of evaluation techniques for building extraction from airborne laser scanning
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– start-page: 572
  year: 2006
  end-page: 582
  ident: b33
  publication-title: Support Vector Machine Classification Based on Fuzzy Clustering for Large Data Sets BT - MICAI 2006: Advances in Artificial Intelligence
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b1
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– start-page: 185
  year: 1999
  end-page: 208
  ident: b14
  article-title: Fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in Kernel Methods: Support Vector Learning
– volume: 104
  start-page: 1
  year: 2006
  end-page: 14
  ident: b9
  article-title: Training set size requirements for the classification of a specific class
  publication-title: Remote Sens. Environ.
– start-page: 306
  year: 2003
  end-page: 315
  ident: b36
  article-title: Classifying large data sets using SVMs with hierarchical clusters
  publication-title: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 219
  year: 2000
  end-page: 222
  ident: b13
  article-title: Scaling-up support vector machines using boosting algorithm
  publication-title: Proceedings 15th International Conference on Pattern Recognition, Vol. 2
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b50
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 52
  start-page: 857
  year: 2018
  end-page: 900
  ident: b19
  article-title: Selecting training sets for support vector machines: a review
  publication-title: Artif. Intell. Rev.
– year: 2010
  ident: b11
  article-title: Support vector machines for pattern classification
  publication-title: Advances in Computer Vision and Pattern Recognition
– volume: 52
  start-page: 1272
  year: 2014
  end-page: 1284
  ident: b7
  article-title: Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 18
  start-page: 1
  year: 2007
  end-page: 13
  ident: b26
  article-title: Reduced support vector machines: A statistical theory
  publication-title: IEEE Trans. Neural Netw.
– volume: 33
  start-page: 1189
  year: 2011
  end-page: 1201
  ident: b47
  article-title: Selecting critical patterns based on local geometrical and statistical information
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 897
  year: 2012
  end-page: 914
  ident: b28
  article-title: Fast classification for large data sets via random selection clustering and Support Vector Machines
  publication-title: Intell. Data Anal.
– start-page: 308
  year: 2001
  end-page: 313
  ident: b42
  article-title: Fast training of support vector machines by extracting boundary data
  publication-title: International Conference on Artificial Neural Networks
– reference: G.M. Foody, The effect of mis-labeled training data on the accuracy of supervised image classification by SVM, in: 2015 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, 2015, pp. 4987–4990.
– start-page: 37
  year: 2010
  end-page: 40
  ident: b49
  article-title: Support vectors selection for supervised learning using an ensemble approach
  publication-title: 20th International Conference on Pattern Recognition
– volume: 6
  start-page: 22034
  year: 2018
  end-page: 22045
  ident: b63
  article-title: Building extraction from RGB VHR images using shifted shadow algorithm
  publication-title: IEEE Access
– volume: 13
  start-page: 1193
  year: 2013
  end-page: 1205
  ident: b73
  article-title: A modified support vector data description based novelty detection approach for machinery components
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 23
  year: 1999
  end-page: 27
  ident: b68
  article-title: A terrain ruggedness index that quantifies topographic heterogeneity
  publication-title: Int. J. Sci.
– reference: D. Boley, D. Cao, Training support vector machine using adaptive clustering, in: Proceedings of the Fourth SIAM International Conference on Data Mining, Florida, USA, 2004.
– volume: 34
  start-page: 58
  year: 2015
  end-page: 69
  ident: b65
  article-title: Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– reference: A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via hashing, in: VLDB ’99 Proceedings of the 25th International Conference on Very Large Data Bases, Edinburgh, Scotland, 1999, pp. 518–529.
– volume: 10
  start-page: 303
  year: 2018
  ident: b80
  article-title: Accuracy assessment measures for object extraction from remote sensing images
  publication-title: Remote Sens.
– volume: vol. 11
  start-page: 1
  year: 2017
  end-page: 129
  ident: b76
  publication-title: Multi-Objective Decision Making
– start-page: 320
  year: 2015
  ident: b20
  publication-title: Data Preprocessing in Data Mining, Vol. 72
– volume: 41
  start-page: 872
  year: 2003
  end-page: 882
  ident: b66
  article-title: A progressive morphological filter for removing nonground measurements from airborne LIDAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 253
  year: 2004
  end-page: 262
  ident: b60
  article-title: Locality-sensitive hashing scheme based on p-stable distributions
  publication-title: Proceedings of the Twentieth Annual Symposium on Computational Geometry
– start-page: 323
  year: 2005
  ident: b58
  article-title: Multicriteria Optimization
– volume: 11
  start-page: 1144
  year: 2018
  end-page: 1157
  ident: b3
  article-title: Hyperspectral image classification with kernel-based least-squares support vector machines in sum space
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– start-page: 1390
  year: 2010
  end-page: 1395
  ident: b46
  article-title: Sample selection based on maximum entropy for support vector machines
  publication-title: 2010 International Conference on Machine Learning and Cybernetics, Vol. 3
– year: 2008
  ident: b67
  article-title: Digital Image Processing
– start-page: 768
  year: 1998
  ident: b5
  article-title: Statistical Learning Theory
– start-page: 147
  year: 1999
  end-page: 168
  ident: b12
  article-title: Solving the quadratic programming problem arising in support vector classification
  publication-title: Advances in Kernel Methods: Support Vector Learning
– volume: 104
  start-page: 34
  year: 2016
  end-page: 57
  ident: b57
  article-title: Learning to hash for indexing big data-a survey
  publication-title: Proc. IEEE
– start-page: 2353
  year: 2017
  end-page: 2356
  ident: b16
  article-title: LSIS: Large scale instance selection algorithm for big data
  publication-title: 3rd IEEE International Conference on Computer and Communications
– volume: 51
  start-page: 112
  year: 2015
  end-page: 119
  ident: b17
  article-title: Fast data selection for SVM training using ensemble margin
  publication-title: Pattern Recognit. Lett.
– volume: 13
  start-page: 1443
  year: 2001
  end-page: 1471
  ident: b71
  article-title: Estimating support of a high-dimensional distribution
  publication-title: Neural Comput.
– start-page: 991
  year: 2008
  end-page: 996
  ident: b38
  article-title: A geometric approach to train SVM on very large data sets
  publication-title: 3rd International Conference on Intelligent System and Knowledge Engineering, Vol. 1
– volume: 80
  start-page: 185
  year: 2002
  end-page: 201
  ident: b6
  article-title: Status of land cover classification accuracy assessment
  publication-title: Remote Sens. Environ.
– volume: 68
  start-page: 651
  year: 2018
  end-page: 666
  ident: b15
  article-title: Local sets for multi-label instance selection
  publication-title: Appl. Soft Comput.
– volume: 87
  start-page: 78
  year: 2014
  end-page: 92
  ident: b61
  article-title: Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 469
  year: 2002
  end-page: 474
  ident: b45
  article-title: Pattern selection for support vector classifiers
  publication-title: International Conference on Intelligent Data Engineering and Automated Learning
– volume: 2
  start-page: 57
  year: 2004
  end-page: 65
  ident: b31
  article-title: Reducing the number of training samples for Fast Support Vector Machine Classification
  publication-title: Neural Inf. Process.-Lett. Rev.
– start-page: 61
  year: 2007
  end-page: 84
  ident: b27
  article-title: Selecting data for fast support vector machines training
  publication-title: Trends in Neural Computation
– start-page: 233
  year: 2010
  end-page: 240
  ident: b10
  article-title: Tree decomposition for large-scale SVM problems
  publication-title: 2010 International Conference on Technologies and Applications of Artificial Intelligence
– volume: 10
  start-page: 1474
  year: 1999
  end-page: 1481
  ident: b29
  article-title: Sample selection via clustering to construct support vector-like classifiers
  publication-title: IEEE Trans. Neural Netw.
– reference: M.B. de Almeida, A.d.P. Braga, J.P. Braga, SVM-KM: speeding SVMs learning with a priori cluster selection and k-means, in: Proceedings. Vol. 1. Sixth Brazilian Symposium on Neural Networks, RJ, Brazil, 2000, pp. 162–167.
– volume: 107
  start-page: 83
  year: 2016
  end-page: 95
  ident: b55
  article-title: Instance selection of linear complexity for big data
  publication-title: Knowl.-Based Syst.
– volume: 65
  start-page: 457
  year: 2010
  end-page: 467
  ident: b62
  article-title: Automatic detection of residential buildings using LIDAR data and multispectral imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 37
  start-page: 787
  year: 2015
  end-page: 798
  ident: b22
  article-title: Data selection based on decision tree for SVM classification on large data sets
  publication-title: Appl. Soft Comput.
– start-page: 166
  year: 2011
  end-page: 171
  ident: b78
  article-title: Finding a ”kneedle” in a haystack: Detecting knee points in system behavior
  publication-title: 2011 31st International Conference on Distributed Computing Systems Workshops
– volume: 51
  start-page: 257
  year: 2013
  end-page: 272
  ident: b64
  article-title: An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 3199
  year: 2003
  end-page: 3202
  ident: b43
  article-title: Extract candidates of support vector from training set
  publication-title: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics, Vol. 5
– volume: 190
  year: 2020
  ident: b48
  article-title: NearCount: Selecting critical instances based on the cited counts of nearest neighbors
  publication-title: Knowl.-Based Syst.
– start-page: 368
  year: 1984
  ident: b51
  article-title: Classification and Regression Trees
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: b84
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inform. Theory
– start-page: 768
  year: 2015
  end-page: 774
  ident: b44
  article-title: A density-based approach for instance selection
  publication-title: 27th International Conference on Tools with Artificial Intelligence
– volume: 34
  start-page: 603
  year: 2013
  end-page: 609
  ident: b52
  article-title: Margin-based ordered aggregation for ensemble pruning
  publication-title: Pattern Recognit. Lett.
– start-page: 576
  year: 2004
  end-page: 584
  ident: b79
  article-title: Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms
  publication-title: 16th IEEE International Conference on Tools with Artificial Intelligence
– volume: 71
  start-page: 611
  year: 2008
  end-page: 619
  ident: b35
  article-title: Support vector machine classification for large data sets via minimum enclosing ball clustering
  publication-title: Neurocomputing
– volume: 122
  start-page: 198
  year: 2013
  end-page: 209
  ident: b40
  article-title: Convex and concave hulls for classification with support vector machine
  publication-title: Neurocomputing
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: b53
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
– volume: 54
  start-page: 22
  year: 2013
  end-page: 31
  ident: b69
  article-title: Repeated double cross-validation for choosing a single solution in evolutionary multi-objective fuzzy classifier design
  publication-title: Knowl.-Based Syst.
– volume: 71
  start-page: 2772
  year: 2008
  end-page: 2781
  ident: b37
  article-title: Selecting valuable training samples for SVMs via data structure analysis
  publication-title: Neurocomputing
– volume: 19
  start-page: 816
  year: 2007
  end-page: 855
  ident: b41
  article-title: Neighborhood property-based pattern selection for support vector machines
  publication-title: Neural Comput.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b83
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– start-page: 3
  year: 2019
  end-page: 33
  ident: b72
  article-title: Hyperparameter optimization
  publication-title: Automated Machine Learning: Methods, Systems, Challenges
– volume: 172
  start-page: 189
  year: 2016
  end-page: 197
  ident: b32
  article-title: Large-scale support vector machine classification with redundant data reduction
  publication-title: Neurocomputing
– year: 2017
  ident: b77
  article-title: Multi-Objective Optimization in Theory and Practice I: Classical Methods
– volume: 93
  start-page: 107
  year: 2004
  end-page: 117
  ident: b8
  article-title: Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification
  publication-title: Remote Sens. Environ.
– start-page: 286
  year: 2018
  end-page: 292
  ident: b54
  article-title: Efficient instance selection based on spatial abstraction
  publication-title: 30th International Conference on Tools with Artificial Intelligence
– volume: 5
  start-page: 33
  year: 2017
  end-page: 52
  ident: b4
  article-title: Remote Sensing Image Classification: A survey of support-vector-machine-based advanced techniques
  publication-title: IEEE Geosci. Remote Sens. Mag.
– start-page: 3
  year: 2011
  end-page: 36
  ident: b82
  article-title: From theory to practice in particle swarm optimization
  publication-title: Handbook of Swarm Intelligence: Concepts, Principles and Applications
– start-page: 237
  year: 2018
  end-page: 240
  ident: b59
  article-title: Knee/elbow estimation based on first derivative threshold
  publication-title: 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications
– volume: 93
  start-page: 107
  issue: 1
  year: 2004
  ident: 10.1016/j.asoc.2020.106716_b8
  article-title: Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.06.017
– volume: 34
  start-page: 58
  year: 2015
  ident: 10.1016/j.asoc.2020.106716_b65
  article-title: Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 308
  year: 2001
  ident: 10.1016/j.asoc.2020.106716_b42
  article-title: Fast training of support vector machines by extracting boundary data
– volume: 51
  start-page: 112
  year: 2015
  ident: 10.1016/j.asoc.2020.106716_b17
  article-title: Fast data selection for SVM training using ensemble margin
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.08.003
– volume: 1
  start-page: 60
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2020.106716_b25
  article-title: A survey on evolutionary instance selection and generation
  publication-title: Int. J. Appl. Metaheuristic Comput.
  doi: 10.4018/jamc.2010102604
– start-page: 991
  year: 2008
  ident: 10.1016/j.asoc.2020.106716_b38
  article-title: A geometric approach to train SVM on very large data sets
– volume: 13
  start-page: 1443
  issue: 7
  year: 2001
  ident: 10.1016/j.asoc.2020.106716_b71
  article-title: Estimating support of a high-dimensional distribution
  publication-title: Neural Comput.
  doi: 10.1162/089976601750264965
– volume: 41
  start-page: 872
  issue: 4
  year: 2003
  ident: 10.1016/j.asoc.2020.106716_b66
  article-title: A progressive morphological filter for removing nonground measurements from airborne LIDAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.810682
– volume: 34
  start-page: 603
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2020.106716_b52
  article-title: Margin-based ordered aggregation for ensemble pruning
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.01.003
– volume: 104
  start-page: 34
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2020.106716_b57
  article-title: Learning to hash for indexing big data-a survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2487976
– ident: 10.1016/j.asoc.2020.106716_b34
  doi: 10.1137/1.9781611972740.12
– start-page: 253
  year: 2004
  ident: 10.1016/j.asoc.2020.106716_b60
  article-title: Locality-sensitive hashing scheme based on p-stable distributions
– volume: 11
  start-page: 1144
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2020.106716_b3
  article-title: Hyperspectral image classification with kernel-based least-squares support vector machines in sum space
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2768541
– volume: 18
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2020.106716_b26
  article-title: Reduced support vector machines: A statistical theory
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.883722
– volume: 51
  start-page: 257
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2020.106716_b64
  article-title: An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2202912
– volume: 52
  start-page: 1272
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2020.106716_b7
  article-title: Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2249522
– volume: 107
  start-page: 83
  year: 2016
  ident: 10.1016/j.asoc.2020.106716_b55
  article-title: Instance selection of linear complexity for big data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.05.056
– ident: 10.1016/j.asoc.2020.106716_b30
– volume: 172
  start-page: 189
  year: 2016
  ident: 10.1016/j.asoc.2020.106716_b32
  article-title: Large-scale support vector machine classification with redundant data reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.102
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2020.106716_b74
  article-title: Taking the human out of the loop: A review of Bayesian optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 71
  start-page: 611
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2020.106716_b35
  article-title: Support vector machine classification for large data sets via minimum enclosing ball clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.07.028
– volume: 19
  start-page: 816
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2020.106716_b41
  article-title: Neighborhood property-based pattern selection for support vector machines
  publication-title: Neural Comput.
  doi: 10.1162/neco.2007.19.3.816
– volume: 68
  start-page: 651
  year: 2018
  ident: 10.1016/j.asoc.2020.106716_b15
  article-title: Local sets for multi-label instance selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.016
– volume: 16
  start-page: 897
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2020.106716_b28
  article-title: Fast classification for large data sets via random selection clustering and Support Vector Machines
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2012-00558
– start-page: 1390
  year: 2010
  ident: 10.1016/j.asoc.2020.106716_b46
  article-title: Sample selection based on maximum entropy for support vector machines
– volume: 52
  start-page: 857
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2020.106716_b19
  article-title: Selecting training sets for support vector machines: a review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9611-1
– volume: 69
  start-page: 94
  year: 2017
  ident: 10.1016/j.asoc.2020.106716_b70
  article-title: Error estimation based on variance analysis of k-fold cross-validation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.03.025
– start-page: 768
  year: 1998
  ident: 10.1016/j.asoc.2020.106716_b5
– volume: 2
  start-page: 57
  year: 2004
  ident: 10.1016/j.asoc.2020.106716_b31
  article-title: Reducing the number of training samples for Fast Support Vector Machine Classification
  publication-title: Neural Inf. Process.-Lett. Rev.
– start-page: 237
  year: 2018
  ident: 10.1016/j.asoc.2020.106716_b59
  article-title: Knee/elbow estimation based on first derivative threshold
– start-page: 185
  year: 1999
  ident: 10.1016/j.asoc.2020.106716_b14
  article-title: Fast training of support vector machines using sequential minimal optimization
– volume: 2
  start-page: 11
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2020.106716_b81
  article-title: A comparison of evaluation techniques for building extraction from airborne laser scanning
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2009.2012488
– start-page: 768
  year: 2015
  ident: 10.1016/j.asoc.2020.106716_b44
  article-title: A density-based approach for instance selection
– volume: 6
  start-page: 22034
  year: 2018
  ident: 10.1016/j.asoc.2020.106716_b63
  article-title: Building extraction from RGB VHR images using shifted shadow algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2819705
– year: 2010
  ident: 10.1016/j.asoc.2020.106716_b11
  article-title: Support vector machines for pattern classification
– volume: 122
  start-page: 198
  year: 2013
  ident: 10.1016/j.asoc.2020.106716_b40
  article-title: Convex and concave hulls for classification with support vector machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.040
– volume: 116
  start-page: 58
  year: 2017
  ident: 10.1016/j.asoc.2020.106716_b18
  article-title: An efficient instance selection algorithm to reconstruct training set for support vector machine
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.10.031
– volume: 146
  start-page: 138
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2020.106716_b21
  article-title: Instance selection and classification tree analysis for large spatial datasets in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.05.010
– start-page: 576
  year: 2004
  ident: 10.1016/j.asoc.2020.106716_b79
  article-title: Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms
– start-page: 572
  year: 2006
  ident: 10.1016/j.asoc.2020.106716_b33
– volume: 80
  start-page: 185
  issue: 1
  year: 2002
  ident: 10.1016/j.asoc.2020.106716_b6
  article-title: Status of land cover classification accuracy assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00295-4
– volume: 10
  start-page: 1474
  issue: 6
  year: 1999
  ident: 10.1016/j.asoc.2020.106716_b29
  article-title: Sample selection via clustering to construct support vector-like classifiers
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.809092
– volume: 71
  start-page: 2772
  issue: 13
  year: 2008
  ident: 10.1016/j.asoc.2020.106716_b37
  article-title: Selecting valuable training samples for SVMs via data structure analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.09.008
– start-page: 469
  year: 2002
  ident: 10.1016/j.asoc.2020.106716_b45
  article-title: Pattern selection for support vector classifiers
– volume: 65
  start-page: 457
  issue: 5
  year: 2010
  ident: 10.1016/j.asoc.2020.106716_b62
  article-title: Automatic detection of residential buildings using LIDAR data and multispectral imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.06.001
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.asoc.2020.106716_b83
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.asoc.2020.106716_b53
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022643204877
– start-page: 147
  year: 1999
  ident: 10.1016/j.asoc.2020.106716_b12
  article-title: Solving the quadratic programming problem arising in support vector classification
– year: 2017
  ident: 10.1016/j.asoc.2020.106716_b77
– volume: 5
  start-page: 33
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106716_b4
  article-title: Remote Sensing Image Classification: A survey of support-vector-machine-based advanced techniques
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2641240
– start-page: 61
  year: 2007
  ident: 10.1016/j.asoc.2020.106716_b27
  article-title: Selecting data for fast support vector machines training
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.asoc.2020.106716_b50
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
– start-page: 3
  year: 2019
  ident: 10.1016/j.asoc.2020.106716_b72
  article-title: Hyperparameter optimization
– year: 2009
  ident: 10.1016/j.asoc.2020.106716_b75
– start-page: 320
  year: 2015
  ident: 10.1016/j.asoc.2020.106716_b20
– year: 2008
  ident: 10.1016/j.asoc.2020.106716_b67
– volume: 5
  start-page: 23
  year: 1999
  ident: 10.1016/j.asoc.2020.106716_b68
  article-title: A terrain ruggedness index that quantifies topographic heterogeneity
  publication-title: Int. J. Sci.
– volume: 10
  start-page: 303
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2020.106716_b80
  article-title: Accuracy assessment measures for object extraction from remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs10020303
– volume: 13
  start-page: 1193
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2020.106716_b73
  article-title: A modified support vector data description based novelty detection approach for machinery components
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.005
– volume: 34
  start-page: 133
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2020.106716_b23
  article-title: A review of instance selection methods
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-010-9165-y
– start-page: 166
  year: 2011
  ident: 10.1016/j.asoc.2020.106716_b78
  article-title: Finding a ”kneedle” in a haystack: Detecting knee points in system behavior
– volume: 34
  start-page: 417
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2020.106716_b24
  article-title: Prototype selection for nearest neighbor classification: Taxonomy and empirical study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.142
– start-page: 368
  year: 1984
  ident: 10.1016/j.asoc.2020.106716_b51
– volume: 87
  start-page: 78
  year: 2014
  ident: 10.1016/j.asoc.2020.106716_b61
  article-title: Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.10.011
– volume: 37
  start-page: 787
  year: 2015
  ident: 10.1016/j.asoc.2020.106716_b22
  article-title: Data selection based on decision tree for SVM classification on large data sets
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.048
– start-page: 3
  year: 2011
  ident: 10.1016/j.asoc.2020.106716_b82
  article-title: From theory to practice in particle swarm optimization
– volume: vol. 11
  start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106716_b76
– volume: 13
  start-page: 131
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2020.106716_b39
  article-title: A new fast prototype selection method based on clustering
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-008-0142-x
– volume: 190
  year: 2020
  ident: 10.1016/j.asoc.2020.106716_b48
  article-title: NearCount: Selecting critical instances based on the cited counts of nearest neighbors
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105196
– start-page: 37
  year: 2010
  ident: 10.1016/j.asoc.2020.106716_b49
  article-title: Support vectors selection for supervised learning using an ensemble approach
– start-page: 286
  year: 2018
  ident: 10.1016/j.asoc.2020.106716_b54
  article-title: Efficient instance selection based on spatial abstraction
– volume: 33
  start-page: 1189
  issue: 6
  year: 2011
  ident: 10.1016/j.asoc.2020.106716_b47
  article-title: Selecting critical patterns based on local geometrical and statistical information
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.188
– start-page: 233
  year: 2010
  ident: 10.1016/j.asoc.2020.106716_b10
  article-title: Tree decomposition for large-scale SVM problems
– ident: 10.1016/j.asoc.2020.106716_b2
  doi: 10.1109/IGARSS.2015.7326952
– volume: 104
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2020.106716_b9
  article-title: Training set size requirements for the classification of a specific class
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.03.004
– start-page: 2353
  year: 2017
  ident: 10.1016/j.asoc.2020.106716_b16
  article-title: LSIS: Large scale instance selection algorithm for big data
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.asoc.2020.106716_b84
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1967.1053964
– start-page: 219
  year: 2000
  ident: 10.1016/j.asoc.2020.106716_b13
  article-title: Scaling-up support vector machines using boosting algorithm
– ident: 10.1016/j.asoc.2020.106716_b56
– start-page: 323
  year: 2005
  ident: 10.1016/j.asoc.2020.106716_b58
– volume: 54
  start-page: 22
  year: 2013
  ident: 10.1016/j.asoc.2020.106716_b69
  article-title: Repeated double cross-validation for choosing a single solution in evolutionary multi-objective fuzzy classifier design
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.09.023
– start-page: 3199
  year: 2003
  ident: 10.1016/j.asoc.2020.106716_b43
  article-title: Extract candidates of support vector from training set
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.asoc.2020.106716_b1
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– start-page: 306
  year: 2003
  ident: 10.1016/j.asoc.2020.106716_b36
  article-title: Classifying large data sets using SVMs with hierarchical clusters
SSID ssj0016928
Score 2.4086704
Snippet Training support vector machines (SVMs) for pixel-based feature extraction purposes from aerial images requires selecting representative pixels (instances) as...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 106716
SubjectTerms Big data
Building extraction
Computerized Image Processing
Data reduction
Datoriserad bildbehandling
Instance selection
Support vector machines
Title A fast instance selection method for support vector machines in building extraction
URI https://dx.doi.org/10.1016/j.asoc.2020.106716
https://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-34022
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425980
Volume 97
WOSCitedRecordID wos000603366700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4EL5SlKAfkApyir2HnZxwiKgEOF1IL2ZjmO027VTVebpOrPZ_xKlyJKOXCJrMhOIn-TyefJeD6E3sFXqElpXcdaa1ig1ITFMidNDFykzkqV8KR1YhPl4SFbLPg3Lw_WWzmBsuvY1RVf_1eo4RyAbbbO_gPc00XhBLQBdDgC7HC8E_BV1MreFP43vM8UkLVKNwZlpxZtEwv7cW2Id3Rpg_bRyqZU2tysqPZC2RG47Y3b9rDNYANt7cF_24T0cQhfP2M3YGFWJAqcxalcrWQzhXD0cu0yAo4G3Xqb9OEGup264T1kweKM-7ihd6EuxfY3b-wCA2dzCYY2Nxebm4J15Ebp66nK9cflj0pcbE7EOApwJZwl99EOLaExQzvVl4PF1-n_UMGtau70MKbNShrzghG_Ncpl8d289R_px3adWMstjh-jR35RgCsH5hN0T3dP0W4Q3MDe_z5DRxU22OKALZ6wxQ5bDNhijy122OKALYzCAVt8je1z9P3TwfGHz7FXxYhVRtgQq1SSMi1kqwhVRZHIJmkL1WgF1E4mqmA1S1MJy0Qu85ICP2G64GXCqWJNWeskfYFm3UWnXyKcwbBUZjU1KgLAFGtOJVVEyZxJljdqD5EwWUL5kvFGueRchNzAM2EmWJgJFm6C91A0jVm7gim39s4DBsJTPkflBNjQrePeO8Cme_xiQKfLE5FmQE__0m8ytFd37LePHl6_FK_RbNiM-g16oC6HZb956630Jyw_k-c
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+instance+selection+method+for+support+vector+machines+in+building+extraction&rft.jtitle=Applied+soft+computing&rft.au=Aslani%2C+Mohammad&rft.au=Seipel%2C+Stefan&rft.date=2020-12-01&rft.issn=1568-4946&rft.volume=97&rft_id=info:doi/10.1016%2Fj.asoc.2020.106716&rft.externalDocID=oai_DiVA_org_uu_425980
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon