Joint autoencoder-regressor deep neural network for remaining useful life prediction
•We introduce a joint autoencoder and regressor architecture for remaining useful life prediction, and demonstrate the effectiveness of this model on two prognostics benchmarks.•We also propose a new fault detection-based approach to modeling remaining useful life degradation and RUL labeling as an...
Saved in:
| Published in: | Engineering science and technology, an international journal Vol. 41; p. 101409 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.05.2023
Elsevier |
| Subjects: | |
| ISSN: | 2215-0986, 2215-0986 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •We introduce a joint autoencoder and regressor architecture for remaining useful life prediction, and demonstrate the effectiveness of this model on two prognostics benchmarks.•We also propose a new fault detection-based approach to modeling remaining useful life degradation and RUL labeling as an alternative to linear and piecewise linear degradation models.•We apply non-linear transformations to raw sensor data, and show that it improves modeling performance on time series data.
Ubiquitous availability of IoT technologies allows processing of large amounts of data to improve prognostics tasks in industrial applications. One such important task of prognostics is the prediction of remaining useful life of a system from past performance data. In practice, although failure points are pinpointed, the actual start of degradation is not necessarily available, but usually modeled simply with a linear degradation assumption. In this paper we present a data-driven approach to remaining useful life prediction using joint autoencoder-regression network, a deep neural network model incorporating a convolutional neural network autoencoder and a long-short term memory network regressor trained end-to-end. We also present a new fault detection-based approach to modeling remaining useful life degradation. This model allows a better estimate of the start and progress of equipment degradation ending with a failure. We demonstrate the effectiveness of the proposed algorithms on two datasets. The first one is C-MAPSS frequently used as a benchmark among prognostic researchers. The second one is PHME20, a recent prognostic dataset from a prognostics competition. These experiments show that the proposed algorithms are capable of predicting remaining useful life as good as the state of art methods. The results also show that fault detection-based labeling outperforms linear labeling. |
|---|---|
| AbstractList | Ubiquitous availability of IoT technologies allows processing of large amounts of data to improve prognostics tasks in industrial applications. One such important task of prognostics is the prediction of remaining useful life of a system from past performance data. In practice, although failure points are pinpointed, the actual start of degradation is not necessarily available, but usually modeled simply with a linear degradation assumption. In this paper we present a data-driven approach to remaining useful life prediction using joint autoencoder-regression network, a deep neural network model incorporating a convolutional neural network autoencoder and a long-short term memory network regressor trained end-to-end. We also present a new fault detection-based approach to modeling remaining useful life degradation. This model allows a better estimate of the start and progress of equipment degradation ending with a failure. We demonstrate the effectiveness of the proposed algorithms on two datasets. The first one is C-MAPSS frequently used as a benchmark among prognostic researchers. The second one is PHME20, a recent prognostic dataset from a prognostics competition. These experiments show that the proposed algorithms are capable of predicting remaining useful life as good as the state of art methods. The results also show that fault detection-based labeling outperforms linear labeling. •We introduce a joint autoencoder and regressor architecture for remaining useful life prediction, and demonstrate the effectiveness of this model on two prognostics benchmarks.•We also propose a new fault detection-based approach to modeling remaining useful life degradation and RUL labeling as an alternative to linear and piecewise linear degradation models.•We apply non-linear transformations to raw sensor data, and show that it improves modeling performance on time series data. Ubiquitous availability of IoT technologies allows processing of large amounts of data to improve prognostics tasks in industrial applications. One such important task of prognostics is the prediction of remaining useful life of a system from past performance data. In practice, although failure points are pinpointed, the actual start of degradation is not necessarily available, but usually modeled simply with a linear degradation assumption. In this paper we present a data-driven approach to remaining useful life prediction using joint autoencoder-regression network, a deep neural network model incorporating a convolutional neural network autoencoder and a long-short term memory network regressor trained end-to-end. We also present a new fault detection-based approach to modeling remaining useful life degradation. This model allows a better estimate of the start and progress of equipment degradation ending with a failure. We demonstrate the effectiveness of the proposed algorithms on two datasets. The first one is C-MAPSS frequently used as a benchmark among prognostic researchers. The second one is PHME20, a recent prognostic dataset from a prognostics competition. These experiments show that the proposed algorithms are capable of predicting remaining useful life as good as the state of art methods. The results also show that fault detection-based labeling outperforms linear labeling. |
| ArticleNumber | 101409 |
| Author | Genc, Yakup İnce, Kürşat |
| Author_xml | – sequence: 1 givenname: Kürşat surname: İnce fullname: İnce, Kürşat email: kince@havelsan.com.tr, kince@gtu.edu.tr organization: Naval Combat Management Technologies Center, HAVELSAN Inc., Pendik/İstanbul, Türkiye – sequence: 2 givenname: Yakup surname: Genc fullname: Genc, Yakup email: yakup.genc@gtu.edu.tr organization: Computer Engineering Department, Gebze Technical University, Gebze/Kocaeli, Türkiye |
| BookMark | eNqFkc1q3DAURkWYQKZJ3iALv4CnkizLoy4KJbT5YaCbdC1k6Woi12MNV5qGvn01cQghi3R1xQff4ercT2QxxQkIuWJ0xSiTn4fVACnbxxWnvDlGgqoTsuSctTVVa7l48z4jlykNlFKmOGOtXJKH-ximXJlDjjDZ6ABrhC1CShErB7CvJjigGcvITxF_V77kCDsTpjBtq0MCfxirMXio9ggu2BzidEFOvRkTXL7Mc_Lrx_eH69t68_Pm7vrbpraCrXNtedsLV_aF1ishwZU9G6VE70237hw4z_3aMWY6EI2STduAVFL0TQ-NU61tzsndzHXRDHqPYWfwr44m6Ocg4lYbzMGOoBmVXSekZMBAABdKSQN9pzzjvoVWFZaYWRZjSgj-lceoPorWg55F66NoPYsutS_vajZkc5SQ0YTxf-WvcxmKpD8BUCcbyhmKRwSbyy_Cx4B_7iyeTQ |
| CitedBy_id | crossref_primary_10_1007_s10796_024_10558_y crossref_primary_10_1016_j_engappai_2025_110285 crossref_primary_10_1002_qre_3693 crossref_primary_10_1109_ACCESS_2025_3580267 crossref_primary_10_1002_qre_70057 |
| Cites_doi | 10.1016/j.ress.2017.11.021 10.1007/978-1-4899-7488-4_196 10.1007/978-3-030-58452-8_24 10.1109/TII.2021.3121326 10.1023/A:1007379606734 10.23919/FRUCT49677.2020.9211058 10.1016/j.ress.2022.108916 10.1007/s40747-018-0082-z 10.1109/ACCESS.2019.2895394 10.1109/TMECH.2021.3098737 10.36001/phme.2020.v5i1.1317 10.1109/TNNLS.2016.2582798 10.1007/s10916-020-1534-8 10.1016/j.ress.2021.108119 10.1016/j.cja.2016.04.007 10.1016/j.ymssp.2017.11.016 10.1109/BigData50022.2020.9377816 10.1109/ICACI49185.2020.9177774 10.1109/ACCESS.2021.3101284 10.3390/app8122416 10.3934/mbe.2019040 10.1016/j.ymssp.2017.11.024 10.1109/ACCESS.2019.2920297 10.1016/j.compind.2019.02.004 10.36001/phme.2020.v5i1.1318 10.1155/2015/793161 10.1109/TNNLS.2021.3070840 |
| ContentType | Journal Article |
| Copyright | 2023 THE AUTHORS |
| Copyright_xml | – notice: 2023 THE AUTHORS |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.jestch.2023.101409 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2215-0986 |
| ExternalDocumentID | oai_doaj_org_article_106774661e1e4e24996aeb79f12f5e59 10_1016_j_jestch_2023_101409 S2215098623000861 |
| GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX AFJKZ APXCP CITATION |
| ID | FETCH-LOGICAL-c418t-c25b4d140e5f946ed2213994bfa787dedf2f8d11a7e4396353e6964b3be3d95c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001026525500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2215-0986 |
| IngestDate | Fri Oct 03 12:44:53 EDT 2025 Sat Nov 29 05:06:09 EST 2025 Tue Nov 18 20:24:45 EST 2025 Sat Aug 17 15:42:57 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Fault detection Remaining useful life C-MAPSS Predictive maintenance |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-c25b4d140e5f946ed2213994bfa787dedf2f8d11a7e4396353e6964b3be3d95c3 |
| OpenAccessLink | https://doaj.org/article/106774661e1e4e24996aeb79f12f5e59 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_106774661e1e4e24996aeb79f12f5e59 crossref_primary_10_1016_j_jestch_2023_101409 crossref_citationtrail_10_1016_j_jestch_2023_101409 elsevier_sciencedirect_doi_10_1016_j_jestch_2023_101409 |
| PublicationCentury | 2000 |
| PublicationDate | May 2023 2023-05-00 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering science and technology, an international journal |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Listou Ellefsen, Bjørlykhaug, Æsøy, Ushakov, Zhang (b0125) June 2018; 183 A. Chaoub, A. Voisin, C. Cerisara, B. Iung, Learning representations with end-to-end models for improved remaining useful life prognostics. https://arxiv.org/abs/2104.05049. Back, Fogel, Michalewicz (b0215) 2000 Li, Gao, Tang, Li (b0230) 2016; 29 Wen, Dong, Gao (b0240) 2019; 16 K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation, CoRR abs/1406.1078, http://arxiv.org/abs/1406.1078. A. Saxena, D. Simon, Turbofan Engine Degradation Simulation Data Set A. Ellefsen, E. Bjorlykhaug, V. Æsøy, H. Zhang, An unsupervised reconstruction-based fault detection algorithm for maritime components, IEEE Access PP (2019) 1–1. doi: 10.1109/ACCESS.2019.2895394. Chen, Chen, Liu (b0060) 2021; 3 Tsui, Chen, Zhou, Hai, Wang (b0070) 2015; 2015 K. Ince, E. Sirkeci, Y. Genc, Remaining useful life prediction for experimental filtration system: A data challenge, in: PHM Society European Conference, 2020, pp. 1–6. doi: 10.36001/phme.2020.v5i1.1317. Al-Dulaimi, Zabihi, Asif, Mohammadi (b0135) 2019; 108 Chen, Qin, Qian, Wang, Liu (b0065) 2023; 230 Zio (b0040) 2022; 218 Zhang, Lim, Qin, Tan (b0225) 2017; 28 Zhao, Bin Liang, Wang (b0180) 2017; 164 D. Giordano, D. Gagar, Fifth european conference of the prognostics and health management society 2020 data challenge X. Li, Q. Ding, J.Q. Sun, Remaining useful life estimation in prognostics using deep convolution neural networks, Reliability Engineering and System Safety 172 (November 2017) (2018) 1–11. doi: 10.1016/j.ress.2017.11.021. Li, Zhang, Ma, Luo, Li (b0005) 2022; 33 S.Z. Li, A. Jain (Eds.), Gaussian Mixture Models, Springer US, Boston, MA, 2015, pp. 827–832. doi: 10.1007/978-1-4899-7488-4_196. (Last accessed: Mar 25, 2023) (February 2016). Sayyad, Kumar, Bongale, Kamat, Patil, Kotecha (b0035) 2021; 9 Elattar, Elminir, Riad (b0075) 2018; 4 Lei, Li, Guo, Li, Yan, Lin (b0030) 2018; 104 Khan, Yairi (b0080) 2018; 107 Li, Xu, Li, Yang, Lei (b0155) 2022 (Last accessed: Mar 25, 2023) (2008). Qin, Zhou, Chen (b0110) 2022; 27 P. Malhotra, V. Tv, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G. Shroff, Multi-sensor prognostics using an unsupervised health index based on lstm encoder-decoder, 1st SIGKDD Workshop on Machine Learning for Prognostics and Health Management. D.P. Kingma, M. Welling, Auto-encoding variational bayes, in: Y. Bengio, Y. LeCun (Eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings, 2014, http://arxiv.org/abs/1312.6114. H. Mo, F. Lucca, J. Malacarne, G. Iacca, Multi-Head CNN-LSTM with Prediction Error Analysis for Remaining Useful Life Prediction, Conference of Open Innovation Association, FRUCT 2020-September (2020) 164–171. doi: 10.23919/FRUCT49677.2020.9211058. Shamayleh, Awad, Farhat (b0020) 2020; 44 Hinton (b0130) 2012 J. Rapoza, Maintaining virtual system uptime in today’s transforming it infrastructure, Online Zhou, Qin, Luo, Wang, Zhu (b0095) 2022 H. Beirami, D. Calzá, A. Cimatti, M. Islam, M. Roveri, P. Svaizer, A data-driven approach for rul prediction of an experimental filtration system, in: PHM Society European Conference, 2020, pp. 1–7. doi: 10.36001/phme.2020.v5i1.1318. (Last accessed: Mar 25, 2023) (March 2006). Heimes (b0175) 2008 A. Zhang, H. Wang, S. Li, Y. Cui, Z. Liu, G. Yang, J. Hu, Transfer learning with deep recurrent neural networks for remaining useful life estimation, Applied Sciences (Switzerland) 8 (12). doi: 10.3390/app8122416. Goodfellow, Bengio, Courville (b0085) 2016 N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, A. Courville, On the spectral bias of neural networks, in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings of the 36th International Conference on Machine Learning, vol. 97 of Proceedings of Machine Learning Research, PMLR, 2019, pp. 5301–5310. doi: 10.48550/arXiv.1806.08734. (Last accessed: Feb 28, 2021) (2020). Bengtsson, Lundström (b0025) 2018; 25 B. Mildenhall, P.P. Srinivasan, M. Tancik, J.T. Barron, R. Ramamoorthi, R. Ng, Nerf: Representing scenes as neural radiance fields for view synthesis, in: A. Vedaldi, H. Bischof, T. Brox, J.M. Frahm (Eds.), Computer Vision – ECCV 2020, Springer International Publishing, Cham, 2020, pp. 405–421. doi: 10.1007/978-3-030-58452-8_24. E. Vadala, C. Graham, Downtime costs auto industry $22k/minute – survey, Online Sohn, Lee, Yan (b0105) 2015; vol. 28 Melendez-Vazquez, Doelling, Bringmann (b0220) 2020 Matthews (b0195) 1975; 405 Y. Jiang, Y. Lyu, Y. Wang, P. Wan, Fusion network combined with bidirectional LSTM network and multiscale CNN for useful life estimation LSTM network and multiscale CNN for useful life estimation, 12th International Conference on Advanced Computational Intelligence, ICACI 2020 (2020) 620–627. doi: 10.1109/ICACI49185.2020.9177774. R. Caruana, Multitask Learning, Machine Learningdoi: 10.1023/A:1007379606734. Xiang, Qin, Luo, Pu (b0160) 2022; 18 Ellefsen, Ushakov, Aesoy, Zhang (b0115) 2019; 7 Xiang (10.1016/j.jestch.2023.101409_b0160) 2022; 18 Zhang (10.1016/j.jestch.2023.101409_b0225) 2017; 28 10.1016/j.jestch.2023.101409_b0205 10.1016/j.jestch.2023.101409_b0165 10.1016/j.jestch.2023.101409_b0045 10.1016/j.jestch.2023.101409_b0100 Heimes (10.1016/j.jestch.2023.101409_b0175) 2008 Al-Dulaimi (10.1016/j.jestch.2023.101409_b0135) 2019; 108 10.1016/j.jestch.2023.101409_b0145 10.1016/j.jestch.2023.101409_b0200 Wen (10.1016/j.jestch.2023.101409_b0240) 2019; 16 Zhao (10.1016/j.jestch.2023.101409_b0180) 2017; 164 Sohn (10.1016/j.jestch.2023.101409_b0105) 2015; vol. 28 Listou Ellefsen (10.1016/j.jestch.2023.101409_b0125) 2018; 183 Goodfellow (10.1016/j.jestch.2023.101409_b0085) 2016 Shamayleh (10.1016/j.jestch.2023.101409_b0020) 2020; 44 Bengtsson (10.1016/j.jestch.2023.101409_b0025) 2018; 25 Zhou (10.1016/j.jestch.2023.101409_b0095) 2022 Matthews (10.1016/j.jestch.2023.101409_b0195) 1975; 405 Melendez-Vazquez (10.1016/j.jestch.2023.101409_b0220) 2020 10.1016/j.jestch.2023.101409_b0140 10.1016/j.jestch.2023.101409_b0185 10.1016/j.jestch.2023.101409_b0120 Tsui (10.1016/j.jestch.2023.101409_b0070) 2015; 2015 Li (10.1016/j.jestch.2023.101409_b0155) 2022 Ellefsen (10.1016/j.jestch.2023.101409_b0115) 2019; 7 10.1016/j.jestch.2023.101409_b0015 10.1016/j.jestch.2023.101409_b0235 10.1016/j.jestch.2023.101409_b0055 Elattar (10.1016/j.jestch.2023.101409_b0075) 2018; 4 10.1016/j.jestch.2023.101409_b0210 Chen (10.1016/j.jestch.2023.101409_b0065) 2023; 230 Sayyad (10.1016/j.jestch.2023.101409_b0035) 2021; 9 Hinton (10.1016/j.jestch.2023.101409_b0130) 2012 Qin (10.1016/j.jestch.2023.101409_b0110) 2022; 27 Back (10.1016/j.jestch.2023.101409_b0215) 2000 Lei (10.1016/j.jestch.2023.101409_b0030) 2018; 104 10.1016/j.jestch.2023.101409_b0090 Li (10.1016/j.jestch.2023.101409_b0230) 2016; 29 Khan (10.1016/j.jestch.2023.101409_b0080) 2018; 107 10.1016/j.jestch.2023.101409_b0150 10.1016/j.jestch.2023.101409_b0010 Li (10.1016/j.jestch.2023.101409_b0005) 2022; 33 Zio (10.1016/j.jestch.2023.101409_b0040) 2022; 218 10.1016/j.jestch.2023.101409_b0190 Chen (10.1016/j.jestch.2023.101409_b0060) 2021; 3 10.1016/j.jestch.2023.101409_b0170 10.1016/j.jestch.2023.101409_b0050 |
| References_xml | – volume: 7 start-page: 71563 year: 2019 end-page: 71575 ident: b0115 article-title: Validation of Data-Driven Labeling Approaches Using a Novel Deep Network Structure for Remaining Useful Life Predictions publication-title: IEEE Access – volume: 218 year: 2022 ident: b0040 article-title: Prognostics and health management (phm): Where are we and where do we (need to) go in theory and practice publication-title: Reliab. Eng. Syst. Safety – reference: D.P. Kingma, M. Welling, Auto-encoding variational bayes, in: Y. Bengio, Y. LeCun (Eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings, 2014, http://arxiv.org/abs/1312.6114. – reference: J. Rapoza, Maintaining virtual system uptime in today’s transforming it infrastructure, Online, – volume: 107 start-page: 241 year: 2018 end-page: 265 ident: b0080 article-title: A review on the application of deep learning in system health management publication-title: Mech. Syst. Signal Process. – volume: 18 start-page: 7230 year: 2022 end-page: 7239 ident: b0160 article-title: Spatiotemporally multidifferential processing deep neural network and its application to equipment remaining useful life prediction publication-title: IEEE Trans. Industr. Inf. – reference: N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, A. Courville, On the spectral bias of neural networks, in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings of the 36th International Conference on Machine Learning, vol. 97 of Proceedings of Machine Learning Research, PMLR, 2019, pp. 5301–5310. doi: 10.48550/arXiv.1806.08734. – reference: (Last accessed: Feb 28, 2021) (2020). – reference: R. Caruana, Multitask Learning, Machine Learningdoi: 10.1023/A:1007379606734. – reference: A. Zhang, H. Wang, S. Li, Y. Cui, Z. Liu, G. Yang, J. Hu, Transfer learning with deep recurrent neural networks for remaining useful life estimation, Applied Sciences (Switzerland) 8 (12). doi: 10.3390/app8122416. – volume: 25 start-page: 118 year: 2018 end-page: 125 ident: b0025 article-title: On the importance of combining “the new with “the old – one important prerequisite for maintenance in industry 4.0 publication-title: Proc. Manuf. – reference: B. Mildenhall, P.P. Srinivasan, M. Tancik, J.T. Barron, R. Ramamoorthi, R. Ng, Nerf: Representing scenes as neural radiance fields for view synthesis, in: A. Vedaldi, H. Bischof, T. Brox, J.M. Frahm (Eds.), Computer Vision – ECCV 2020, Springer International Publishing, Cham, 2020, pp. 405–421. doi: 10.1007/978-3-030-58452-8_24. – start-page: 1 year: 2022 end-page: 14 ident: b0155 article-title: Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks publication-title: IEEE/CAA J. Autom. Sin. – start-page: 599 year: 2012 end-page: 619 ident: b0130 article-title: A Practical Guide to Training Restricted Boltzmann Machines – reference: D. Giordano, D. Gagar, Fifth european conference of the prognostics and health management society 2020 data challenge, – volume: 104 start-page: 799 year: 2018 end-page: 834 ident: b0030 article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction publication-title: Mech. Syst. Signal Process. – reference: P. Malhotra, V. Tv, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G. Shroff, Multi-sensor prognostics using an unsupervised health index based on lstm encoder-decoder, 1st SIGKDD Workshop on Machine Learning for Prognostics and Health Management. – reference: (Last accessed: Mar 25, 2023) (March 2006). – volume: 230 year: 2023 ident: b0065 article-title: Transfer life prediction of gears by cross-domain health indicator construction and multi-hierarchical long-term memory augmented network publication-title: Reliab. Eng. Syst. Safety – reference: K. Ince, E. Sirkeci, Y. Genc, Remaining useful life prediction for experimental filtration system: A data challenge, in: PHM Society European Conference, 2020, pp. 1–6. doi: 10.36001/phme.2020.v5i1.1317. – reference: Y. Jiang, Y. Lyu, Y. Wang, P. Wan, Fusion network combined with bidirectional LSTM network and multiscale CNN for useful life estimation LSTM network and multiscale CNN for useful life estimation, 12th International Conference on Advanced Computational Intelligence, ICACI 2020 (2020) 620–627. doi: 10.1109/ICACI49185.2020.9177774. – year: 2016 ident: b0085 article-title: Deep Learning – volume: 16 start-page: 862 year: 2019 end-page: 880 ident: b0240 article-title: A new ensemble residual convolutional neural network for remaining useful life estimation publication-title: Math. Biosci. Eng. – volume: 33 start-page: 5480 year: 2022 end-page: 5491 ident: b0005 article-title: Degradation alignment in remaining useful life prediction using deep cycle-consistent learning publication-title: IEEE Trans. Neural Networks Learn. Syst. – reference: K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation, CoRR abs/1406.1078, http://arxiv.org/abs/1406.1078. – reference: X. Li, Q. Ding, J.Q. Sun, Remaining useful life estimation in prognostics using deep convolution neural networks, Reliability Engineering and System Safety 172 (November 2017) (2018) 1–11. doi: 10.1016/j.ress.2017.11.021. – volume: 183 start-page: 240 year: June 2018 end-page: 251 ident: b0125 article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture publication-title: Reliab. Eng. Syst. Saf. – volume: 108 start-page: 186 year: 2019 end-page: 196 ident: b0135 article-title: A multimodal and hybrid deep neural network model for Remaining Useful Life estimation publication-title: Comput. Ind. – reference: A. Chaoub, A. Voisin, C. Cerisara, B. Iung, Learning representations with end-to-end models for improved remaining useful life prognostics. https://arxiv.org/abs/2104.05049. – reference: S.Z. Li, A. Jain (Eds.), Gaussian Mixture Models, Springer US, Boston, MA, 2015, pp. 827–832. doi: 10.1007/978-1-4899-7488-4_196. – volume: 2015 start-page: 1 year: 2015 end-page: 17 ident: b0070 article-title: Prognostics and health management: A review on data driven approaches publication-title: Math. Problems Eng. – volume: 4 start-page: 1 year: 2018 end-page: 12 ident: b0075 article-title: Towards online data-driven prognostics system publication-title: Complex Intell. Syst. – year: 2000 ident: b0215 article-title: Evolutionary Computation 1: Basic Algorithms and Operators – volume: 3 start-page: 1 year: 2021 end-page: 17 ident: b0060 article-title: Using temporal convolution network for remaining useful lifetime prediction publication-title: Eng. Rep. – reference: A. Ellefsen, E. Bjorlykhaug, V. Æsøy, H. Zhang, An unsupervised reconstruction-based fault detection algorithm for maritime components, IEEE Access PP (2019) 1–1. doi: 10.1109/ACCESS.2019.2895394. – volume: 44 start-page: 1 year: 2020 end-page: 12 ident: b0020 article-title: Iot based predictive maintenance management of medical equipment publication-title: J. Med. Syst. – reference: H. Beirami, D. Calzá, A. Cimatti, M. Islam, M. Roveri, P. Svaizer, A data-driven approach for rul prediction of an experimental filtration system, in: PHM Society European Conference, 2020, pp. 1–7. doi: 10.36001/phme.2020.v5i1.1318. – volume: 164 start-page: 74 year: 2017 end-page: 83 ident: b0180 article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning publication-title: Reliab. Eng. Syst. Safety – reference: H. Mo, F. Lucca, J. Malacarne, G. Iacca, Multi-Head CNN-LSTM with Prediction Error Analysis for Remaining Useful Life Prediction, Conference of Open Innovation Association, FRUCT 2020-September (2020) 164–171. doi: 10.23919/FRUCT49677.2020.9211058. – reference: E. Vadala, C. Graham, Downtime costs auto industry $22k/minute – survey, Online, – reference: A. Saxena, D. Simon, Turbofan Engine Degradation Simulation Data Set, – start-page: 1 year: 2022 end-page: 11 ident: b0095 article-title: Dual-thread gated recurrent unit for gear remaining useful life prediction publication-title: IEEE Trans. Industr. Inf. – volume: 9 start-page: 110255 year: 2021 end-page: 110286 ident: b0035 article-title: Data-Driven Remaining Useful Life Estimation for Milling Process: Sensors, Algorithms, Datasets, and Future Directions publication-title: IEEE Access – volume: 28 start-page: 2306 year: 2017 end-page: 2318 ident: b0225 article-title: Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics publication-title: IEEE Trans. Neural Networks Learn. Syst. – reference: (Last accessed: Mar 25, 2023) (2008). – volume: vol. 28 year: 2015 ident: b0105 article-title: Learning structured output representation using deep conditional generative models publication-title: Advances in Neural Information Processing Systems – volume: 27 start-page: 1447 year: 2022 end-page: 1456 ident: b0110 article-title: Unsupervised health indicator construction by a novel degradation-trend-constrained variational autoencoder and its applications publication-title: IEEE/ASME Trans. Mechatron. – volume: 29 start-page: 662 year: 2016 end-page: 674 ident: b0230 article-title: Remaining useful life estimation for deteriorating systems with time-varying operational conditions and condition-specific failure zones publication-title: Chin. J. Aeronaut. – start-page: 1 year: 2008 end-page: 6 ident: b0175 article-title: Recurrent neural networks for remaining useful life estimation publication-title: 2008 International Conference on Prognostics and Health Management – volume: 405 start-page: 442 year: 1975 end-page: 451 ident: b0195 article-title: Comparison of the predicted and observed secondary structure of t4 phage lysozyme, Biochimica et Biophysica Acta (BBA) - Protein publication-title: Structure – reference: (Last accessed: Mar 25, 2023) (February 2016). – start-page: 4137 year: 2020 end-page: 4146 ident: b0220 article-title: Multipath temporal convolutional network for remaining useful life estimation publication-title: 2020 IEEE International Conference on Big Data (Big Data) – start-page: 1 year: 2022 ident: 10.1016/j.jestch.2023.101409_b0155 article-title: Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks publication-title: IEEE/CAA J. Autom. Sin. – ident: 10.1016/j.jestch.2023.101409_b0045 – ident: 10.1016/j.jestch.2023.101409_b0055 doi: 10.1016/j.ress.2017.11.021 – volume: 25 start-page: 118 year: 2018 ident: 10.1016/j.jestch.2023.101409_b0025 article-title: On the importance of combining “the new with “the old – one important prerequisite for maintenance in industry 4.0 publication-title: Proc. Manuf. – volume: 183 start-page: 240 issue: 2019 year: 2018 ident: 10.1016/j.jestch.2023.101409_b0125 article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture publication-title: Reliab. Eng. Syst. Saf. – ident: 10.1016/j.jestch.2023.101409_b0200 doi: 10.1007/978-1-4899-7488-4_196 – ident: 10.1016/j.jestch.2023.101409_b0210 doi: 10.1007/978-3-030-58452-8_24 – volume: 18 start-page: 7230 issue: 10 year: 2022 ident: 10.1016/j.jestch.2023.101409_b0160 article-title: Spatiotemporally multidifferential processing deep neural network and its application to equipment remaining useful life prediction publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2021.3121326 – volume: 164 start-page: 74 issue: 457 year: 2017 ident: 10.1016/j.jestch.2023.101409_b0180 article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning publication-title: Reliab. Eng. Syst. Safety – year: 2016 ident: 10.1016/j.jestch.2023.101409_b0085 – start-page: 599 year: 2012 ident: 10.1016/j.jestch.2023.101409_b0130 – ident: 10.1016/j.jestch.2023.101409_b0165 doi: 10.1023/A:1007379606734 – ident: 10.1016/j.jestch.2023.101409_b0100 – ident: 10.1016/j.jestch.2023.101409_b0140 doi: 10.23919/FRUCT49677.2020.9211058 – volume: 230 year: 2023 ident: 10.1016/j.jestch.2023.101409_b0065 article-title: Transfer life prediction of gears by cross-domain health indicator construction and multi-hierarchical long-term memory augmented network publication-title: Reliab. Eng. Syst. Safety doi: 10.1016/j.ress.2022.108916 – volume: 4 start-page: 1 year: 2018 ident: 10.1016/j.jestch.2023.101409_b0075 article-title: Towards online data-driven prognostics system publication-title: Complex Intell. Syst. doi: 10.1007/s40747-018-0082-z – ident: 10.1016/j.jestch.2023.101409_b0010 – volume: 405 start-page: 442 issue: 2 year: 1975 ident: 10.1016/j.jestch.2023.101409_b0195 article-title: Comparison of the predicted and observed secondary structure of t4 phage lysozyme, Biochimica et Biophysica Acta (BBA) - Protein publication-title: Structure – ident: 10.1016/j.jestch.2023.101409_b0120 doi: 10.1109/ACCESS.2019.2895394 – volume: vol. 28 year: 2015 ident: 10.1016/j.jestch.2023.101409_b0105 article-title: Learning structured output representation using deep conditional generative models – volume: 27 start-page: 1447 issue: 3 year: 2022 ident: 10.1016/j.jestch.2023.101409_b0110 article-title: Unsupervised health indicator construction by a novel degradation-trend-constrained variational autoencoder and its applications publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2021.3098737 – ident: 10.1016/j.jestch.2023.101409_b0235 doi: 10.36001/phme.2020.v5i1.1317 – start-page: 1 year: 2008 ident: 10.1016/j.jestch.2023.101409_b0175 article-title: Recurrent neural networks for remaining useful life estimation publication-title: 2008 International Conference on Prognostics and Health Management – volume: 28 start-page: 2306 issue: 10 year: 2017 ident: 10.1016/j.jestch.2023.101409_b0225 article-title: Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2016.2582798 – ident: 10.1016/j.jestch.2023.101409_b0090 – ident: 10.1016/j.jestch.2023.101409_b0205 – volume: 44 start-page: 1 issue: 4 year: 2020 ident: 10.1016/j.jestch.2023.101409_b0020 article-title: Iot based predictive maintenance management of medical equipment publication-title: J. Med. Syst. doi: 10.1007/s10916-020-1534-8 – volume: 218 year: 2022 ident: 10.1016/j.jestch.2023.101409_b0040 article-title: Prognostics and health management (phm): Where are we and where do we (need to) go in theory and practice publication-title: Reliab. Eng. Syst. Safety doi: 10.1016/j.ress.2021.108119 – volume: 29 start-page: 662 issue: 3 year: 2016 ident: 10.1016/j.jestch.2023.101409_b0230 article-title: Remaining useful life estimation for deteriorating systems with time-varying operational conditions and condition-specific failure zones publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2016.04.007 – volume: 104 start-page: 799 year: 2018 ident: 10.1016/j.jestch.2023.101409_b0030 article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.11.016 – ident: 10.1016/j.jestch.2023.101409_b0050 – start-page: 4137 year: 2020 ident: 10.1016/j.jestch.2023.101409_b0220 article-title: Multipath temporal convolutional network for remaining useful life estimation publication-title: 2020 IEEE International Conference on Big Data (Big Data) doi: 10.1109/BigData50022.2020.9377816 – ident: 10.1016/j.jestch.2023.101409_b0145 doi: 10.1109/ICACI49185.2020.9177774 – volume: 9 start-page: 110255 year: 2021 ident: 10.1016/j.jestch.2023.101409_b0035 article-title: Data-Driven Remaining Useful Life Estimation for Milling Process: Sensors, Algorithms, Datasets, and Future Directions publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3101284 – ident: 10.1016/j.jestch.2023.101409_b0190 doi: 10.3390/app8122416 – volume: 3 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.jestch.2023.101409_b0060 article-title: Using temporal convolution network for remaining useful lifetime prediction publication-title: Eng. Rep. – volume: 16 start-page: 862 issue: 2 year: 2019 ident: 10.1016/j.jestch.2023.101409_b0240 article-title: A new ensemble residual convolutional neural network for remaining useful life estimation publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2019040 – volume: 107 start-page: 241 year: 2018 ident: 10.1016/j.jestch.2023.101409_b0080 article-title: A review on the application of deep learning in system health management publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.11.024 – ident: 10.1016/j.jestch.2023.101409_b0015 – volume: 7 start-page: 71563 year: 2019 ident: 10.1016/j.jestch.2023.101409_b0115 article-title: Validation of Data-Driven Labeling Approaches Using a Novel Deep Network Structure for Remaining Useful Life Predictions publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920297 – volume: 108 start-page: 186 year: 2019 ident: 10.1016/j.jestch.2023.101409_b0135 article-title: A multimodal and hybrid deep neural network model for Remaining Useful Life estimation publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.02.004 – start-page: 1 year: 2022 ident: 10.1016/j.jestch.2023.101409_b0095 article-title: Dual-thread gated recurrent unit for gear remaining useful life prediction publication-title: IEEE Trans. Industr. Inf. – ident: 10.1016/j.jestch.2023.101409_b0185 – ident: 10.1016/j.jestch.2023.101409_b0170 doi: 10.36001/phme.2020.v5i1.1318 – ident: 10.1016/j.jestch.2023.101409_b0150 – year: 2000 ident: 10.1016/j.jestch.2023.101409_b0215 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.jestch.2023.101409_b0070 article-title: Prognostics and health management: A review on data driven approaches publication-title: Math. Problems Eng. doi: 10.1155/2015/793161 – volume: 33 start-page: 5480 issue: 10 year: 2022 ident: 10.1016/j.jestch.2023.101409_b0005 article-title: Degradation alignment in remaining useful life prediction using deep cycle-consistent learning publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2021.3070840 |
| SSID | ssj0001921156 |
| Score | 2.2952254 |
| Snippet | •We introduce a joint autoencoder and regressor architecture for remaining useful life prediction, and demonstrate the effectiveness of this model on two... Ubiquitous availability of IoT technologies allows processing of large amounts of data to improve prognostics tasks in industrial applications. One such... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 101409 |
| SubjectTerms | C-MAPSS Deep learning Fault detection Predictive maintenance Remaining useful life |
| Title | Joint autoencoder-regressor deep neural network for remaining useful life prediction |
| URI | https://dx.doi.org/10.1016/j.jestch.2023.101409 https://doaj.org/article/106774661e1e4e24996aeb79f12f5e59 |
| Volume | 41 |
| WOSCitedRecordID | wos001026525500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2215-0986 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001921156 issn: 2215-0986 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2215-0986 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001921156 issn: 2215-0986 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECbGeNCD8RnXVzh4JbZASzmq0RijxoMabw0tQ7KbtbupXY_-dgfomp704qUHQqEMU-abMPMNIWeCV5k1rmCFkRmTlcVzUCrNlEuKCv0D40J-xeu9enws3t7006DUl48Ji_TAUXDngeJMohWBFCSgs6BzA5XSLuUugyyk7iVKD5ypScQtCHVCZTm0aSzRRb7MmwvBXRM8csNdBBe-Sfp4xIFdCvT9A_M0MDk3W2Szx4r0In7jNlmBZodsDBgEd8nz3WzcdNQsuplnpLTQshaCCz1rqQWYU09YiYM0MdybIkalLbzHuhB08QFuMaXTsQM6b_2djd-nPfJyc_18dcv6QgmslmnRsZpnlbS4CsicljlYXDQCD1k5g_-jBeu4K2yaGgWIPxBiCMh1LitRgbA6q8U-WW1mDRwQKkBmKrHc5bWQVlnDleEOeILAqKi1HRGxFFNZ9yzivpjFtFyGi03KKNzSC7eMwh0R9vPWPLJo_NH_0u_AT1_PgR0aUDPKXjPKvzRjRNRy_8oeTkSYgEONf53-8D-mPyLrfsgYHHlMVrt2ASdkrf7sxh_taVBXfD58XX8DSwTuEg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+autoencoder-regressor+deep+neural+network+for+remaining+useful+life+prediction&rft.jtitle=Engineering+science+and+technology%2C+an+international+journal&rft.au=%C4%B0nce%2C+K%C3%BCr%C5%9Fat&rft.au=Genc%2C+Yakup&rft.date=2023-05-01&rft.issn=2215-0986&rft.eissn=2215-0986&rft.volume=41&rft.spage=101409&rft_id=info:doi/10.1016%2Fj.jestch.2023.101409&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jestch_2023_101409 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0986&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0986&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0986&client=summon |