Hybridization of stochastic hydrological models and machine learning methods for improving rainfall-runoff modeling

Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models. However, the commonly used models are deterministic. This study introdu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Results in engineering Jg. 25; S. 104079
Hauptverfasser: Houénafa, Sianou Ezéckiel, Johnson, Olatunji, Ronoh, Erick K., Moore, Stephen E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2025
Elsevier
Schlagworte:
ISSN:2590-1230, 2590-1230
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models. However, the commonly used models are deterministic. This study introduces an innovative extension to stochastic hydrological models, offering a novel combination that has not been previously explored. The proposed approach predicts discharge by integrating the simulated statistical properties of daily discharge probability distributions, derived from a stochastic rainfall-runoff model, into machine learning frameworks. This integration allows the machine learning models to incorporate insights from the uncertainties in discharge, thereby enhancing predictive accuracy of discharge simulations. The hybridization presented combines the physically-based stochastic HyMoLAP (Sto. HyMoLAP) model with machine learning techniques, including Wavelet-based eXtreme Gradient Boosting (WXGBoost) and Wavelet-based Gated Recurrent Unit (WGRU). Evaluated on the Ouémé at Bonou river basin, Benin, the Sto. HyMoLAP-WGRU model shows the best predictive performance, especially for low and high discharges. It achieves an overall Nash-Sutcliffe Efficiency (NSE) of 0.896, which is 7.30% higher than the NSE of HyMoLAP, and 29.67% and 259.71% higher than those of the standalone machine learning models. The Combined Accuracy (CA) is 38.11, reflecting reductions of 19.81%, 42.30%, and 62.41% compared to the standalone models. The analyses show that the performance of hybrid models depends on the simulated discharge distribution properties used as input. They suggest that the hybridization approach could be particularly beneficial for runoff simulations in catchments subject to significant random fluctuations where point discharge simulation is challenging. •A novel hybrid technique is developed using only precipitation and evapotranspiration to predict discharge.•Integrating uncertainty insights from stochastic models into machine learning enhances discharge predictions.•The Sto.HyMoLAP-WGRU hybrid model demonstrates the best predictive performance, particularly for low and high discharges.•The performance of the hybridization technique depends on the range of uncertainties considered.
AbstractList Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models. However, the commonly used models are deterministic. This study introduces an innovative extension to stochastic hydrological models, offering a novel combination that has not been previously explored. The proposed approach predicts discharge by integrating the simulated statistical properties of daily discharge probability distributions, derived from a stochastic rainfall-runoff model, into machine learning frameworks. This integration allows the machine learning models to incorporate insights from the uncertainties in discharge, thereby enhancing predictive accuracy of discharge simulations. The hybridization presented combines the physically-based stochastic HyMoLAP (Sto. HyMoLAP) model with machine learning techniques, including Wavelet-based eXtreme Gradient Boosting (WXGBoost) and Wavelet-based Gated Recurrent Unit (WGRU). Evaluated on the Ouémé at Bonou river basin, Benin, the Sto. HyMoLAP-WGRU model shows the best predictive performance, especially for low and high discharges. It achieves an overall Nash-Sutcliffe Efficiency (NSE) of 0.896, which is 7.30% higher than the NSE of HyMoLAP, and 29.67% and 259.71% higher than those of the standalone machine learning models. The Combined Accuracy (CA) is 38.11, reflecting reductions of 19.81%, 42.30%, and 62.41% compared to the standalone models. The analyses show that the performance of hybrid models depends on the simulated discharge distribution properties used as input. They suggest that the hybridization approach could be particularly beneficial for runoff simulations in catchments subject to significant random fluctuations where point discharge simulation is challenging. •A novel hybrid technique is developed using only precipitation and evapotranspiration to predict discharge.•Integrating uncertainty insights from stochastic models into machine learning enhances discharge predictions.•The Sto.HyMoLAP-WGRU hybrid model demonstrates the best predictive performance, particularly for low and high discharges.•The performance of the hybridization technique depends on the range of uncertainties considered.
Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models. However, the commonly used models are deterministic. This study introduces an innovative extension to stochastic hydrological models, offering a novel combination that has not been previously explored. The proposed approach predicts discharge by integrating the simulated statistical properties of daily discharge probability distributions, derived from a stochastic rainfall-runoff model, into machine learning frameworks. This integration allows the machine learning models to incorporate insights from the uncertainties in discharge, thereby enhancing predictive accuracy of discharge simulations. The hybridization presented combines the physically-based stochastic HyMoLAP (Sto. HyMoLAP) model with machine learning techniques, including Wavelet-based eXtreme Gradient Boosting (WXGBoost) and Wavelet-based Gated Recurrent Unit (WGRU). Evaluated on the Ouémé at Bonou river basin, Benin, the Sto. HyMoLAP-WGRU model shows the best predictive performance, especially for low and high discharges. It achieves an overall Nash-Sutcliffe Efficiency (NSE) of 0.896, which is 7.30% higher than the NSE of HyMoLAP, and 29.67% and 259.71% higher than those of the standalone machine learning models. The Combined Accuracy (CA) is 38.11, reflecting reductions of 19.81%, 42.30%, and 62.41% compared to the standalone models. The analyses show that the performance of hybrid models depends on the simulated discharge distribution properties used as input. They suggest that the hybridization approach could be particularly beneficial for runoff simulations in catchments subject to significant random fluctuations where point discharge simulation is challenging.
ArticleNumber 104079
Author Johnson, Olatunji
Ronoh, Erick K.
Moore, Stephen E.
Houénafa, Sianou Ezéckiel
Author_xml – sequence: 1
  givenname: Sianou Ezéckiel
  orcidid: 0009-0003-5156-0374
  surname: Houénafa
  fullname: Houénafa, Sianou Ezéckiel
  email: ezeckiel.sianou@students.jkuat.ac.ke
  organization: Department of Mathematics, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya
– sequence: 2
  givenname: Olatunji
  surname: Johnson
  fullname: Johnson, Olatunji
  organization: Department of Mathematics, University of Manchester, Manchester, United Kingdom
– sequence: 3
  givenname: Erick K.
  surname: Ronoh
  fullname: Ronoh, Erick K.
  organization: Department of Agricultural and Biosystems Engineering, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
– sequence: 4
  givenname: Stephen E.
  surname: Moore
  fullname: Moore, Stephen E.
  organization: Department of Mathematics, University of Cape Coast, Cape Coast, Ghana
BookMark eNqFkV9LwzAUxYMoOHXfwId8gc6kTdbWB0GG_0DwRZ9DenO7ZbTJSOpgfnqzVUR80KeEc3N-4dxzRo6dd0jIJWczzvj8aj0L1qFbznKWyyQJVtZHZJLLmmU8L9jxj_spmca4ZozlVfIW5YTEx10TrLEferDeUd_SOHhY6ThYoKudCb7zSwu6o7032EWqnaG9hlX6k3aog7NuSXscVt5E2vpAbb8JfrtXg7au1V2XhXfn23YkpMEFOUlyxOnXeU7e7u9eF4_Z88vD0-L2OQPBqyFrapPLSvM54xJZAYYxw0yBMOeABrluuDZFMzeixrwWaSgBWi2x4aKE9PKcPI1c4_VabYLtddgpr606CD4slQ4pZ4cKeYNlAZzLBkUlRYUSRLnXqqIwVZ5YYmRB8DEGbL95nKl9D2qtxh7Uvgc19pBs179sYIfDqoe0ne4_881oTnvHrcWgIlh0KbwNCENKYf8GfAKfFat_
CitedBy_id crossref_primary_10_1016_j_rineng_2025_104928
crossref_primary_10_1016_j_rineng_2025_106116
crossref_primary_10_1016_j_rineng_2025_107228
crossref_primary_10_70322_hee_2025_10006
crossref_primary_10_1016_j_rineng_2025_107381
crossref_primary_10_1016_j_rineng_2025_104545
crossref_primary_10_1016_j_rineng_2025_104956
crossref_primary_10_1016_j_rineng_2025_106250
Cites_doi 10.1016/S0022-1694(03)00225-7
10.1007/s00477-018-1560-y
10.1155/2022/1860460
10.1007/s10661-023-11331-5
10.1007/s11269-021-02937-w
10.1016/j.rineng.2024.103319
10.3390/w15081556
10.1007/s11069-020-04438-2
10.1007/s00703-017-0546-5
10.2166/nh.2024.016
10.2166/nh.2017.076
10.1016/j.rineng.2024.102017
10.1029/2020WR028091
10.1080/02626667.2017.1330542
10.1016/j.rineng.2024.103421
10.13031/trans.58.10715
10.1002/for.3028
10.1016/j.jhydrol.2019.124371
10.1016/j.jhydrol.2009.12.003
10.1016/j.jhydrol.2021.126433
10.1007/s10661-022-10696-3
10.1016/j.rineng.2024.102044
10.1016/j.rineng.2024.102504
10.3390/jmse11020259
10.1061/(ASCE)1084-0699(2006)11:6(597)
10.1016/j.rineng.2024.101920
10.1109/ACCESS.2021.3077703
10.1016/j.rineng.2024.102215
10.1016/j.rineng.2024.103086
10.1038/s41598-022-07693-4
10.2166/wst.2022.400
10.1016/j.iot.2022.100615
10.1029/94JD00483
10.1080/00031305.1998.10480559
10.1016/j.envsoft.2023.105831
10.1080/02626667.2019.1686639
10.1016/j.rineng.2024.101828
10.1016/j.rineng.2023.101024
10.1029/2000JD900719
10.1016/j.advwatres.2021.104017
10.1016/j.compag.2021.106541
10.3390/w10111655
10.1016/j.jhydrol.2014.03.057
10.5194/hess-26-3377-2022
10.3390/hydrology4040047
10.1016/j.jhydrol.2020.124901
10.1016/j.scitotenv.2024.171684
10.2166/hydro.2011.044
10.1016/0022-1694(86)90114-9
10.1016/j.rineng.2024.102682
10.1016/j.atmosres.2012.11.003
10.1007/s00477-023-02435-y
10.1016/j.pce.2006.03.020
10.1016/j.rineng.2024.103048
10.1109/18.57199
10.5194/hess-22-6005-2018
10.3390/hydrology9120226
10.3390/app12042126
10.2166/ws.2018.189
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2025.104079
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_e1be73c115be48548e5c47be73833d82
10_1016_j_rineng_2025_104079
S2590123025001677
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c418t-b9d258a16015e03cd00d0d3ec61cede1ab1ad3b6d49e2940d05ccfa5eb147c0d3
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414037900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2590-1230
IngestDate Fri Oct 03 12:45:00 EDT 2025
Thu Nov 13 04:30:40 EST 2025
Tue Nov 18 22:30:57 EST 2025
Sat Jul 05 17:10:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords HyMoLAP
Uncertainties
Hybrid models
Stochastic hydrological model
Machine learning
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-b9d258a16015e03cd00d0d3ec61cede1ab1ad3b6d49e2940d05ccfa5eb147c0d3
ORCID 0009-0003-5156-0374
OpenAccessLink https://doaj.org/article/e1be73c115be48548e5c47be73833d82
ParticipantIDs doaj_primary_oai_doaj_org_article_e1be73c115be48548e5c47be73833d82
crossref_primary_10_1016_j_rineng_2025_104079
crossref_citationtrail_10_1016_j_rineng_2025_104079
elsevier_sciencedirect_doi_10_1016_j_rineng_2025_104079
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Biao (br0180) 2017; 4
Liang, Lettenmaier, Wood, Burges (br0100) 1994; 99
Adamowski, Chan, Prasher, Sharda (br0250) 2012; 14
Moriasi, Gitau, Pai, Daggupati (br0770) 2015; 58
Adnan, Mostafa, Islam, Kisi, Kuriqi, Heddam (br0390) 2021; 191
McCuen, Knight, Cutter (br0520) 2006; 11
Sang (br0540) 2013; 122
Kedam, Tiwari, Kumar, Khedher, Salem (br0290) 2024; 22
Haugh (br0510) 2004
Kapoor, Pathiraja, Marshall, Chandra (br0050) 2023; 169
Szczepanek (br0630) 2022; 9
Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (br0710) 2014
Barber, Lamontagne, Vogel (br0780) 2020; 65
Kheimi, Almadani, Zounemat-Kermani (br0680) 2023
Noether (br0160) 1983
Tian, Xu, Yang, Wang, Zhu (br0470) 2018; 10
Le, Nguyen, Jung, Yeon, Lee (br0700) 2021; 9
Zhou, Kang (br0690) 2023; 15
Hintze, Nelson (br0810) 1998; 52
Lange, Sippel (br0460) 2020
Rios, Seghier, Plevris, Dai (br0610) 2024; 23
Saaidi, Bichri, Abderafi (br0660) 2023; 18
Nourani, Baghanam, Adamowski, Kisi (br0550) 2014; 514
Rahimzad, Moghaddam Nia, Zolfonoon, Soltani, Danandeh Mehr, Kwon (br0330) 2021; 35
Frame, Kratzert, Klotz (br0670) 2022; 26
Ahmetoglu, Das (br0590) 2022; 20
Afouda, Lawin, Lebel, Peugeot, Seguis (br0130) 2005
G.A. Corzo Perez, Hybrid models for hydrological forecasting: Integration of data-driven and conceptual modelling techniques, 2009.
Abbott, Bathurst, Cunge, O'Connell, Rasmussen (br0110) 1986; 87
Houénafa, Ronoh, Johnson, Moore (br0220) 2024
Perera, Coralage, Ekanayake, Alawatugoda, Meddage (br0080) 2024; 21
J. Seibert, Hbv light version 2. User's manual, Stockholm University, 2005.
Rahimzad, Moghaddam Nia, Zolfonoon, Soltani, Danandeh Mehr, Kwon (br0260) 2021; 35
Cannas, Fanni, See, Sias (br0560) 2006; 31
Taylor (br0820) 2001; 106
Okkan, Ersoy, Kumanlioglu, Fistikoglu (br0490) 2021; 598
Tayyab, Zhou, Dong, Ahmad, Sun (br0420) 2019; 131
Hodson (br0790) 2022
Afouda, Alamou (br0140) 2010; 13
Dayal, Bonthu, Saripalle, Mohan (br0730) 2024; 21
Yuan, Chen, Lei, Yuan, Muhammad Adnan (br0350) 2018; 32
Sezen, Šraj (br0040) 2024; 926
Chen, Guestrin (br0580) 2016
Kisi, Azamathulla, Cevat, Kulls, Kuhdaragh, Fuladipanah (br0300) 2024; 22
Adnan, Mostafa, Dai, Heddam, Kuriqi, Kisi (br0380) 2023; 17
Lee, Xia (br0650) 2024; 24
Wegayehu, Muluneh (br0340) 2022; 2022
Lakshmi, Apaza, Alkhayyat, Marhoon, Alameri (br0430) 2022; 86
G.S. Nearing, C.S. Pelissier, F. Kratzert, D. Klotz, H.V. Gupta, J.M. Frame, A.K. Sampson, Physically informed machine learning for hydrological modeling under climate nonstationarity, 2019.
Shrestha (br0070) 2010
Alamou (br0150) 2011
Tiwari, Kumar, Goyal, Khedher, Salem (br0440) 2024; 23
Adnan, Petroselli, Heddam, Santos, Kisi (br0240) 2021; 105
Gaba, Alamou, Afouda, Diekkrüger (br0190) 2017; 62
Kumar, Unal, Bhagat, Tiyasha (br0060) 2024; 22
Sezen, Partal (br0800) 2019; 19
Adnan, Liang, Heddam, Zounemat-Kermani, Kisi, Li (br0760) 2020; 586
Dalkilic, Kumar, Samui, Dixon, Yesilyurt, Katipoğlu (br0270) 2023; 195
Eray, Mert, Kisi (br0750) 2018; 49
Neitsch, Arnold, Kiniry, Williams (br0120) 2011
Harrou, Dairi, Dorbane, Sun (br0530) 2024; 23
Kaggle (br0620) 2021
Essam, Huang, Ng, Birima, Ahmed, El-Shafie (br0310) 2022; 12
Parisouj, Jun, Bateni, Heggy, Band (br0740) 2024; 24
Hauswirth, Bierkens, Beijk, Wanders (br0230) 2021; 155
Perrin, Michel, Andréassian (br0200) 2003; 279
Riyadi, Olutoki, Hermana, Latif, Yogi, Kadir (br0600) 2024; 24
Hochreiter (br0720) 1997
Kratzert, Klotz, Brenner, Schulz, Herrnegger (br0010) 2018; 22
Nearing, Kratzert, Sampson, Pelissier, Klotz, Frame, Prieto, Gupta (br0030) 2021; 57
Talukdar, Pal, Shahfahad, Naikoo, Parvez, Rahman (br0320) 2023; 195
Zhou, Kang (br0280) 2023; 15
Dang, Zhu (br0500) 2024
Afouda, Lawin, Lebel (br0170) 2004
Amjad, Ahmad, Ahmad, Wróblewski, Kamiński, Amjad (br0640) 2022; 12
Kourgialas, Karatzas, Nikolaidis (br0830) 2010; 381
Ni, Wang, Wu, Wang, Tao, Zhang, Liu (br0410) 2020; 586
Asadi, Jimeno-Sáez, López-Ballesteros, Senent-Aparicio (br0090) 2024; 24
Adnan, Mostafa, Dai, Heddam, Masood, Kisi (br0360) 2023; 37
Adnan, Mostafa, Dai, Mansouri, Kisi, Zounemat-Kermani (br0370) 2024; 43
Ikram, Mostafa, Chen, Parmar, Kisi, Zounemat-Kermani (br0400) 2023; 11
Yifru, Lim, Bae, Park, Lee (br0480) 2024; 55
Daubechies (br0570) 1990; 36
Adnan (10.1016/j.rineng.2025.104079_br0370) 2024; 43
Kheimi (10.1016/j.rineng.2025.104079_br0680) 2023
Moriasi (10.1016/j.rineng.2025.104079_br0770) 2015; 58
Zhou (10.1016/j.rineng.2025.104079_br0280) 2023; 15
Hintze (10.1016/j.rineng.2025.104079_br0810) 1998; 52
Ahmetoglu (10.1016/j.rineng.2025.104079_br0590) 2022; 20
Afouda (10.1016/j.rineng.2025.104079_br0130) 2005
Dang (10.1016/j.rineng.2025.104079_br0500)
Kourgialas (10.1016/j.rineng.2025.104079_br0830) 2010; 381
Adnan (10.1016/j.rineng.2025.104079_br0390) 2021; 191
Cannas (10.1016/j.rineng.2025.104079_br0560) 2006; 31
Riyadi (10.1016/j.rineng.2025.104079_br0600) 2024; 24
Harrou (10.1016/j.rineng.2025.104079_br0530) 2024; 23
Amjad (10.1016/j.rineng.2025.104079_br0640) 2022; 12
Alamou (10.1016/j.rineng.2025.104079_br0150) 2011
Sezen (10.1016/j.rineng.2025.104079_br0040) 2024; 926
Parisouj (10.1016/j.rineng.2025.104079_br0740) 2024; 24
Kedam (10.1016/j.rineng.2025.104079_br0290) 2024; 22
Szczepanek (10.1016/j.rineng.2025.104079_br0630) 2022; 9
Daubechies (10.1016/j.rineng.2025.104079_br0570) 1990; 36
Houénafa (10.1016/j.rineng.2025.104079_br0220)
Sang (10.1016/j.rineng.2025.104079_br0540) 2013; 122
Taylor (10.1016/j.rineng.2025.104079_br0820) 2001; 106
Talukdar (10.1016/j.rineng.2025.104079_br0320) 2023; 195
Hochreiter (10.1016/j.rineng.2025.104079_br0720) 1997
Asadi (10.1016/j.rineng.2025.104079_br0090) 2024; 24
Abbott (10.1016/j.rineng.2025.104079_br0110) 1986; 87
Shrestha (10.1016/j.rineng.2025.104079_br0070) 2010
Le (10.1016/j.rineng.2025.104079_br0700) 2021; 9
Barber (10.1016/j.rineng.2025.104079_br0780) 2020; 65
Ikram (10.1016/j.rineng.2025.104079_br0400) 2023; 11
Haugh (10.1016/j.rineng.2025.104079_br0510) 2004
Rios (10.1016/j.rineng.2025.104079_br0610) 2024; 23
Rahimzad (10.1016/j.rineng.2025.104079_br0260) 2021; 35
Perera (10.1016/j.rineng.2025.104079_br0080) 2024; 21
Kaggle (10.1016/j.rineng.2025.104079_br0620)
Eray (10.1016/j.rineng.2025.104079_br0750) 2018; 49
Chen (10.1016/j.rineng.2025.104079_br0580) 2016
Dalkilic (10.1016/j.rineng.2025.104079_br0270) 2023; 195
Yifru (10.1016/j.rineng.2025.104079_br0480) 2024; 55
McCuen (10.1016/j.rineng.2025.104079_br0520) 2006; 11
Tayyab (10.1016/j.rineng.2025.104079_br0420) 2019; 131
Cho (10.1016/j.rineng.2025.104079_br0710)
Sezen (10.1016/j.rineng.2025.104079_br0800) 2019; 19
Gaba (10.1016/j.rineng.2025.104079_br0190) 2017; 62
Adnan (10.1016/j.rineng.2025.104079_br0240) 2021; 105
Adnan (10.1016/j.rineng.2025.104079_br0360) 2023; 37
Ni (10.1016/j.rineng.2025.104079_br0410) 2020; 586
Lakshmi (10.1016/j.rineng.2025.104079_br0430) 2022; 86
10.1016/j.rineng.2025.104079_br0450
Adamowski (10.1016/j.rineng.2025.104079_br0250) 2012; 14
10.1016/j.rineng.2025.104079_br0210
Noether (10.1016/j.rineng.2025.104079_br0160) 1983
Neitsch (10.1016/j.rineng.2025.104079_br0120) 2011
Kratzert (10.1016/j.rineng.2025.104079_br0010) 2018; 22
Saaidi (10.1016/j.rineng.2025.104079_br0660) 2023; 18
Lee (10.1016/j.rineng.2025.104079_br0650) 2024; 24
Dayal (10.1016/j.rineng.2025.104079_br0730) 2024; 21
Hodson (10.1016/j.rineng.2025.104079_br0790) 2022
Rahimzad (10.1016/j.rineng.2025.104079_br0330) 2021; 35
Nearing (10.1016/j.rineng.2025.104079_br0030) 2021; 57
Liang (10.1016/j.rineng.2025.104079_br0100) 1994; 99
Zhou (10.1016/j.rineng.2025.104079_br0690) 2023; 15
Tiwari (10.1016/j.rineng.2025.104079_br0440) 2024; 23
Wegayehu (10.1016/j.rineng.2025.104079_br0340) 2022; 2022
10.1016/j.rineng.2025.104079_br0020
Afouda (10.1016/j.rineng.2025.104079_br0140) 2010; 13
Biao (10.1016/j.rineng.2025.104079_br0180) 2017; 4
Hauswirth (10.1016/j.rineng.2025.104079_br0230) 2021; 155
Afouda (10.1016/j.rineng.2025.104079_br0170) 2004
Adnan (10.1016/j.rineng.2025.104079_br0380) 2023; 17
Frame (10.1016/j.rineng.2025.104079_br0670) 2022; 26
Adnan (10.1016/j.rineng.2025.104079_br0760) 2020; 586
Lange (10.1016/j.rineng.2025.104079_br0460) 2020
Yuan (10.1016/j.rineng.2025.104079_br0350) 2018; 32
Kisi (10.1016/j.rineng.2025.104079_br0300) 2024; 22
Tian (10.1016/j.rineng.2025.104079_br0470) 2018; 10
Nourani (10.1016/j.rineng.2025.104079_br0550) 2014; 514
Essam (10.1016/j.rineng.2025.104079_br0310) 2022; 12
Kapoor (10.1016/j.rineng.2025.104079_br0050) 2023; 169
Okkan (10.1016/j.rineng.2025.104079_br0490) 2021; 598
Kumar (10.1016/j.rineng.2025.104079_br0060) 2024; 22
Perrin (10.1016/j.rineng.2025.104079_br0200) 2003; 279
References_xml – volume: 191
  year: 2021
  ident: br0390
  article-title: Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms
  publication-title: Comput. Electron. Agric.
– volume: 87
  start-page: 45
  year: 1986
  end-page: 59
  ident: br0110
  article-title: An introduction to the European hydrological system—systeme hydrologique europeen, “she”, 1: history and philosophy of a physically-based, distributed modelling system
  publication-title: J. Hydrol.
– reference: G.S. Nearing, C.S. Pelissier, F. Kratzert, D. Klotz, H.V. Gupta, J.M. Frame, A.K. Sampson, Physically informed machine learning for hydrological modeling under climate nonstationarity, 2019.
– year: 2011
  ident: br0150
  article-title: Application du Principe de Moindre Action à la Modélisation Pluie-débit
– volume: 9
  start-page: 226
  year: 2022
  ident: br0630
  article-title: Daily streamflow forecasting in mountainous catchment using xgboost, lightgbm and catboost
  publication-title: Hydrology
– volume: 26
  start-page: 3377
  year: 2022
  end-page: 3392
  ident: br0670
  article-title: Deep learning rainfall–runoff predictions of extreme events
  publication-title: Hydrol. Earth Syst. Sci.
– start-page: 1
  year: 2023
  end-page: 15
  ident: br0680
  article-title: Stochastic (s [arima]), shallow (narnet, nar-gmdh, os-elm), and deep learning (lstm, stacked-lstm, cnn-gru) models, application to river flow forecasting
  publication-title: Acta Geophys.
– volume: 169
  year: 2023
  ident: br0050
  article-title: Deepgr4j: a deep learning hybridization approach for conceptual rainfall-runoff modelling
  publication-title: Environ. Model. Softw.
– volume: 24
  year: 2024
  ident: br0740
  article-title: Daily runoff forecasting using novel optimized machine learning methods
  publication-title: Results Eng.
– volume: 21
  year: 2024
  ident: br0080
  article-title: A new frontier in streamflow modeling in ungauged basins with sparse data: a modified generative adversarial network with explainable ai
  publication-title: Results Eng.
– volume: 105
  start-page: 2987
  year: 2021
  end-page: 3011
  ident: br0240
  article-title: Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach
  publication-title: Nat. Hazards
– volume: 155
  year: 2021
  ident: br0230
  article-title: The potential of data-driven approaches for quantifying hydrological extremes
  publication-title: Adv. Water Resour.
– volume: 36
  start-page: 961
  year: 1990
  end-page: 1005
  ident: br0570
  article-title: The wavelet transform, time-frequency localization and signal analysis
  publication-title: IEEE Trans. Inf. Theory
– volume: 86
  start-page: 3205
  year: 2022
  end-page: 3222
  ident: br0430
  article-title: Hybrid wavelet-gene expression programming and wavelet-support vector machine models for rainfall-runoff modeling
  publication-title: Water Sci. Technol.
– volume: 21
  year: 2024
  ident: br0730
  article-title: Deep learning for multi-horizon water levelforecasting in krs reservoir, India
  publication-title: Results Eng.
– volume: 20
  year: 2022
  ident: br0590
  article-title: A comprehensive review on detection of cyber-attacks: data sets, methods, challenges, and future research directions
  publication-title: Internet of Things
– volume: 35
  start-page: 4167
  year: 2021
  end-page: 4187
  ident: br0260
  article-title: Performance comparison of an lstm-based deep learning model versus conventional machine learning algorithms for streamflow forecasting
  publication-title: Water Resour. Manag.
– year: 2021
  ident: br0620
  article-title: Your machine learning and data science community
– volume: 279
  start-page: 275
  year: 2003
  end-page: 289
  ident: br0200
  article-title: Improvement of a parsimonious model for streamflow simulation
  publication-title: J. Hydrol.
– year: 2024
  ident: br0220
  article-title: Lévy-induced stochastic differential equation models in rainfall-runoff systems for assessing extreme hydrological event risks
– volume: 52
  start-page: 181
  year: 1998
  end-page: 184
  ident: br0810
  article-title: Violin plots: a box plot-density trace synergism
  publication-title: Am. Stat.
– volume: 926
  year: 2024
  ident: br0040
  article-title: Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models
  publication-title: Sci. Total Environ.
– volume: 32
  start-page: 2199
  year: 2018
  end-page: 2212
  ident: br0350
  article-title: Monthly runoff forecasting based on lstm–alo model
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 586
  year: 2020
  ident: br0410
  article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model
  publication-title: J. Hydrol.
– volume: 122
  start-page: 8
  year: 2013
  end-page: 15
  ident: br0540
  article-title: A review on the applications of wavelet transform in hydrology time series analysis
  publication-title: Atmos. Res.
– volume: 12
  start-page: 3883
  year: 2022
  ident: br0310
  article-title: Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms
  publication-title: Sci. Rep.
– volume: 14
  start-page: 731
  year: 2012
  end-page: 744
  ident: br0250
  article-title: Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data
  publication-title: J. Hydroinform.
– volume: 11
  start-page: 597
  year: 2006
  end-page: 602
  ident: br0520
  article-title: Evaluation of the Nash–sutcliffe efficiency index
  publication-title: J. Hydrol. Eng.
– year: 2011
  ident: br0120
  article-title: Soil and water assessment tool theoretical documentation version 2009
– volume: 37
  start-page: 3063
  year: 2023
  end-page: 3083
  ident: br0360
  article-title: Enhancing accuracy of extreme learning machine in predicting river flow using improved reptile search algorithm
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 17
  year: 2023
  ident: br0380
  article-title: Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 22
  start-page: 6005
  year: 2018
  end-page: 6022
  ident: br0010
  article-title: Rainfall–runoff modelling using long short-term memory (lstm) networks
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 57
  year: 2021
  ident: br0030
  article-title: What role does hydrological science play in the age of machine learning?
  publication-title: Water Resour. Res.
– volume: 24
  year: 2024
  ident: br0090
  article-title: Comparison and integration of physical and interpretable ai-driven models for rainfall-runoff simulation
  publication-title: Results Eng.
– year: 2004
  ident: br0510
  article-title: Simulating stochastic differential equations
  publication-title: Monte Carlo Simulation: Ieor E 4703
– volume: 23
  year: 2024
  ident: br0440
  article-title: Comparative analysis of data driven rainfall-runoff models in the kolar river basin
  publication-title: Results Eng.
– year: 2024
  ident: br0500
  article-title: Euler-Maruyama schemes for stochastic differential equations driven by stable Lévy processes with i.i.d. stable components
– year: 2014
  ident: br0710
  article-title: Learning phrase representations using rnn encoder-decoder for statistical machine translation
– volume: 19
  start-page: 1295
  year: 2019
  end-page: 1304
  ident: br0800
  article-title: The utilization of a gr4j model and wavelet-based artificial neural network for rainfall–runoff modelling
  publication-title: Water Supply
– volume: 22
  year: 2024
  ident: br0300
  article-title: Enhancing river flow predictions: comparative analysis of machine learning approaches in modeling stage-discharge relationship
  publication-title: Results Eng.
– volume: 195
  start-page: 153
  year: 2023
  ident: br0320
  article-title: Trend analysis and forecasting of streamflow using random forest in the Punarbhaba River basin
  publication-title: Environ. Monit. Assess.
– volume: 43
  start-page: 159
  year: 2024
  end-page: 181
  ident: br0370
  article-title: Comparison of improved relevance vector machines for streamflow predictions
  publication-title: J. Forecast.
– volume: 195
  start-page: 705
  year: 2023
  ident: br0270
  article-title: Application of deep learning approaches to predict monthly stream flows
  publication-title: Environ. Monit. Assess.
– volume: 2022
  year: 2022
  ident: br0340
  article-title: Short-term daily univariate streamflow forecasting using deep learning models
  publication-title: Adv. Meteorol.
– volume: 586
  year: 2020
  ident: br0760
  article-title: Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs
  publication-title: J. Hydrol.
– volume: 22
  year: 2024
  ident: br0290
  article-title: River stream flow prediction through advanced machine learning models for enhanced accuracy
  publication-title: Results Eng.
– volume: 24
  year: 2024
  ident: br0650
  article-title: Analyzing the dynamics between crude oil spot prices and futures prices by maturity terms: deep learning approaches to futures-based forecasting
  publication-title: Results Eng.
– volume: 10
  start-page: 1655
  year: 2018
  ident: br0470
  article-title: Integration of a parsimonious hydrological model with recurrent neural networks for improved streamflow forecasting
  publication-title: Water
– volume: 65
  start-page: 87
  year: 2020
  end-page: 101
  ident: br0780
  article-title: Improved estimators of correlation and r2 for skewed hydrologic data
  publication-title: Hydrol. Sci. J.
– volume: 55
  start-page: 498
  year: 2024
  end-page: 518
  ident: br0480
  article-title: A hybrid deep learning approach for streamflow prediction utilizing watershed memory and process-based modeling
  publication-title: Hydrol. Res.
– volume: 24
  year: 2024
  ident: br0600
  article-title: Machine learning prediction of permeability distribution in the x field Malay basin using elastic properties
  publication-title: Results Eng.
– volume: 131
  start-page: 115
  year: 2019
  end-page: 125
  ident: br0420
  article-title: Rainfall-runoff modeling at jinsha river basin by integrated neural network with discrete wavelet transform
  publication-title: Meteorol. Atmos. Phys.
– volume: 35
  start-page: 4167
  year: 2021
  end-page: 4187
  ident: br0330
  article-title: Performance comparison of an lstm-based deep learning model versus conventional machine learning algorithms for streamflow forecasting
  publication-title: Water Resour. Manag.
– year: 1997
  ident: br0720
  article-title: Long Short-Term Memory
– volume: 62
  start-page: 1499
  year: 2017
  end-page: 1516
  ident: br0190
  article-title: Improvement and comparative assessment of a hydrological modelling approach on 20 catchments of various sizes under different climate conditions
  publication-title: Hydrol. Sci. J.
– year: 2010
  ident: br0070
  article-title: Uncertainty analysis in rainfall-runoff modelling-application of machine learning techniques
– volume: 13
  year: 2010
  ident: br0140
  article-title: Modèle hydrologique basé sur le principe de moindre action (modhypma)
  publication-title: Ann. Sci. Agron.
– volume: 9
  start-page: 71805
  year: 2021
  end-page: 71820
  ident: br0700
  article-title: Comparison of deep learning techniques for river streamflow forecasting
  publication-title: IEEE Access
– volume: 58
  start-page: 1763
  year: 2015
  end-page: 1785
  ident: br0770
  article-title: Hydrologic and water quality models: performance measures and evaluation criteria
  publication-title: Trans. ASABE
– volume: 11
  start-page: 259
  year: 2023
  ident: br0400
  article-title: Water temperature prediction using improved deep learning methods through reptile search algorithm and weighted mean of vectors optimizer
  publication-title: J. Mar. Sci. Eng.
– volume: 31
  start-page: 1164
  year: 2006
  end-page: 1171
  ident: br0560
  article-title: Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
  publication-title: Phys. Chem. Earth Parts A/B/C
– volume: 49
  start-page: 1221
  year: 2018
  end-page: 1233
  ident: br0750
  article-title: Comparison of multi-gene genetic programming and dynamic evolving neural-fuzzy inference system in modeling pan evaporation
  publication-title: Hydrol. Res.
– start-page: 231
  year: 1983
  end-page: 239
  ident: br0160
  article-title: Invariante variationsprobleme
  publication-title: Gesammelte Abhandlungen-Collected Papers
– start-page: 153
  year: 2004
  end-page: 169
  ident: br0170
  article-title: A stochastic streamflow model based on a minimum energy expenditure concept
  publication-title: Contemporary Problems in Mathematical Physics
– volume: 12
  start-page: 2126
  year: 2022
  ident: br0640
  article-title: Prediction of pile bearing capacity using xgboost algorithm: modeling and performance evaluation
  publication-title: Appl. Sci.
– start-page: 1
  year: 2022
  end-page: 10
  ident: br0790
  article-title: Root mean square error (rmse) or mean absolute error (mae): when to use them or not
  publication-title: Geosci. Model Dev. Discuss.
– start-page: 129
  year: 2005
  end-page: 137
  ident: br0130
  article-title: Modèle de transformation pluie-débit basé sur le principe de moindre action
  publication-title: IAHS-AISH Publication
– volume: 4
  start-page: 47
  year: 2017
  ident: br0180
  article-title: Assessing the impacts of climate change on river discharge dynamics in oueme river basin (Benin, West Africa)
  publication-title: Hydrology
– start-page: 233
  year: 2020
  end-page: 257
  ident: br0460
  article-title: Machine learning applications in hydrology
  publication-title: Forest-Water Interactions
– volume: 598
  year: 2021
  ident: br0490
  article-title: Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: a nested hybrid rainfall-runoff modeling
  publication-title: J. Hydrol.
– volume: 381
  start-page: 308
  year: 2010
  end-page: 321
  ident: br0830
  article-title: An integrated framework for the hydrologic simulation of a complex geomorphological river basin
  publication-title: J. Hydrol.
– volume: 99
  start-page: 14415
  year: 1994
  end-page: 14428
  ident: br0100
  article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models
  publication-title: J. Geophys. Res., Atmos.
– volume: 15
  start-page: 1556
  year: 2023
  ident: br0280
  article-title: A comparative analysis of multiple machine learning methods for flood routing in the Yangtze River
  publication-title: Water
– reference: G.A. Corzo Perez, Hybrid models for hydrological forecasting: Integration of data-driven and conceptual modelling techniques, 2009.
– volume: 22
  year: 2024
  ident: br0060
  article-title: A data-driven approach to river discharge forecasting in the Himalayan region: insights from aglar and paligaad rivers
  publication-title: Results Eng.
– volume: 106
  start-page: 7183
  year: 2001
  end-page: 7192
  ident: br0820
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res., Atmos.
– reference: J. Seibert, Hbv light version 2. User's manual, Stockholm University, 2005.
– volume: 23
  year: 2024
  ident: br0530
  article-title: Enhancing wind power prediction with self-attentive variational autoencoders: a comparative study
  publication-title: Results Eng.
– volume: 18
  year: 2023
  ident: br0660
  article-title: Efficient machine learning model to predict dynamic viscosity in phosphoric acid production
  publication-title: Results Eng.
– volume: 15
  start-page: 1556
  year: 2023
  ident: br0690
  article-title: A comparative analysis of multiple machine learning methods for flood routing in the Yangtze River
  publication-title: Water
– volume: 514
  start-page: 358
  year: 2014
  end-page: 377
  ident: br0550
  article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review
  publication-title: J. Hydrol.
– start-page: 785
  year: 2016
  end-page: 794
  ident: br0580
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining
– volume: 23
  year: 2024
  ident: br0610
  article-title: Explainable ensemble learning framework for estimating corrosion rate in suspension bridge main cables
  publication-title: Results Eng.
– volume: 279
  start-page: 275
  year: 2003
  ident: 10.1016/j.rineng.2025.104079_br0200
  article-title: Improvement of a parsimonious model for streamflow simulation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(03)00225-7
– volume: 32
  start-page: 2199
  year: 2018
  ident: 10.1016/j.rineng.2025.104079_br0350
  article-title: Monthly runoff forecasting based on lstm–alo model
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-1560-y
– start-page: 1
  year: 2023
  ident: 10.1016/j.rineng.2025.104079_br0680
  article-title: Stochastic (s [arima]), shallow (narnet, nar-gmdh, os-elm), and deep learning (lstm, stacked-lstm, cnn-gru) models, application to river flow forecasting
  publication-title: Acta Geophys.
– volume: 2022
  year: 2022
  ident: 10.1016/j.rineng.2025.104079_br0340
  article-title: Short-term daily univariate streamflow forecasting using deep learning models
  publication-title: Adv. Meteorol.
  doi: 10.1155/2022/1860460
– volume: 195
  start-page: 705
  year: 2023
  ident: 10.1016/j.rineng.2025.104079_br0270
  article-title: Application of deep learning approaches to predict monthly stream flows
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-023-11331-5
– start-page: 153
  year: 2004
  ident: 10.1016/j.rineng.2025.104079_br0170
  article-title: A stochastic streamflow model based on a minimum energy expenditure concept
– volume: 35
  start-page: 4167
  year: 2021
  ident: 10.1016/j.rineng.2025.104079_br0330
  article-title: Performance comparison of an lstm-based deep learning model versus conventional machine learning algorithms for streamflow forecasting
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-02937-w
– volume: 24
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0740
  article-title: Daily runoff forecasting using novel optimized machine learning methods
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.103319
– start-page: 231
  year: 1983
  ident: 10.1016/j.rineng.2025.104079_br0160
  article-title: Invariante variationsprobleme
– ident: 10.1016/j.rineng.2025.104079_br0500
– ident: 10.1016/j.rineng.2025.104079_br0020
– volume: 15
  start-page: 1556
  year: 2023
  ident: 10.1016/j.rineng.2025.104079_br0280
  article-title: A comparative analysis of multiple machine learning methods for flood routing in the Yangtze River
  publication-title: Water
  doi: 10.3390/w15081556
– ident: 10.1016/j.rineng.2025.104079_br0450
– volume: 105
  start-page: 2987
  year: 2021
  ident: 10.1016/j.rineng.2025.104079_br0240
  article-title: Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-020-04438-2
– volume: 131
  start-page: 115
  year: 2019
  ident: 10.1016/j.rineng.2025.104079_br0420
  article-title: Rainfall-runoff modeling at jinsha river basin by integrated neural network with discrete wavelet transform
  publication-title: Meteorol. Atmos. Phys.
  doi: 10.1007/s00703-017-0546-5
– volume: 55
  start-page: 498
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0480
  article-title: A hybrid deep learning approach for streamflow prediction utilizing watershed memory and process-based modeling
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2024.016
– year: 2004
  ident: 10.1016/j.rineng.2025.104079_br0510
  article-title: Simulating stochastic differential equations
– volume: 49
  start-page: 1221
  year: 2018
  ident: 10.1016/j.rineng.2025.104079_br0750
  article-title: Comparison of multi-gene genetic programming and dynamic evolving neural-fuzzy inference system in modeling pan evaporation
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2017.076
– volume: 22
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0300
  article-title: Enhancing river flow predictions: comparative analysis of machine learning approaches in modeling stage-discharge relationship
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102017
– volume: 57
  year: 2021
  ident: 10.1016/j.rineng.2025.104079_br0030
  article-title: What role does hydrological science play in the age of machine learning?
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR028091
– volume: 62
  start-page: 1499
  year: 2017
  ident: 10.1016/j.rineng.2025.104079_br0190
  article-title: Improvement and comparative assessment of a hydrological modelling approach on 20 catchments of various sizes under different climate conditions
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2017.1330542
– start-page: 129
  year: 2005
  ident: 10.1016/j.rineng.2025.104079_br0130
  article-title: Modèle de transformation pluie-débit basé sur le principe de moindre action
– volume: 24
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0600
  article-title: Machine learning prediction of permeability distribution in the x field Malay basin using elastic properties
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.103421
– volume: 58
  start-page: 1763
  year: 2015
  ident: 10.1016/j.rineng.2025.104079_br0770
  article-title: Hydrologic and water quality models: performance measures and evaluation criteria
  publication-title: Trans. ASABE
  doi: 10.13031/trans.58.10715
– start-page: 1
  year: 2022
  ident: 10.1016/j.rineng.2025.104079_br0790
  article-title: Root mean square error (rmse) or mean absolute error (mae): when to use them or not
  publication-title: Geosci. Model Dev. Discuss.
– volume: 43
  start-page: 159
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0370
  article-title: Comparison of improved relevance vector machines for streamflow predictions
  publication-title: J. Forecast.
  doi: 10.1002/for.3028
– volume: 586
  year: 2020
  ident: 10.1016/j.rineng.2025.104079_br0760
  article-title: Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124371
– volume: 381
  start-page: 308
  year: 2010
  ident: 10.1016/j.rineng.2025.104079_br0830
  article-title: An integrated framework for the hydrologic simulation of a complex geomorphological river basin
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.12.003
– volume: 598
  year: 2021
  ident: 10.1016/j.rineng.2025.104079_br0490
  article-title: Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: a nested hybrid rainfall-runoff modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126433
– volume: 195
  start-page: 153
  year: 2023
  ident: 10.1016/j.rineng.2025.104079_br0320
  article-title: Trend analysis and forecasting of streamflow using random forest in the Punarbhaba River basin
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-022-10696-3
– volume: 23
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0610
  article-title: Explainable ensemble learning framework for estimating corrosion rate in suspension bridge main cables
  publication-title: Results Eng.
– year: 2011
  ident: 10.1016/j.rineng.2025.104079_br0120
– volume: 22
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0060
  article-title: A data-driven approach to river discharge forecasting in the Himalayan region: insights from aglar and paligaad rivers
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102044
– ident: 10.1016/j.rineng.2025.104079_br0710
– year: 2011
  ident: 10.1016/j.rineng.2025.104079_br0150
– volume: 23
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0530
  article-title: Enhancing wind power prediction with self-attentive variational autoencoders: a comparative study
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102504
– ident: 10.1016/j.rineng.2025.104079_br0210
– volume: 11
  start-page: 259
  year: 2023
  ident: 10.1016/j.rineng.2025.104079_br0400
  article-title: Water temperature prediction using improved deep learning methods through reptile search algorithm and weighted mean of vectors optimizer
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse11020259
– volume: 11
  start-page: 597
  year: 2006
  ident: 10.1016/j.rineng.2025.104079_br0520
  article-title: Evaluation of the Nash–sutcliffe efficiency index
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2006)11:6(597)
– volume: 21
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0080
  article-title: A new frontier in streamflow modeling in ungauged basins with sparse data: a modified generative adversarial network with explainable ai
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.101920
– year: 1997
  ident: 10.1016/j.rineng.2025.104079_br0720
– volume: 9
  start-page: 71805
  year: 2021
  ident: 10.1016/j.rineng.2025.104079_br0700
  article-title: Comparison of deep learning techniques for river streamflow forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3077703
– volume: 22
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0290
  article-title: River stream flow prediction through advanced machine learning models for enhanced accuracy
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102215
– start-page: 785
  year: 2016
  ident: 10.1016/j.rineng.2025.104079_br0580
  article-title: Xgboost: a scalable tree boosting system
– volume: 24
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0650
  article-title: Analyzing the dynamics between crude oil spot prices and futures prices by maturity terms: deep learning approaches to futures-based forecasting
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.103086
– volume: 12
  start-page: 3883
  year: 2022
  ident: 10.1016/j.rineng.2025.104079_br0310
  article-title: Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-07693-4
– volume: 86
  start-page: 3205
  year: 2022
  ident: 10.1016/j.rineng.2025.104079_br0430
  article-title: Hybrid wavelet-gene expression programming and wavelet-support vector machine models for rainfall-runoff modeling
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2022.400
– volume: 20
  year: 2022
  ident: 10.1016/j.rineng.2025.104079_br0590
  article-title: A comprehensive review on detection of cyber-attacks: data sets, methods, challenges, and future research directions
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2022.100615
– volume: 99
  start-page: 14415
  year: 1994
  ident: 10.1016/j.rineng.2025.104079_br0100
  article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models
  publication-title: J. Geophys. Res., Atmos.
  doi: 10.1029/94JD00483
– ident: 10.1016/j.rineng.2025.104079_br0220
– volume: 52
  start-page: 181
  year: 1998
  ident: 10.1016/j.rineng.2025.104079_br0810
  article-title: Violin plots: a box plot-density trace synergism
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1998.10480559
– volume: 169
  year: 2023
  ident: 10.1016/j.rineng.2025.104079_br0050
  article-title: Deepgr4j: a deep learning hybridization approach for conceptual rainfall-runoff modelling
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2023.105831
– volume: 65
  start-page: 87
  year: 2020
  ident: 10.1016/j.rineng.2025.104079_br0780
  article-title: Improved estimators of correlation and r2 for skewed hydrologic data
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2019.1686639
– start-page: 233
  year: 2020
  ident: 10.1016/j.rineng.2025.104079_br0460
  article-title: Machine learning applications in hydrology
– volume: 21
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0730
  article-title: Deep learning for multi-horizon water levelforecasting in krs reservoir, India
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.101828
– volume: 18
  year: 2023
  ident: 10.1016/j.rineng.2025.104079_br0660
  article-title: Efficient machine learning model to predict dynamic viscosity in phosphoric acid production
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.101024
– volume: 106
  start-page: 7183
  year: 2001
  ident: 10.1016/j.rineng.2025.104079_br0820
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res., Atmos.
  doi: 10.1029/2000JD900719
– volume: 155
  year: 2021
  ident: 10.1016/j.rineng.2025.104079_br0230
  article-title: The potential of data-driven approaches for quantifying hydrological extremes
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2021.104017
– volume: 191
  year: 2021
  ident: 10.1016/j.rineng.2025.104079_br0390
  article-title: Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106541
– volume: 10
  start-page: 1655
  year: 2018
  ident: 10.1016/j.rineng.2025.104079_br0470
  article-title: Integration of a parsimonious hydrological model with recurrent neural networks for improved streamflow forecasting
  publication-title: Water
  doi: 10.3390/w10111655
– volume: 514
  start-page: 358
  year: 2014
  ident: 10.1016/j.rineng.2025.104079_br0550
  article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 26
  start-page: 3377
  year: 2022
  ident: 10.1016/j.rineng.2025.104079_br0670
  article-title: Deep learning rainfall–runoff predictions of extreme events
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-26-3377-2022
– volume: 4
  start-page: 47
  year: 2017
  ident: 10.1016/j.rineng.2025.104079_br0180
  article-title: Assessing the impacts of climate change on river discharge dynamics in oueme river basin (Benin, West Africa)
  publication-title: Hydrology
  doi: 10.3390/hydrology4040047
– volume: 586
  year: 2020
  ident: 10.1016/j.rineng.2025.104079_br0410
  article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124901
– volume: 926
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0040
  article-title: Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.171684
– volume: 13
  year: 2010
  ident: 10.1016/j.rineng.2025.104079_br0140
  article-title: Modèle hydrologique basé sur le principe de moindre action (modhypma)
  publication-title: Ann. Sci. Agron.
– volume: 14
  start-page: 731
  year: 2012
  ident: 10.1016/j.rineng.2025.104079_br0250
  article-title: Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2011.044
– volume: 35
  start-page: 4167
  year: 2021
  ident: 10.1016/j.rineng.2025.104079_br0260
  article-title: Performance comparison of an lstm-based deep learning model versus conventional machine learning algorithms for streamflow forecasting
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-02937-w
– volume: 87
  start-page: 45
  year: 1986
  ident: 10.1016/j.rineng.2025.104079_br0110
  article-title: An introduction to the European hydrological system—systeme hydrologique europeen, “she”, 1: history and philosophy of a physically-based, distributed modelling system
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(86)90114-9
– volume: 23
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0440
  article-title: Comparative analysis of data driven rainfall-runoff models in the kolar river basin
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102682
– volume: 122
  start-page: 8
  year: 2013
  ident: 10.1016/j.rineng.2025.104079_br0540
  article-title: A review on the applications of wavelet transform in hydrology time series analysis
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2012.11.003
– volume: 15
  start-page: 1556
  year: 2023
  ident: 10.1016/j.rineng.2025.104079_br0690
  article-title: A comparative analysis of multiple machine learning methods for flood routing in the Yangtze River
  publication-title: Water
  doi: 10.3390/w15081556
– volume: 37
  start-page: 3063
  year: 2023
  ident: 10.1016/j.rineng.2025.104079_br0360
  article-title: Enhancing accuracy of extreme learning machine in predicting river flow using improved reptile search algorithm
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-023-02435-y
– volume: 31
  start-page: 1164
  year: 2006
  ident: 10.1016/j.rineng.2025.104079_br0560
  article-title: Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
  publication-title: Phys. Chem. Earth Parts A/B/C
  doi: 10.1016/j.pce.2006.03.020
– volume: 24
  year: 2024
  ident: 10.1016/j.rineng.2025.104079_br0090
  article-title: Comparison and integration of physical and interpretable ai-driven models for rainfall-runoff simulation
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.103048
– volume: 36
  start-page: 961
  year: 1990
  ident: 10.1016/j.rineng.2025.104079_br0570
  article-title: The wavelet transform, time-frequency localization and signal analysis
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.57199
– volume: 22
  start-page: 6005
  year: 2018
  ident: 10.1016/j.rineng.2025.104079_br0010
  article-title: Rainfall–runoff modelling using long short-term memory (lstm) networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– volume: 9
  start-page: 226
  year: 2022
  ident: 10.1016/j.rineng.2025.104079_br0630
  article-title: Daily streamflow forecasting in mountainous catchment using xgboost, lightgbm and catboost
  publication-title: Hydrology
  doi: 10.3390/hydrology9120226
– volume: 17
  year: 2023
  ident: 10.1016/j.rineng.2025.104079_br0380
  article-title: Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data
  publication-title: Eng. Appl. Comput. Fluid Mech.
– ident: 10.1016/j.rineng.2025.104079_br0620
– volume: 12
  start-page: 2126
  year: 2022
  ident: 10.1016/j.rineng.2025.104079_br0640
  article-title: Prediction of pile bearing capacity using xgboost algorithm: modeling and performance evaluation
  publication-title: Appl. Sci.
  doi: 10.3390/app12042126
– volume: 19
  start-page: 1295
  year: 2019
  ident: 10.1016/j.rineng.2025.104079_br0800
  article-title: The utilization of a gr4j model and wavelet-based artificial neural network for rainfall–runoff modelling
  publication-title: Water Supply
  doi: 10.2166/ws.2018.189
– year: 2010
  ident: 10.1016/j.rineng.2025.104079_br0070
SSID ssj0002810137
Score 2.367921
SecondaryResourceType review_article
Snippet Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 104079
SubjectTerms Hybrid models
HyMoLAP
Machine learning
Stochastic hydrological model
Uncertainties
Title Hybridization of stochastic hydrological models and machine learning methods for improving rainfall-runoff modeling
URI https://dx.doi.org/10.1016/j.rineng.2025.104079
https://doaj.org/article/e1be73c115be48548e5c47be73833d82
Volume 25
WOSCitedRecordID wos001414037900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ-sFkls5zECatWFigGkbpFztvtQSVHSInXht-NHUmWiC0sG-2JH54t9tu--D6EHIakMCh4RpQUQximQVIURybimMhFcsFg7solkNErH4-ytQ_VlY8I8PLBX3KMKC5VQMI5LoVhq_GvFgSW2LKVUpm72DZKss5mauyOj0GLptblyLqDLZtOVE7MljLi92Qxs9FZnLXKQ_Z0lqbPMDE7QceMf4if_XadoT5Vn6KiDGniO6uHGplk1CZR4qbFx4GAqLOIynm5k1c5n2NHc1FiUEn-6oEmFG5aICfbU0TU2TiuetScL2BJGaLFYkGpdLrX2LZiKC_Qx6L-_DEnDnUCAhemKFJmMeCpCs9_iKqAgg0AGkiqIQ1BShaIIzTAVsWSZijJmKjmAFtxM3SwBI3mJ9stlqa4Qtpe1RsCme8RMiCyVmutAaTD_bxEB9BBttZhDAyxu-S0WeRtBNs-97nOr-9zrvofI9q0vD6yxQ_7ZDtBW1sJiuwJjLHljLPkuY-mhpB3evPEwvOdgmpr92f31f3R_gw5tkz6E7Rbtr6q1ukMH8L2a1dW9s2DzfP3p_wIn_fra
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridization+of+stochastic+hydrological+models+and+machine+learning+methods+for+improving+rainfall-runoff+modeling&rft.jtitle=Results+in+engineering&rft.au=Hou%C3%A9nafa%2C+Sianou+Ez%C3%A9ckiel&rft.au=Johnson%2C+Olatunji&rft.au=Ronoh%2C+Erick+K.&rft.au=Moore%2C+Stephen+E.&rft.date=2025-03-01&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=25&rft.spage=104079&rft_id=info:doi/10.1016%2Fj.rineng.2025.104079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rineng_2025_104079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon