A Data-Driven Digital Twin of Electric Vehicle Li-Ion Battery State-of-Charge Estimation Enabled by Driving Behavior Application Programming Interfaces

Accurately estimating the state-of-charge (SOC) of lithium-ion batteries (LIBs) in electric vehicles is a challenging task due to the complex dynamics of the battery and the varying operating conditions. To address this, this paper proposes the establishment of an Industrial Internet-of-Things (IIoT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Batteries (Basel) Jg. 9; H. 10; S. 521
Hauptverfasser: Issa, Reda, Badr, Mohamed M., Shalash, Omar, Othman, Ali A., Hamdan, Eman, Hamad, Mostafa S., Abdel-Khalik, Ayman S., Ahmed, Shehab, Imam, Sherif M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.10.2023
Schlagworte:
ISSN:2313-0105, 2313-0105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurately estimating the state-of-charge (SOC) of lithium-ion batteries (LIBs) in electric vehicles is a challenging task due to the complex dynamics of the battery and the varying operating conditions. To address this, this paper proposes the establishment of an Industrial Internet-of-Things (IIoT)-based digital twin (DT) through the Microsoft Azure services, incorporating components for data collection, time synchronization, processing, modeling, and decision visualization. Within this framework, the readily available measurements in the LIB module, including voltage, current, and operating temperature, are utilized, providing advanced information about the LIBs’ SOC and facilitating accurate determination of the electric vehicle (EV) range. This proposed data-driven SOC-estimation-based DT framework was developed with a supervised voting ensemble regression machine learning (ML) approach using the Azure ML service. To facilitate a more comprehensive understanding of historical driving cycles and ensure the SOC-estimation-based DT framework is accurate, this study used three application programming interfaces (APIs), namely Google Directions API, Google Elevation API, and OpenWeatherMap API, to collect the data and information necessary for analyzing and interpreting historical driving patterns, for the reference EV model, which closely emulates the dynamics of a real-world battery electric vehicle (BEV). Notably, the findings demonstrate that the proposed strategy achieves a normalized root mean square error (NRMSE) of 1.1446 and 0.02385 through simulation and experimental studies, respectively. The study’s results offer valuable insights that can inform further research on developing estimation and predictive maintenance systems for industrial applications.
AbstractList Accurately estimating the state-of-charge (SOC) of lithium-ion batteries (LIBs) in electric vehicles is a challenging task due to the complex dynamics of the battery and the varying operating conditions. To address this, this paper proposes the establishment of an Industrial Internet-of-Things (IIoT)-based digital twin (DT) through the Microsoft Azure services, incorporating components for data collection, time synchronization, processing, modeling, and decision visualization. Within this framework, the readily available measurements in the LIB module, including voltage, current, and operating temperature, are utilized, providing advanced information about the LIBs’ SOC and facilitating accurate determination of the electric vehicle (EV) range. This proposed data-driven SOC-estimation-based DT framework was developed with a supervised voting ensemble regression machine learning (ML) approach using the Azure ML service. To facilitate a more comprehensive understanding of historical driving cycles and ensure the SOC-estimation-based DT framework is accurate, this study used three application programming interfaces (APIs), namely Google Directions API, Google Elevation API, and OpenWeatherMap API, to collect the data and information necessary for analyzing and interpreting historical driving patterns, for the reference EV model, which closely emulates the dynamics of a real-world battery electric vehicle (BEV). Notably, the findings demonstrate that the proposed strategy achieves a normalized root mean square error (NRMSE) of 1.1446 and 0.02385 through simulation and experimental studies, respectively. The study’s results offer valuable insights that can inform further research on developing estimation and predictive maintenance systems for industrial applications.
Audience Academic
Author Badr, Mohamed M.
Hamdan, Eman
Othman, Ali A.
Hamad, Mostafa S.
Abdel-Khalik, Ayman S.
Ahmed, Shehab
Imam, Sherif M.
Issa, Reda
Shalash, Omar
Author_xml – sequence: 1
  givenname: Reda
  orcidid: 0009-0009-2425-1879
  surname: Issa
  fullname: Issa, Reda
– sequence: 2
  givenname: Mohamed M.
  orcidid: 0000-0003-0564-3155
  surname: Badr
  fullname: Badr, Mohamed M.
– sequence: 3
  givenname: Omar
  orcidid: 0000-0002-7613-2064
  surname: Shalash
  fullname: Shalash, Omar
– sequence: 4
  givenname: Ali A.
  orcidid: 0009-0004-3567-5638
  surname: Othman
  fullname: Othman, Ali A.
– sequence: 5
  givenname: Eman
  orcidid: 0000-0002-3578-6459
  surname: Hamdan
  fullname: Hamdan, Eman
– sequence: 6
  givenname: Mostafa S.
  orcidid: 0000-0002-6186-0771
  surname: Hamad
  fullname: Hamad, Mostafa S.
– sequence: 7
  givenname: Ayman S.
  orcidid: 0000-0001-5162-4954
  surname: Abdel-Khalik
  fullname: Abdel-Khalik, Ayman S.
– sequence: 8
  givenname: Shehab
  orcidid: 0000-0003-0073-8745
  surname: Ahmed
  fullname: Ahmed, Shehab
– sequence: 9
  givenname: Sherif M.
  orcidid: 0000-0003-2115-8336
  surname: Imam
  fullname: Imam, Sherif M.
BookMark eNp1Uk1r3DAQNSWFpmnuPQp6dqIP25KPm91tu7DQQtNexVgeebV4pa2spOwv6d-NnG2hBIoOEo_33szTzNviwgePRfGe0RshWnrbQUoYHU4to7Tm7FVxyQUTJWW0vvjn_aa4nqY9pZQpKTmXl8XvBVlBgnIV3SN6snKDSzCS-1_Ok2DJekSTojPkB-6cGZFsXbkJntw9FzyRbwkSlsGWyx3EAcl6Su4AyWXK2kM3Yk-6E5nNnR_IHe7g0YVIFsfj6MyZ9zWGIcLhMBM2PrtaMDi9K15bGCe8_nNfFd8_ru-Xn8vtl0-b5WJbmoqpVIJqGeukrRs0bQvCVKrLSCOV6LEVphV9U_HOyoaKrgJqAITK6ak1XCLvxFWxOfv2Afb6GHP38aQDOP0MhDhoiGmOrgVDxZvO1pbySkrb8h4rsHWFVHGOInt9OHsdY_j5gFPS-_AQfW5fc6W4oEqKOrNuzqwBsqnzNqQIJp8eD87kuVqX8YWULAdhrM2C5iwwMUxTRKtNntH8d1noRs2onpdAv1yCLKQvhH_z_VfyBIJvuUQ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3482698
crossref_primary_10_3390_robotics13050066
crossref_primary_10_1016_j_jpowsour_2025_238269
crossref_primary_10_3390_en17112503
crossref_primary_10_1063_5_0253458
crossref_primary_10_1109_ACCESS_2024_3408715
crossref_primary_10_3390_app14051776
crossref_primary_10_1016_j_rineng_2025_106756
crossref_primary_10_3390_app14167115
crossref_primary_10_1038_s41598_025_90374_9
crossref_primary_10_1016_j_est_2025_118417
crossref_primary_10_1016_j_est_2024_113257
crossref_primary_10_3390_esa2020007
crossref_primary_10_3390_batteries11080298
crossref_primary_10_3390_electronics14183643
crossref_primary_10_4108_ew_9527
crossref_primary_10_1016_j_rineng_2025_106570
crossref_primary_10_1109_TTE_2025_3538624
Cites_doi 10.1109/ICMECT.2019.8932101
10.3390/bioengineering10080891
10.1080/00423114.2023.2213786
10.3390/machines11040425
10.1186/s12859-020-03813-x
10.1109/ACCESS.2021.3061478
10.1109/EPEC47565.2019.9074781
10.1109/ACCESS.2018.2817655
10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00171
10.1109/CISP.2009.5303451
10.3906/elk-1912-42
10.1016/j.rser.2023.113280
10.1016/j.est.2022.104997
10.1109/VTC2020-Spring48590.2020.9128938
10.3390/en15218107
10.1109/ACCESS.2019.2926517
10.1016/j.jpowsour.2014.01.020
10.3390/batteries9020131
10.1109/REDEC49234.2020.9163592
10.1016/j.artmed.2020.101822
10.3390/s22041430
10.1049/pel2.12013
10.1109/ICOSEC49089.2020.9215263
10.1109/RTEICT46194.2019.9016956
10.1016/j.energy.2023.127086
10.3390/asi5040065
10.1061/(ASCE)ME.1943-5479.0000741
10.1109/CPERE56564.2023.10119576
10.1243/09544070260137499
10.1016/j.jpowsour.2010.06.098
10.1016/j.aej.2022.04.037
10.1016/j.energy.2019.03.059
10.1109/I2MTC.2019.8827160
10.1016/j.rser.2021.110801
10.1016/j.est.2020.101557
10.1080/01430750.2021.1932587
10.1016/j.ijepes.2014.06.017
10.1016/j.est.2021.103679
10.3390/electronics11111795
10.1016/j.egyr.2022.03.016
10.1016/j.egyai.2020.100016
10.3390/s22145396
10.3390/en12050946
10.1016/j.apm.2013.01.024
10.1109/ENERGYCON53164.2022.9830324
10.1109/ICCA.2014.6871117
10.1016/j.ces.2016.06.061
10.1109/ACCESS.2019.2961511
10.2139/ssrn.3701771
10.1016/j.rser.2012.08.002
10.3390/en13082021
10.1016/j.rser.2019.06.040
10.1109/ACCESS.2021.3060863
10.3390/s20020571
10.1007/s11831-020-09404-6
10.1109/i-PACT52855.2021.9696518
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/batteries9100521
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-0105
ExternalDocumentID oai_doaj_org_article_31e826bf5f02477f92de4af54e0822e3
A771911119
10_3390_batteries9100521
GeographicLocations Egypt
GeographicLocations_xml – name: Egypt
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c418t-a8911b7f56ec99a3c48b9116783de93c93d642bf7603b4a0caa380180fc27e2b3
IEDL.DBID M7S
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001093789500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2313-0105
IngestDate Fri Oct 03 12:46:20 EDT 2025
Tue Sep 23 15:10:45 EDT 2025
Sat Nov 29 10:56:53 EST 2025
Sat Nov 29 07:16:34 EST 2025
Tue Nov 18 22:17:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-a8911b7f56ec99a3c48b9116783de93c93d642bf7603b4a0caa380180fc27e2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0073-8745
0009-0009-2425-1879
0000-0003-0564-3155
0000-0002-7613-2064
0000-0002-3578-6459
0000-0002-6186-0771
0000-0003-2115-8336
0009-0004-3567-5638
0000-0001-5162-4954
OpenAccessLink https://www.proquest.com/docview/2882308735?pq-origsite=%requestingapplication%
PQID 2882308735
PQPubID 2055442
ParticipantIDs doaj_primary_oai_doaj_org_article_31e826bf5f02477f92de4af54e0822e3
proquest_journals_2882308735
gale_infotracacademiconefile_A771911119
crossref_citationtrail_10_3390_batteries9100521
crossref_primary_10_3390_batteries9100521
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Batteries (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Shen (ref_7) 2016; 154
Roscher (ref_22) 2011; 196
ref_58
ref_13
ref_12
ref_56
Hannan (ref_2) 2018; 6
ref_11
ref_55
ref_10
ref_54
Habib (ref_1) 2021; 14
Sharmila (ref_46) 2022; 43
ref_51
Yang (ref_8) 2019; 175
Li (ref_16) 2020; 30
ref_18
Liu (ref_3) 2022; 8
ref_15
ref_59
Nieto (ref_27) 2013; 37
Rae (ref_33) 2012; 16
ref_61
ref_60
Khalid (ref_32) 2021; 9
ref_25
ref_23
Ipek (ref_26) 2021; 29
Pierleoni (ref_41) 2019; 8
ref_21
Sharma (ref_39) 2022; 30
Bhatti (ref_14) 2021; 141
ref_62
Sodre (ref_49) 2002; 216
ref_29
ref_28
Tang (ref_19) 2022; 47
Ouyang (ref_4) 2022; 52
Rathore (ref_40) 2021; 9
Naseri (ref_53) 2023; 179
Hamad (ref_52) 2022; 61
Francisco (ref_17) 2020; 36
Waring (ref_57) 2020; 104
ref_36
Sancarlos (ref_37) 2021; 28
ref_30
Semeraro (ref_35) 2023; 273
Shrivastava (ref_20) 2019; 113
ref_38
Wu (ref_34) 2020; 1
Xu (ref_6) 2014; 63
Hitesh (ref_45) 2020; 7
Song (ref_31) 2019; 8
ref_47
ref_44
ref_43
ref_42
Leng (ref_24) 2014; 255
ref_48
ref_9
ref_5
References_xml – ident: ref_15
  doi: 10.1109/ICMECT.2019.8932101
– ident: ref_58
  doi: 10.3390/bioengineering10080891
– ident: ref_50
  doi: 10.1080/00423114.2023.2213786
– ident: ref_10
  doi: 10.3390/machines11040425
– ident: ref_59
  doi: 10.1186/s12859-020-03813-x
– volume: 9
  start-page: 39154
  year: 2021
  ident: ref_32
  article-title: Unified univariate-neural network models for lithium-ion battery state-of-charge forecasting using minimized akaike information criterion algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061478
– ident: ref_23
  doi: 10.1109/EPEC47565.2019.9074781
– ident: ref_42
– volume: 6
  start-page: 19362
  year: 2018
  ident: ref_2
  article-title: State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2817655
– ident: ref_36
  doi: 10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00171
– ident: ref_21
  doi: 10.1109/CISP.2009.5303451
– volume: 29
  start-page: 18
  year: 2021
  ident: ref_26
  article-title: A novel method for SOC estimation of Li-ion batteries using a hybrid machine learning technique
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1912-42
– volume: 179
  start-page: 113280
  year: 2023
  ident: ref_53
  article-title: Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113280
– volume: 52
  start-page: 104997
  year: 2022
  ident: ref_4
  article-title: Sensitivities of lithium-ion batteries with different capacities to overcharge/over-discharge
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104997
– ident: ref_11
  doi: 10.1109/VTC2020-Spring48590.2020.9128938
– ident: ref_62
  doi: 10.3390/en15218107
– volume: 8
  start-page: 88894
  year: 2019
  ident: ref_31
  article-title: Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926517
– volume: 255
  start-page: 423
  year: 2014
  ident: ref_24
  article-title: A practical framework of electrical based online state-of-charge estimation of lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.020
– ident: ref_5
  doi: 10.3390/batteries9020131
– ident: ref_25
  doi: 10.1109/REDEC49234.2020.9163592
– volume: 104
  start-page: 101822
  year: 2020
  ident: ref_57
  article-title: Automated machine learning: Review of the state-of-the-art and opportunities for healthcare
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101822
– ident: ref_54
  doi: 10.3390/s22041430
– volume: 14
  start-page: 1
  year: 2021
  ident: ref_1
  article-title: A review: Energy storage system and balancing circuits for electric vehicle application
  publication-title: IET Power Electron.
  doi: 10.1049/pel2.12013
– ident: ref_30
  doi: 10.1109/ICOSEC49089.2020.9215263
– ident: ref_29
  doi: 10.1109/RTEICT46194.2019.9016956
– volume: 273
  start-page: 127086
  year: 2023
  ident: ref_35
  article-title: Digital twin in battery energy storage systems: Trends and gaps detection through association rule mining
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127086
– ident: ref_13
  doi: 10.3390/asi5040065
– volume: 36
  start-page: 04019045
  year: 2020
  ident: ref_17
  article-title: Smart city digital twin–enabled energy management: Toward real-time urban building energy benchmarking
  publication-title: J. Manag. Eng.
  doi: 10.1061/(ASCE)ME.1943-5479.0000741
– ident: ref_56
  doi: 10.1109/CPERE56564.2023.10119576
– volume: 216
  start-page: 473
  year: 2002
  ident: ref_49
  article-title: Effects of atmospheric temperature and pressure on the performance of a vehicle
  publication-title: Proc. Inst. Mech. Eng. Part J. Automob. Eng.
  doi: 10.1243/09544070260137499
– volume: 196
  start-page: 331
  year: 2011
  ident: ref_22
  article-title: Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.098
– volume: 7
  start-page: 1098
  year: 2020
  ident: ref_45
  article-title: Modeling and Performance Analysis of an Electric Vehicle with MATLAB/Simulink
  publication-title: Int. Res. J. Eng. Technol. (IRJET)
– volume: 61
  start-page: 11277
  year: 2022
  ident: ref_52
  article-title: Data-Driven modeling for Li-ion battery using dynamic mode decomposition
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.04.037
– volume: 175
  start-page: 66
  year: 2019
  ident: ref_8
  article-title: State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.059
– ident: ref_38
  doi: 10.1109/I2MTC.2019.8827160
– volume: 141
  start-page: 110801
  year: 2021
  ident: ref_14
  article-title: Towards the future of smart electric vehicles: Digital twin technology
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110801
– volume: 30
  start-page: 101557
  year: 2020
  ident: ref_16
  article-title: Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101557
– volume: 43
  start-page: 5034
  year: 2022
  ident: ref_46
  article-title: Modelling and performance analysis of electric vehicle
  publication-title: Int. J. Ambient. Energy
  doi: 10.1080/01430750.2021.1932587
– volume: 63
  start-page: 178
  year: 2014
  ident: ref_6
  article-title: An online state of charge estimation method with reduced prior battery testing information
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.06.017
– volume: 47
  start-page: 103679
  year: 2022
  ident: ref_19
  article-title: Design of power lithium battery management system based on digital twin
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103679
– ident: ref_9
  doi: 10.3390/electronics11111795
– volume: 8
  start-page: 4058
  year: 2022
  ident: ref_3
  article-title: Overview of batteries and battery management for electric vehicles
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.03.016
– volume: 1
  start-page: 100016
  year: 2020
  ident: ref_34
  article-title: Battery digital twins: Perspectives on the fusion of models, data and artificial intelligence for smart battery management systems
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2020.100016
– ident: ref_55
  doi: 10.3390/s22145396
– ident: ref_51
  doi: 10.3390/en12050946
– volume: 37
  start-page: 6244
  year: 2013
  ident: ref_27
  article-title: Battery state-of-charge estimator using the SVM technique
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.01.024
– ident: ref_12
– ident: ref_18
  doi: 10.1109/ENERGYCON53164.2022.9830324
– ident: ref_28
  doi: 10.1109/ICCA.2014.6871117
– volume: 154
  start-page: 42
  year: 2016
  ident: ref_7
  article-title: Online state of charge estimation of lithium-ion batteries: A moving horizon estimation approach
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.06.061
– volume: 30
  start-page: 100383
  year: 2022
  ident: ref_39
  article-title: Digital twins: State of the art theory and practice, challenges, and open research questions
  publication-title: J. Ind. Inf. Integr.
– volume: 8
  start-page: 5455
  year: 2019
  ident: ref_41
  article-title: Amazon, Google and Microsoft solutions for IoT: Architectures and a performance comparison
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961511
– ident: ref_44
  doi: 10.2139/ssrn.3701771
– volume: 16
  start-page: 9
  year: 2012
  ident: ref_33
  article-title: Energy autonomy in sustainable communities—A review of key issues
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.08.002
– ident: ref_48
  doi: 10.3390/en13082021
– ident: ref_43
– ident: ref_60
– volume: 113
  start-page: 109233
  year: 2019
  ident: ref_20
  article-title: Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.06.040
– volume: 9
  start-page: 32030
  year: 2021
  ident: ref_40
  article-title: The role of ai, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3060863
– ident: ref_61
  doi: 10.3390/s20020571
– volume: 28
  start-page: 979
  year: 2021
  ident: ref_37
  article-title: From ROM of electrochemistry to AI-based battery digital and hybrid twin
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09404-6
– ident: ref_47
  doi: 10.1109/i-PACT52855.2021.9696518
SSID ssj0001877227
Score 2.3408926
Snippet Accurately estimating the state-of-charge (SOC) of lithium-ion batteries (LIBs) in electric vehicles is a challenging task due to the complex dynamics of the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 521
SubjectTerms Algorithms
Application programming interface
Artificial intelligence
Automobiles, Electric
Cloud computing
Data analysis
Data collection
Data entry
Decision making
digital twin
Digital twins
Digitization
electric vehicle
Electric vehicles
Energy management
Estimation
Global positioning systems
GPS
Industrial applications
Industrial Internet of Things
Internet of Things
Lithium cells
Lithium-ion batteries
lithium-ion battery
Machine learning
Methods
Operating temperature
Predictive maintenance
Rechargeable batteries
Reliability (Engineering)
State of charge
Time synchronization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9UwDI6micN2QMBAezCQD0iIQ_Tapm2S44P3JpCmaYdt2i1K0mRUgj709gDtl_B3sZNuvCENLlyr1E1jJ7Zj-zNjr5HFoVZa8aCbmtfOBq5DoXmDur9RqhVFqpA7P5LHx-riQp9stPqinLAMD5wXbirKgBawi01EbSJl1FUXahubOhBWeUg4n4XUG85Uul1RaDVWMsclBfr1U5fgKtH7RP1IBat39FCC67_vUE6a5vAReziaiDDLU3vMtsLwhO1uAAfusZ8zmNu15fMVHVYw7y-p9wec_ugHWEZYpN42vYfz8IlowFHPPy4HyGCa15AsTL6MnILtlwEWuM9zCSMsUi1VB-4aiDh-DUYIxRXMfge74STndX2hAelWMVJu11N2drg4ff-Bjy0WuK9LteZW4WHnZGza4LW2wtfKaQrNKNEFLbwWHTooLsq2EK62hbdWKML8ir6SoXLiGdselkPYZ6Cc0oX2bUOQ7ugXWatLGwXRUK3swoRNbxbc-BF_nNpgfDbohxCLzJ8smrC3t298zdgbfxn7jnh4O45Qs9MDlCUzypL5lyxN2BuSAEN7G6fm7ViigD9IKFlmJmVJyqHUE3ZwIyRm3PRXplIUtVRSNM__x2xesB3qbZ8zBw_Y9nr1LbxkD_z3dX-1epXk_ReakwWh
  priority: 102
  providerName: Directory of Open Access Journals
Title A Data-Driven Digital Twin of Electric Vehicle Li-Ion Battery State-of-Charge Estimation Enabled by Driving Behavior Application Programming Interfaces
URI https://www.proquest.com/docview/2882308735
https://doaj.org/article/31e826bf5f02477f92de4af54e0822e3
Volume 9
WOSCitedRecordID wos001093789500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: P5Z
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: M7S
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: PIMPY
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHxtdEYat8QEIcrCZxEtsn1NFMTBpVBGMaXCLbsUskSEbaDe0v4d_Fz3FXQGIXLjkkjuPIz-_7_R5CL9wWm5QLTozIUpIqaYgwkSCZk_0Z5zmNfIXc6TGbz_nZmSiDw20Z0irXPNEz6rrT4COfJBxCQpzR7PX5dwJdoyC6Glpo3EbbgJIQ-9S9DxsfC3e6Y8KG6CR11v1EedBKZ4M6KQllq39IIw_a_y_W7OXN4c7_rvQBuh80TTwdSOMhumXaR-jeb_iDj9HPKZ7JlSSzHngenjULaCGCT340Le4sLnyLnEbjU_MF5sDHDTnqWjxgcl5hr6iSzhKI2S8MLhy7GCohceFLsmqsrjBM7r6GAxJjj6ebmDkuh_SwbzDAOyctpIg9QR8Pi5M3b0no1EB0GvMVkdzxTMVslhsthKQ65UpAhIfT2giqBa2dnaMsyyOqUhlpKSkH6DCrE2YSRXfRVtu15inCXHERCZ1ngAzvzCspRSwthTl4zmozQpP1jlU6wJhDN42vlTNnYI-rv_d4hF5dv3E-QHjcMPYAiOB6HIBv-xtdv6jCWa5obJxRpmxmnYLDmBVJbVJps9QAfL6hI_QSSKgCFuGWpmWodHA_CGBb1ZSxGGRMLEZob01CVeAdy2pDP89ufvwc3U2cyjWkFu6hrVV_YfbRHX25apb9GG0fFPPy_dh7Gcb-YLhrmX12T8qjd-WnX95DGUE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXSTgwBtRWMAHEOJgNYmT2D4gVGhXW2236qGsllNwHLtEgmRJC6v-Ev4FvxFPHltAYm974Jo4TmJ_noc98w3AczfFJhRSUCOjkIapMlQaT9LI6f5IiJh5dYbc8ZTPZuLkRM534GeXC4NhlZ1MrAV1VmrcIx8EAo-EBGfRm9OvFKtG4elqV0KjgcWh2Zw5l231ejJy8_siCPbHi3cHtK0qQHXoizVVwq3vlNsoNlpKxXQoUomnEYJlRjItWeZs8tTy2GNpqDytFBNIc2V1wE2QMtfvFdgNEew92J1PjuYftrs6wlmrAW_OQxmT3iCtaTKd1-v0MibK_qH_6jIB_1IGtYbbv_W_jc1tuNna0mTYgP8O7JjiLtz4jWHxHvwYkpFaKzqqUKqTUb7EIilkcZYXpLRkXBcByjU5Np-wDzLN6aQsSMM6uiG1KU5LSzEqYWnI2AnEJteTjOuks4ykG4Kdu7eRlmuyIsNtVACZNwFwX7BBvf1qMQjuPry_lJF5AL2iLMxDICIV0pM6jpD73jmQSklfWYZ9iJhnpg-DDiGJbonasV7I58Q5bIip5G9M9eHV-ROnDUnJBW3fIujO2yG9eH2hrJZJK60S5hvndqY2ss6E49zKIDOhslFosECAYX14iZBNUAi6T9OqzeVwP4h0YsmQcx-1qC_7sNdBNmml4yrZ4vXRxbefwbWDxdE0mU5mh4_heuAMzCaQcg966-qbeQJX9fd1vqqetguRwMfLxvcv6hZxkg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLfGQAgO_EcUBvgAQhysJnES2weECm1FtarqYUwTl2A7dqm0NSMtTP0kfBc-He856QpI7LYD18RxEvvn98d-7_cIeQFT7FKpJHMqS1lqtGPKRYploPszKXMehQy5w7GYTOTRkZrukJ-bXBgMq9zIxCCoy8riHnk3kXgkJAXPur4Ni5j2h29PvzKsIIUnrZtyGg1E9t36DNy35ZtRH-b6ZZIMBwfvP7C2wgCzaSxXTEtY60b4LHdWKc1tKo3CkwnJS6e4VbwE-9x4kUfcpDqyWnOJlFfeJsIlhkO_V8hVAT4mhhNOs0_b_R0JdmsimpNRzlXUNYEwE_xf0NCYMvuHJgwFA_6lFoKuG97-n0fpDrnVWti01yyJu2THLe6Rm7_xLt4nP3q0r1ea9WuU9bQ_n2HpFHpwNl_QytNBKA00t_TQfcE-6HjORtWCNlykaxoMdFZ5hrEKM0cHICabDFA6CKloJTVrip3D22jLQFnT3jZWgE6bsLgTbBA2ZT2Gxj0gHy9lZB6S3UW1cI8IlUaqSNk8Q0Z8cCu1VrH2HPuQuShdh3Q3aClsS9-OVUSOC3DjEF_F3_jqkNfnT5w21CUXtH2HADxvh6Tj4UJVz4pWhhU8duCMGp95MOyE8CopXap9ljosG-B4h7xC-BYoGuHTrG4zPOAHkWSs6AkRo26NVYfsbeBbtDJzWWyx-_ji28_JdQB1MR5N9p-QGwlYnU105R7ZXdXf3FNyzX5fzZf1s7AiKfl82eD-BbhgePU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Data-Driven+Digital+Twin+of+Electric+Vehicle+Li-Ion+Battery+State-of-Charge+Estimation+Enabled+by+Driving+Behavior+Application+Programming+Interfaces&rft.jtitle=Batteries+%28Basel%29&rft.au=Issa%2C+Reda&rft.au=Badr%2C+Mohamed+M&rft.au=Shalash%2C+Omar&rft.au=Othman%2C+Ali+A&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.issn=2313-0105&rft.eissn=2313-0105&rft.volume=9&rft.issue=10&rft_id=info:doi/10.3390%2Fbatteries9100521&rft.externalDocID=A771911119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-0105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-0105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-0105&client=summon