A Data-Driven Digital Twin of Electric Vehicle Li-Ion Battery State-of-Charge Estimation Enabled by Driving Behavior Application Programming Interfaces
Accurately estimating the state-of-charge (SOC) of lithium-ion batteries (LIBs) in electric vehicles is a challenging task due to the complex dynamics of the battery and the varying operating conditions. To address this, this paper proposes the establishment of an Industrial Internet-of-Things (IIoT...
Gespeichert in:
| Veröffentlicht in: | Batteries (Basel) Jg. 9; H. 10; S. 521 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.10.2023
|
| Schlagworte: | |
| ISSN: | 2313-0105, 2313-0105 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurately estimating the state-of-charge (SOC) of lithium-ion batteries (LIBs) in electric vehicles is a challenging task due to the complex dynamics of the battery and the varying operating conditions. To address this, this paper proposes the establishment of an Industrial Internet-of-Things (IIoT)-based digital twin (DT) through the Microsoft Azure services, incorporating components for data collection, time synchronization, processing, modeling, and decision visualization. Within this framework, the readily available measurements in the LIB module, including voltage, current, and operating temperature, are utilized, providing advanced information about the LIBs’ SOC and facilitating accurate determination of the electric vehicle (EV) range. This proposed data-driven SOC-estimation-based DT framework was developed with a supervised voting ensemble regression machine learning (ML) approach using the Azure ML service. To facilitate a more comprehensive understanding of historical driving cycles and ensure the SOC-estimation-based DT framework is accurate, this study used three application programming interfaces (APIs), namely Google Directions API, Google Elevation API, and OpenWeatherMap API, to collect the data and information necessary for analyzing and interpreting historical driving patterns, for the reference EV model, which closely emulates the dynamics of a real-world battery electric vehicle (BEV). Notably, the findings demonstrate that the proposed strategy achieves a normalized root mean square error (NRMSE) of 1.1446 and 0.02385 through simulation and experimental studies, respectively. The study’s results offer valuable insights that can inform further research on developing estimation and predictive maintenance systems for industrial applications. |
|---|---|
| AbstractList | Accurately estimating the state-of-charge (SOC) of lithium-ion batteries (LIBs) in electric vehicles is a challenging task due to the complex dynamics of the battery and the varying operating conditions. To address this, this paper proposes the establishment of an Industrial Internet-of-Things (IIoT)-based digital twin (DT) through the Microsoft Azure services, incorporating components for data collection, time synchronization, processing, modeling, and decision visualization. Within this framework, the readily available measurements in the LIB module, including voltage, current, and operating temperature, are utilized, providing advanced information about the LIBs’ SOC and facilitating accurate determination of the electric vehicle (EV) range. This proposed data-driven SOC-estimation-based DT framework was developed with a supervised voting ensemble regression machine learning (ML) approach using the Azure ML service. To facilitate a more comprehensive understanding of historical driving cycles and ensure the SOC-estimation-based DT framework is accurate, this study used three application programming interfaces (APIs), namely Google Directions API, Google Elevation API, and OpenWeatherMap API, to collect the data and information necessary for analyzing and interpreting historical driving patterns, for the reference EV model, which closely emulates the dynamics of a real-world battery electric vehicle (BEV). Notably, the findings demonstrate that the proposed strategy achieves a normalized root mean square error (NRMSE) of 1.1446 and 0.02385 through simulation and experimental studies, respectively. The study’s results offer valuable insights that can inform further research on developing estimation and predictive maintenance systems for industrial applications. |
| Audience | Academic |
| Author | Badr, Mohamed M. Hamdan, Eman Othman, Ali A. Hamad, Mostafa S. Abdel-Khalik, Ayman S. Ahmed, Shehab Imam, Sherif M. Issa, Reda Shalash, Omar |
| Author_xml | – sequence: 1 givenname: Reda orcidid: 0009-0009-2425-1879 surname: Issa fullname: Issa, Reda – sequence: 2 givenname: Mohamed M. orcidid: 0000-0003-0564-3155 surname: Badr fullname: Badr, Mohamed M. – sequence: 3 givenname: Omar orcidid: 0000-0002-7613-2064 surname: Shalash fullname: Shalash, Omar – sequence: 4 givenname: Ali A. orcidid: 0009-0004-3567-5638 surname: Othman fullname: Othman, Ali A. – sequence: 5 givenname: Eman orcidid: 0000-0002-3578-6459 surname: Hamdan fullname: Hamdan, Eman – sequence: 6 givenname: Mostafa S. orcidid: 0000-0002-6186-0771 surname: Hamad fullname: Hamad, Mostafa S. – sequence: 7 givenname: Ayman S. orcidid: 0000-0001-5162-4954 surname: Abdel-Khalik fullname: Abdel-Khalik, Ayman S. – sequence: 8 givenname: Shehab orcidid: 0000-0003-0073-8745 surname: Ahmed fullname: Ahmed, Shehab – sequence: 9 givenname: Sherif M. orcidid: 0000-0003-2115-8336 surname: Imam fullname: Imam, Sherif M. |
| BookMark | eNp1Uk1r3DAQNSWFpmnuPQp6dqIP25KPm91tu7DQQtNexVgeebV4pa2spOwv6d-NnG2hBIoOEo_33szTzNviwgePRfGe0RshWnrbQUoYHU4to7Tm7FVxyQUTJWW0vvjn_aa4nqY9pZQpKTmXl8XvBVlBgnIV3SN6snKDSzCS-1_Ok2DJekSTojPkB-6cGZFsXbkJntw9FzyRbwkSlsGWyx3EAcl6Su4AyWXK2kM3Yk-6E5nNnR_IHe7g0YVIFsfj6MyZ9zWGIcLhMBM2PrtaMDi9K15bGCe8_nNfFd8_ru-Xn8vtl0-b5WJbmoqpVIJqGeukrRs0bQvCVKrLSCOV6LEVphV9U_HOyoaKrgJqAITK6ak1XCLvxFWxOfv2Afb6GHP38aQDOP0MhDhoiGmOrgVDxZvO1pbySkrb8h4rsHWFVHGOInt9OHsdY_j5gFPS-_AQfW5fc6W4oEqKOrNuzqwBsqnzNqQIJp8eD87kuVqX8YWULAdhrM2C5iwwMUxTRKtNntH8d1noRs2onpdAv1yCLKQvhH_z_VfyBIJvuUQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3482698 crossref_primary_10_3390_robotics13050066 crossref_primary_10_1016_j_jpowsour_2025_238269 crossref_primary_10_3390_en17112503 crossref_primary_10_1063_5_0253458 crossref_primary_10_1109_ACCESS_2024_3408715 crossref_primary_10_3390_app14051776 crossref_primary_10_1016_j_rineng_2025_106756 crossref_primary_10_3390_app14167115 crossref_primary_10_1038_s41598_025_90374_9 crossref_primary_10_1016_j_est_2025_118417 crossref_primary_10_1016_j_est_2024_113257 crossref_primary_10_3390_esa2020007 crossref_primary_10_3390_batteries11080298 crossref_primary_10_3390_electronics14183643 crossref_primary_10_4108_ew_9527 crossref_primary_10_1016_j_rineng_2025_106570 crossref_primary_10_1109_TTE_2025_3538624 |
| Cites_doi | 10.1109/ICMECT.2019.8932101 10.3390/bioengineering10080891 10.1080/00423114.2023.2213786 10.3390/machines11040425 10.1186/s12859-020-03813-x 10.1109/ACCESS.2021.3061478 10.1109/EPEC47565.2019.9074781 10.1109/ACCESS.2018.2817655 10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00171 10.1109/CISP.2009.5303451 10.3906/elk-1912-42 10.1016/j.rser.2023.113280 10.1016/j.est.2022.104997 10.1109/VTC2020-Spring48590.2020.9128938 10.3390/en15218107 10.1109/ACCESS.2019.2926517 10.1016/j.jpowsour.2014.01.020 10.3390/batteries9020131 10.1109/REDEC49234.2020.9163592 10.1016/j.artmed.2020.101822 10.3390/s22041430 10.1049/pel2.12013 10.1109/ICOSEC49089.2020.9215263 10.1109/RTEICT46194.2019.9016956 10.1016/j.energy.2023.127086 10.3390/asi5040065 10.1061/(ASCE)ME.1943-5479.0000741 10.1109/CPERE56564.2023.10119576 10.1243/09544070260137499 10.1016/j.jpowsour.2010.06.098 10.1016/j.aej.2022.04.037 10.1016/j.energy.2019.03.059 10.1109/I2MTC.2019.8827160 10.1016/j.rser.2021.110801 10.1016/j.est.2020.101557 10.1080/01430750.2021.1932587 10.1016/j.ijepes.2014.06.017 10.1016/j.est.2021.103679 10.3390/electronics11111795 10.1016/j.egyr.2022.03.016 10.1016/j.egyai.2020.100016 10.3390/s22145396 10.3390/en12050946 10.1016/j.apm.2013.01.024 10.1109/ENERGYCON53164.2022.9830324 10.1109/ICCA.2014.6871117 10.1016/j.ces.2016.06.061 10.1109/ACCESS.2019.2961511 10.2139/ssrn.3701771 10.1016/j.rser.2012.08.002 10.3390/en13082021 10.1016/j.rser.2019.06.040 10.1109/ACCESS.2021.3060863 10.3390/s20020571 10.1007/s11831-020-09404-6 10.1109/i-PACT52855.2021.9696518 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
| DOI | 10.3390/batteries9100521 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2313-0105 |
| ExternalDocumentID | oai_doaj_org_article_31e826bf5f02477f92de4af54e0822e3 A771911119 10_3390_batteries9100521 |
| GeographicLocations | Egypt |
| GeographicLocations_xml | – name: Egypt |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
| ID | FETCH-LOGICAL-c418t-a8911b7f56ec99a3c48b9116783de93c93d642bf7603b4a0caa380180fc27e2b3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001093789500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2313-0105 |
| IngestDate | Fri Oct 03 12:46:20 EDT 2025 Tue Sep 23 15:10:45 EDT 2025 Sat Nov 29 10:56:53 EST 2025 Sat Nov 29 07:16:34 EST 2025 Tue Nov 18 22:17:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-a8911b7f56ec99a3c48b9116783de93c93d642bf7603b4a0caa380180fc27e2b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0073-8745 0009-0009-2425-1879 0000-0003-0564-3155 0000-0002-7613-2064 0000-0002-3578-6459 0000-0002-6186-0771 0000-0003-2115-8336 0009-0004-3567-5638 0000-0001-5162-4954 |
| OpenAccessLink | https://www.proquest.com/docview/2882308735?pq-origsite=%requestingapplication% |
| PQID | 2882308735 |
| PQPubID | 2055442 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_31e826bf5f02477f92de4af54e0822e3 proquest_journals_2882308735 gale_infotracacademiconefile_A771911119 crossref_citationtrail_10_3390_batteries9100521 crossref_primary_10_3390_batteries9100521 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Batteries (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Shen (ref_7) 2016; 154 Roscher (ref_22) 2011; 196 ref_58 ref_13 ref_12 ref_56 Hannan (ref_2) 2018; 6 ref_11 ref_55 ref_10 ref_54 Habib (ref_1) 2021; 14 Sharmila (ref_46) 2022; 43 ref_51 Yang (ref_8) 2019; 175 Li (ref_16) 2020; 30 ref_18 Liu (ref_3) 2022; 8 ref_15 ref_59 Nieto (ref_27) 2013; 37 Rae (ref_33) 2012; 16 ref_61 ref_60 Khalid (ref_32) 2021; 9 ref_25 ref_23 Ipek (ref_26) 2021; 29 Pierleoni (ref_41) 2019; 8 ref_21 Sharma (ref_39) 2022; 30 Bhatti (ref_14) 2021; 141 ref_62 Sodre (ref_49) 2002; 216 ref_29 ref_28 Tang (ref_19) 2022; 47 Ouyang (ref_4) 2022; 52 Rathore (ref_40) 2021; 9 Naseri (ref_53) 2023; 179 Hamad (ref_52) 2022; 61 Francisco (ref_17) 2020; 36 Waring (ref_57) 2020; 104 ref_36 Sancarlos (ref_37) 2021; 28 ref_30 Semeraro (ref_35) 2023; 273 Shrivastava (ref_20) 2019; 113 ref_38 Wu (ref_34) 2020; 1 Xu (ref_6) 2014; 63 Hitesh (ref_45) 2020; 7 Song (ref_31) 2019; 8 ref_47 ref_44 ref_43 ref_42 Leng (ref_24) 2014; 255 ref_48 ref_9 ref_5 |
| References_xml | – ident: ref_15 doi: 10.1109/ICMECT.2019.8932101 – ident: ref_58 doi: 10.3390/bioengineering10080891 – ident: ref_50 doi: 10.1080/00423114.2023.2213786 – ident: ref_10 doi: 10.3390/machines11040425 – ident: ref_59 doi: 10.1186/s12859-020-03813-x – volume: 9 start-page: 39154 year: 2021 ident: ref_32 article-title: Unified univariate-neural network models for lithium-ion battery state-of-charge forecasting using minimized akaike information criterion algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061478 – ident: ref_23 doi: 10.1109/EPEC47565.2019.9074781 – ident: ref_42 – volume: 6 start-page: 19362 year: 2018 ident: ref_2 article-title: State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2817655 – ident: ref_36 doi: 10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00171 – ident: ref_21 doi: 10.1109/CISP.2009.5303451 – volume: 29 start-page: 18 year: 2021 ident: ref_26 article-title: A novel method for SOC estimation of Li-ion batteries using a hybrid machine learning technique publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1912-42 – volume: 179 start-page: 113280 year: 2023 ident: ref_53 article-title: Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113280 – volume: 52 start-page: 104997 year: 2022 ident: ref_4 article-title: Sensitivities of lithium-ion batteries with different capacities to overcharge/over-discharge publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104997 – ident: ref_11 doi: 10.1109/VTC2020-Spring48590.2020.9128938 – ident: ref_62 doi: 10.3390/en15218107 – volume: 8 start-page: 88894 year: 2019 ident: ref_31 article-title: Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2926517 – volume: 255 start-page: 423 year: 2014 ident: ref_24 article-title: A practical framework of electrical based online state-of-charge estimation of lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.020 – ident: ref_5 doi: 10.3390/batteries9020131 – ident: ref_25 doi: 10.1109/REDEC49234.2020.9163592 – volume: 104 start-page: 101822 year: 2020 ident: ref_57 article-title: Automated machine learning: Review of the state-of-the-art and opportunities for healthcare publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101822 – ident: ref_54 doi: 10.3390/s22041430 – volume: 14 start-page: 1 year: 2021 ident: ref_1 article-title: A review: Energy storage system and balancing circuits for electric vehicle application publication-title: IET Power Electron. doi: 10.1049/pel2.12013 – ident: ref_30 doi: 10.1109/ICOSEC49089.2020.9215263 – ident: ref_29 doi: 10.1109/RTEICT46194.2019.9016956 – volume: 273 start-page: 127086 year: 2023 ident: ref_35 article-title: Digital twin in battery energy storage systems: Trends and gaps detection through association rule mining publication-title: Energy doi: 10.1016/j.energy.2023.127086 – ident: ref_13 doi: 10.3390/asi5040065 – volume: 36 start-page: 04019045 year: 2020 ident: ref_17 article-title: Smart city digital twin–enabled energy management: Toward real-time urban building energy benchmarking publication-title: J. Manag. Eng. doi: 10.1061/(ASCE)ME.1943-5479.0000741 – ident: ref_56 doi: 10.1109/CPERE56564.2023.10119576 – volume: 216 start-page: 473 year: 2002 ident: ref_49 article-title: Effects of atmospheric temperature and pressure on the performance of a vehicle publication-title: Proc. Inst. Mech. Eng. Part J. Automob. Eng. doi: 10.1243/09544070260137499 – volume: 196 start-page: 331 year: 2011 ident: ref_22 article-title: Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.098 – volume: 7 start-page: 1098 year: 2020 ident: ref_45 article-title: Modeling and Performance Analysis of an Electric Vehicle with MATLAB/Simulink publication-title: Int. Res. J. Eng. Technol. (IRJET) – volume: 61 start-page: 11277 year: 2022 ident: ref_52 article-title: Data-Driven modeling for Li-ion battery using dynamic mode decomposition publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.04.037 – volume: 175 start-page: 66 year: 2019 ident: ref_8 article-title: State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network publication-title: Energy doi: 10.1016/j.energy.2019.03.059 – ident: ref_38 doi: 10.1109/I2MTC.2019.8827160 – volume: 141 start-page: 110801 year: 2021 ident: ref_14 article-title: Towards the future of smart electric vehicles: Digital twin technology publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110801 – volume: 30 start-page: 101557 year: 2020 ident: ref_16 article-title: Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101557 – volume: 43 start-page: 5034 year: 2022 ident: ref_46 article-title: Modelling and performance analysis of electric vehicle publication-title: Int. J. Ambient. Energy doi: 10.1080/01430750.2021.1932587 – volume: 63 start-page: 178 year: 2014 ident: ref_6 article-title: An online state of charge estimation method with reduced prior battery testing information publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.06.017 – volume: 47 start-page: 103679 year: 2022 ident: ref_19 article-title: Design of power lithium battery management system based on digital twin publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103679 – ident: ref_9 doi: 10.3390/electronics11111795 – volume: 8 start-page: 4058 year: 2022 ident: ref_3 article-title: Overview of batteries and battery management for electric vehicles publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.03.016 – volume: 1 start-page: 100016 year: 2020 ident: ref_34 article-title: Battery digital twins: Perspectives on the fusion of models, data and artificial intelligence for smart battery management systems publication-title: Energy AI doi: 10.1016/j.egyai.2020.100016 – ident: ref_55 doi: 10.3390/s22145396 – ident: ref_51 doi: 10.3390/en12050946 – volume: 37 start-page: 6244 year: 2013 ident: ref_27 article-title: Battery state-of-charge estimator using the SVM technique publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.01.024 – ident: ref_12 – ident: ref_18 doi: 10.1109/ENERGYCON53164.2022.9830324 – ident: ref_28 doi: 10.1109/ICCA.2014.6871117 – volume: 154 start-page: 42 year: 2016 ident: ref_7 article-title: Online state of charge estimation of lithium-ion batteries: A moving horizon estimation approach publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.06.061 – volume: 30 start-page: 100383 year: 2022 ident: ref_39 article-title: Digital twins: State of the art theory and practice, challenges, and open research questions publication-title: J. Ind. Inf. Integr. – volume: 8 start-page: 5455 year: 2019 ident: ref_41 article-title: Amazon, Google and Microsoft solutions for IoT: Architectures and a performance comparison publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961511 – ident: ref_44 doi: 10.2139/ssrn.3701771 – volume: 16 start-page: 9 year: 2012 ident: ref_33 article-title: Energy autonomy in sustainable communities—A review of key issues publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.08.002 – ident: ref_48 doi: 10.3390/en13082021 – ident: ref_43 – ident: ref_60 – volume: 113 start-page: 109233 year: 2019 ident: ref_20 article-title: Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.06.040 – volume: 9 start-page: 32030 year: 2021 ident: ref_40 article-title: The role of ai, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3060863 – ident: ref_61 doi: 10.3390/s20020571 – volume: 28 start-page: 979 year: 2021 ident: ref_37 article-title: From ROM of electrochemistry to AI-based battery digital and hybrid twin publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-020-09404-6 – ident: ref_47 doi: 10.1109/i-PACT52855.2021.9696518 |
| SSID | ssj0001877227 |
| Score | 2.3408926 |
| Snippet | Accurately estimating the state-of-charge (SOC) of lithium-ion batteries (LIBs) in electric vehicles is a challenging task due to the complex dynamics of the... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 521 |
| SubjectTerms | Algorithms Application programming interface Artificial intelligence Automobiles, Electric Cloud computing Data analysis Data collection Data entry Decision making digital twin Digital twins Digitization electric vehicle Electric vehicles Energy management Estimation Global positioning systems GPS Industrial applications Industrial Internet of Things Internet of Things Lithium cells Lithium-ion batteries lithium-ion battery Machine learning Methods Operating temperature Predictive maintenance Rechargeable batteries Reliability (Engineering) State of charge Time synchronization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9UwDI6micN2QMBAezCQD0iIQ_Tapm2S44P3JpCmaYdt2i1K0mRUgj709gDtl_B3sZNuvCENLlyr1E1jJ7Zj-zNjr5HFoVZa8aCbmtfOBq5DoXmDur9RqhVFqpA7P5LHx-riQp9stPqinLAMD5wXbirKgBawi01EbSJl1FUXahubOhBWeUg4n4XUG85Uul1RaDVWMsclBfr1U5fgKtH7RP1IBat39FCC67_vUE6a5vAReziaiDDLU3vMtsLwhO1uAAfusZ8zmNu15fMVHVYw7y-p9wec_ugHWEZYpN42vYfz8IlowFHPPy4HyGCa15AsTL6MnILtlwEWuM9zCSMsUi1VB-4aiDh-DUYIxRXMfge74STndX2hAelWMVJu11N2drg4ff-Bjy0WuK9LteZW4WHnZGza4LW2wtfKaQrNKNEFLbwWHTooLsq2EK62hbdWKML8ir6SoXLiGdselkPYZ6Cc0oX2bUOQ7ugXWatLGwXRUK3swoRNbxbc-BF_nNpgfDbohxCLzJ8smrC3t298zdgbfxn7jnh4O45Qs9MDlCUzypL5lyxN2BuSAEN7G6fm7ViigD9IKFlmJmVJyqHUE3ZwIyRm3PRXplIUtVRSNM__x2xesB3qbZ8zBw_Y9nr1LbxkD_z3dX-1epXk_ReakwWh priority: 102 providerName: Directory of Open Access Journals |
| Title | A Data-Driven Digital Twin of Electric Vehicle Li-Ion Battery State-of-Charge Estimation Enabled by Driving Behavior Application Programming Interfaces |
| URI | https://www.proquest.com/docview/2882308735 https://doaj.org/article/31e826bf5f02477f92de4af54e0822e3 |
| Volume | 9 |
| WOSCitedRecordID | wos001093789500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: P5Z dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: M7S dateStart: 20151201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: PIMPY dateStart: 20151201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHxtdEYat8QEIcrCZxEtsn1NFMTBpVBGMaXCLbsUskSEbaDe0v4d_Fz3FXQGIXLjkkjuPIz-_7_R5CL9wWm5QLTozIUpIqaYgwkSCZk_0Z5zmNfIXc6TGbz_nZmSiDw20Z0irXPNEz6rrT4COfJBxCQpzR7PX5dwJdoyC6Glpo3EbbgJIQ-9S9DxsfC3e6Y8KG6CR11v1EedBKZ4M6KQllq39IIw_a_y_W7OXN4c7_rvQBuh80TTwdSOMhumXaR-jeb_iDj9HPKZ7JlSSzHngenjULaCGCT340Le4sLnyLnEbjU_MF5sDHDTnqWjxgcl5hr6iSzhKI2S8MLhy7GCohceFLsmqsrjBM7r6GAxJjj6ebmDkuh_SwbzDAOyctpIg9QR8Pi5M3b0no1EB0GvMVkdzxTMVslhsthKQ65UpAhIfT2giqBa2dnaMsyyOqUhlpKSkH6DCrE2YSRXfRVtu15inCXHERCZ1ngAzvzCspRSwthTl4zmozQpP1jlU6wJhDN42vlTNnYI-rv_d4hF5dv3E-QHjcMPYAiOB6HIBv-xtdv6jCWa5obJxRpmxmnYLDmBVJbVJps9QAfL6hI_QSSKgCFuGWpmWodHA_CGBb1ZSxGGRMLEZob01CVeAdy2pDP89ufvwc3U2cyjWkFu6hrVV_YfbRHX25apb9GG0fFPPy_dh7Gcb-YLhrmX12T8qjd-WnX95DGUE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXSTgwBtRWMAHEOJgNYmT2D4gVGhXW2236qGsllNwHLtEgmRJC6v-Ev4FvxFPHltAYm974Jo4TmJ_noc98w3AczfFJhRSUCOjkIapMlQaT9LI6f5IiJh5dYbc8ZTPZuLkRM534GeXC4NhlZ1MrAV1VmrcIx8EAo-EBGfRm9OvFKtG4elqV0KjgcWh2Zw5l231ejJy8_siCPbHi3cHtK0qQHXoizVVwq3vlNsoNlpKxXQoUomnEYJlRjItWeZs8tTy2GNpqDytFBNIc2V1wE2QMtfvFdgNEew92J1PjuYftrs6wlmrAW_OQxmT3iCtaTKd1-v0MibK_qH_6jIB_1IGtYbbv_W_jc1tuNna0mTYgP8O7JjiLtz4jWHxHvwYkpFaKzqqUKqTUb7EIilkcZYXpLRkXBcByjU5Np-wDzLN6aQsSMM6uiG1KU5LSzEqYWnI2AnEJteTjOuks4ykG4Kdu7eRlmuyIsNtVACZNwFwX7BBvf1qMQjuPry_lJF5AL2iLMxDICIV0pM6jpD73jmQSklfWYZ9iJhnpg-DDiGJbonasV7I58Q5bIip5G9M9eHV-ROnDUnJBW3fIujO2yG9eH2hrJZJK60S5hvndqY2ss6E49zKIDOhslFosECAYX14iZBNUAi6T9OqzeVwP4h0YsmQcx-1qC_7sNdBNmml4yrZ4vXRxbefwbWDxdE0mU5mh4_heuAMzCaQcg966-qbeQJX9fd1vqqetguRwMfLxvcv6hZxkg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLfGQAgO_EcUBvgAQhysJnES2weECm1FtarqYUwTl2A7dqm0NSMtTP0kfBc-He856QpI7LYD18RxEvvn98d-7_cIeQFT7FKpJHMqS1lqtGPKRYploPszKXMehQy5w7GYTOTRkZrukJ-bXBgMq9zIxCCoy8riHnk3kXgkJAXPur4Ni5j2h29PvzKsIIUnrZtyGg1E9t36DNy35ZtRH-b6ZZIMBwfvP7C2wgCzaSxXTEtY60b4LHdWKc1tKo3CkwnJS6e4VbwE-9x4kUfcpDqyWnOJlFfeJsIlhkO_V8hVAT4mhhNOs0_b_R0JdmsimpNRzlXUNYEwE_xf0NCYMvuHJgwFA_6lFoKuG97-n0fpDrnVWti01yyJu2THLe6Rm7_xLt4nP3q0r1ea9WuU9bQ_n2HpFHpwNl_QytNBKA00t_TQfcE-6HjORtWCNlykaxoMdFZ5hrEKM0cHICabDFA6CKloJTVrip3D22jLQFnT3jZWgE6bsLgTbBA2ZT2Gxj0gHy9lZB6S3UW1cI8IlUaqSNk8Q0Z8cCu1VrH2HPuQuShdh3Q3aClsS9-OVUSOC3DjEF_F3_jqkNfnT5w21CUXtH2HADxvh6Tj4UJVz4pWhhU8duCMGp95MOyE8CopXap9ljosG-B4h7xC-BYoGuHTrG4zPOAHkWSs6AkRo26NVYfsbeBbtDJzWWyx-_ji28_JdQB1MR5N9p-QGwlYnU105R7ZXdXf3FNyzX5fzZf1s7AiKfl82eD-BbhgePU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Data-Driven+Digital+Twin+of+Electric+Vehicle+Li-Ion+Battery+State-of-Charge+Estimation+Enabled+by+Driving+Behavior+Application+Programming+Interfaces&rft.jtitle=Batteries+%28Basel%29&rft.au=Issa%2C+Reda&rft.au=Badr%2C+Mohamed+M&rft.au=Shalash%2C+Omar&rft.au=Othman%2C+Ali+A&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.issn=2313-0105&rft.eissn=2313-0105&rft.volume=9&rft.issue=10&rft_id=info:doi/10.3390%2Fbatteries9100521&rft.externalDocID=A771911119 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-0105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-0105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-0105&client=summon |