Distribution network topology identification method based on state estimation with mixed integer programming and structural equation model

Compared with the existing methods, the current-based identification method proposed in this paper ensures high identification accuracy at a lower observation level, and its main contributions are summarized as follows:•Topology identification can be performed with limited node measurements using SE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical power & energy systems Jg. 162; S. 110251
Hauptverfasser: Liu, Bo, Chen, Jiaxuan, Li, Jiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2024
Elsevier
Schlagworte:
ISSN:0142-0615
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Compared with the existing methods, the current-based identification method proposed in this paper ensures high identification accuracy at a lower observation level, and its main contributions are summarized as follows:•Topology identification can be performed with limited node measurements using SEM to improve the dynamic topology identification accuracy.•The introduction of auxiliary variables relaxes the constraints, solves the problem of intersection of feasible regions, and improves the solvability of the algorithm.•Reprogramming the operation mode constraints and equivalently relaxing the quadratic terms in them reduces the computational complexity while improving the identification accuracy. Distribution network topology identification (DNTI) is an important prerequisite for distribution system operation. Frequent topology changes and limited measurement equipment make identifying the correct topology unavoidably challenging. To this end, this paper proposes a state estimation method for distribution network topology identification using a small amount of phasor measurement unit (PMU) measurement data. Firstly, this paper introduces the application of the structural equation model (SEM) in distribution networks and explains the relationship between branch currents and topology. Then, auxiliary variables are introduced for the feasible domain problem present in the algorithm, which improves the solvability of the algorithm. In addition, this paper reconsiders the operation mode constraints in terms of nodes from the perspective of distribution network operation mode. The Structural Equation Modeling-based Mixed Integer Programming (SEM-MIP) method proposed in this paper can be solved using existing commercial solvers, and its effectiveness has been verified by simulation in IEEE 33-node test system and IEEE 123-node test system.
AbstractList Compared with the existing methods, the current-based identification method proposed in this paper ensures high identification accuracy at a lower observation level, and its main contributions are summarized as follows:•Topology identification can be performed with limited node measurements using SEM to improve the dynamic topology identification accuracy.•The introduction of auxiliary variables relaxes the constraints, solves the problem of intersection of feasible regions, and improves the solvability of the algorithm.•Reprogramming the operation mode constraints and equivalently relaxing the quadratic terms in them reduces the computational complexity while improving the identification accuracy. Distribution network topology identification (DNTI) is an important prerequisite for distribution system operation. Frequent topology changes and limited measurement equipment make identifying the correct topology unavoidably challenging. To this end, this paper proposes a state estimation method for distribution network topology identification using a small amount of phasor measurement unit (PMU) measurement data. Firstly, this paper introduces the application of the structural equation model (SEM) in distribution networks and explains the relationship between branch currents and topology. Then, auxiliary variables are introduced for the feasible domain problem present in the algorithm, which improves the solvability of the algorithm. In addition, this paper reconsiders the operation mode constraints in terms of nodes from the perspective of distribution network operation mode. The Structural Equation Modeling-based Mixed Integer Programming (SEM-MIP) method proposed in this paper can be solved using existing commercial solvers, and its effectiveness has been verified by simulation in IEEE 33-node test system and IEEE 123-node test system.
Distribution network topology identification (DNTI) is an important prerequisite for distribution system operation. Frequent topology changes and limited measurement equipment make identifying the correct topology unavoidably challenging. To this end, this paper proposes a state estimation method for distribution network topology identification using a small amount of phasor measurement unit (PMU) measurement data. Firstly, this paper introduces the application of the structural equation model (SEM) in distribution networks and explains the relationship between branch currents and topology. Then, auxiliary variables are introduced for the feasible domain problem present in the algorithm, which improves the solvability of the algorithm. In addition, this paper reconsiders the operation mode constraints in terms of nodes from the perspective of distribution network operation mode. The Structural Equation Modeling-based Mixed Integer Programming (SEM-MIP) method proposed in this paper can be solved using existing commercial solvers, and its effectiveness has been verified by simulation in IEEE 33-node test system and IEEE 123-node test system.
ArticleNumber 110251
Author Liu, Bo
Chen, Jiaxuan
Li, Jiang
Author_xml – sequence: 1
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  email: liubo973@shiep.edu.cn
– sequence: 2
  givenname: Jiaxuan
  surname: Chen
  fullname: Chen, Jiaxuan
  email: chenjx@mail.shiep.edu.cn
– sequence: 3
  givenname: Jiang
  surname: Li
  fullname: Li, Jiang
  email: lijiang_ee@shiep.edu.cn
BookMark eNqFkc1u1DAQx30oUj_oG3DwC-xiex075oCECrSVKnGBs-WPSTohiRfbS-kr8NRNN-XCAU6WPf79NDP_c3IypxkIecPZljOu3g5bHGAPZSuYkFvOmWj4CTljXIoNU7w5JeelDIwxbaQ4I78_YqkZ_aFimukM9SHl77SmfRpT_0gxwlyxw-CO9QnqfYrUuwKRLvdSXQUKpeK0fnjAek8n_LWUca7QQ6b7nPrspgnnnro5Lkw-hHrIbqTw4_DiTRHG1-RV58YCly_nBfn2-dPXq5vN3Zfr26sPd5sgeVs3TjGjvQld5CIYzaIBb4QG4YA5MJ3rulYF45lXLTegg9SgfCN9UHEXndtdkNvVG5Mb7D4vvedHmxza40PKvXW5YhjBNrIxjYomcq5lbITfedMJ3gal24bpuLjera6QUykZOhuwHmeq2eFoObPPqdjBrqnY51TsmsoCy7_gP838B3u_YrAs6SdCtiUgzAEiZgh1mQL_LXgCaUeyJA
CitedBy_id crossref_primary_10_3390_pr13030782
crossref_primary_10_3390_en18112821
crossref_primary_10_1016_j_ijepes_2025_110868
Cites_doi 10.1109/TPWRS.2015.2394454
10.1109/TSG.2021.3102179
10.1109/TSG.2020.3038214
10.1109/TII.2019.2899130
10.1109/TPWRS.2017.2779129
10.1371/journal.pcbi.1003068
10.1109/TPWRS.2015.2394296
10.1109/TPWRS.2021.3119649
10.1109/TSTE.2019.2901429
10.1109/TSG.2015.2421304
10.1109/TSG.2019.2936148
10.1109/TSG.2017.2758600
10.1109/TPWRS.2010.2040294
10.1109/SmartGridComm.2015.7436410
10.1109/TSG.2017.2699939
10.1109/PSCC.2016.7541005
10.1109/LCSYS.2019.2926101
10.1109/TII.2022.3220855
10.1109/TPWRS.2018.2871640
10.1109/TSG.2017.2680542
10.1109/PESGM.2015.7285756
10.1109/TSP.2017.2664039
10.1016/j.epsr.2015.12.029
10.1109/TSG.2019.2933006
10.1109/TIA.2016.2574767
10.1109/TSP.2016.2628354
10.1109/59.32475
10.1109/TII.2016.2520396
10.1109/TPWRS.2002.800943
10.1109/TSG.2020.2995164
10.1109/TPWRS.2019.2943695
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.ijepes.2024.110251
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_545956d9d1174d52b3b9f218c678507d
10_1016_j_ijepes_2024_110251
S0142061524004721
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
ADVLN
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c418t-a6097b9cfd12c970d9eb927e2ae0ae9faff86c9b0b6819e7c47e6b54bc6d3daa3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001324449600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-0615
IngestDate Fri Oct 03 12:51:40 EDT 2025
Tue Nov 18 21:04:34 EST 2025
Sat Nov 29 03:56:25 EST 2025
Sat Nov 16 16:00:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords PMU
Graph theory
Mixed integer programming method
Distribution network
Structural equation model
Topology identification
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-a6097b9cfd12c970d9eb927e2ae0ae9faff86c9b0b6819e7c47e6b54bc6d3daa3
OpenAccessLink https://doaj.org/article/545956d9d1174d52b3b9f218c678507d
ParticipantIDs doaj_primary_oai_doaj_org_article_545956d9d1174d52b3b9f218c678507d
crossref_citationtrail_10_1016_j_ijepes_2024_110251
crossref_primary_10_1016_j_ijepes_2024_110251
elsevier_sciencedirect_doi_10_1016_j_ijepes_2024_110251
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Cai, Bazerque, Giannakis (b0145) 2013; 9
Zhou, Luo, Sheng, Jiang (b0110) 2020; 35
Farajollahi, Shahsavari, Mohsenian-Rad (b0120) 2020; 11
Garces (b0155) 2016; 31
Chen, Farajollahi, Ghamkhari, Zhao, Huang, Mohsenian-Rad (b0160) 2021; 12
Baran, Jung, McDermott (b0050) Oct. 2009
Azizivahed (b0005) 2020; 11
Yu J, Weng Y, Tan C-W, Rajagopal R. Probabilistic estimation of the potentials of intervention-based demand side energy management. In: International conference on smart grid communications. Nov. 2015.
Cavraro, Arghandeh, Poolla, Von Meier (b0035) Jul. 2015
Xu, Wu, Yu, Zhu (b0010) 2019; 15
Jothibasu, Dubey, Santoso (b0165) 2018; 34
Bhela, Kekatos, Veeramachaneni (b0020) 2018; 9
Zhao, Li, Xu, Wang, Wang, Shao (b0090) 2020; 11
Babakmehr, Simoes, Wakin, Al Durra, Harirchi (b0100) 2016; 52
Tian, Wu, Zhang (b0115) 2016; 31
Korres, Katsikas (b0065) 2002; 17
Deka D, Backhaus S, Chertkov M. Estimating distribution grid topologies: A graphical learning based approach. In: Power Systems Computation Conference (PSCC). Jun. 2016.
Ma, Wang, Liu (b0130) 2022; 37
Weng Y, Rajagopal R. Probabilistic baseline estimation via gaussian process. In: IEEE Power and Energy Society General Meeting (PESGM), Jul. 2015.
Da Silva, Costa, Clements, Andreoli (b0060) 2016; 133
Pappu, Bhatt, Pasumarthy, Rajeswaran (b0075) 2018; 9
Cavraro, Kekatos, Veeramachaneni (b0085) 2019; 10
Babakmehr, Simoes, Wakin, Harirchi (b0105) 2016; 12
Singh, Manitsas, Pal, Strbac (b0055) 2010; 25
Shen, Baingana, Giannakis (b0140) 2017; 65
Luan, Peng, Maras, Lo, Harapnuk (b0080) 2015; 6
Baingana, Giannakis (b0150) 2017; 65
Cavraro, Arghandeh (b0015) 2018; 33
Xu (b0095) 2023; 19
Karimi, Natarajan (b0125) 2021; 12
Wu, Liu (b0045) 1989; 4
Cavraro, Bernstein, Kekatos, Zhang (b0070) 2020; 4
Jiang (b0135) 2019; 10
Cavraro (10.1016/j.ijepes.2024.110251_b0015) 2018; 33
Tian (10.1016/j.ijepes.2024.110251_b0115) 2016; 31
Karimi (10.1016/j.ijepes.2024.110251_b0125) 2021; 12
10.1016/j.ijepes.2024.110251_b0040
Baran (10.1016/j.ijepes.2024.110251_b0050) 2009
Xu (10.1016/j.ijepes.2024.110251_b0095) 2023; 19
Cavraro (10.1016/j.ijepes.2024.110251_b0070) 2020; 4
10.1016/j.ijepes.2024.110251_b0025
Babakmehr (10.1016/j.ijepes.2024.110251_b0105) 2016; 12
Garces (10.1016/j.ijepes.2024.110251_b0155) 2016; 31
Zhou (10.1016/j.ijepes.2024.110251_b0110) 2020; 35
Ma (10.1016/j.ijepes.2024.110251_b0130) 2022; 37
Baingana (10.1016/j.ijepes.2024.110251_b0150) 2017; 65
Cavraro (10.1016/j.ijepes.2024.110251_b0085) 2019; 10
Bhela (10.1016/j.ijepes.2024.110251_b0020) 2018; 9
Babakmehr (10.1016/j.ijepes.2024.110251_b0100) 2016; 52
Cavraro (10.1016/j.ijepes.2024.110251_b0035) 2015
Wu (10.1016/j.ijepes.2024.110251_b0045) 1989; 4
Azizivahed (10.1016/j.ijepes.2024.110251_b0005) 2020; 11
10.1016/j.ijepes.2024.110251_b0030
Jothibasu (10.1016/j.ijepes.2024.110251_b0165) 2018; 34
Luan (10.1016/j.ijepes.2024.110251_b0080) 2015; 6
Korres (10.1016/j.ijepes.2024.110251_b0065) 2002; 17
Pappu (10.1016/j.ijepes.2024.110251_b0075) 2018; 9
Zhao (10.1016/j.ijepes.2024.110251_b0090) 2020; 11
Singh (10.1016/j.ijepes.2024.110251_b0055) 2010; 25
Da Silva (10.1016/j.ijepes.2024.110251_b0060) 2016; 133
Xu (10.1016/j.ijepes.2024.110251_b0010) 2019; 15
Chen (10.1016/j.ijepes.2024.110251_b0160) 2021; 12
Cai (10.1016/j.ijepes.2024.110251_b0145) 2013; 9
Shen (10.1016/j.ijepes.2024.110251_b0140) 2017; 65
Jiang (10.1016/j.ijepes.2024.110251_b0135) 2019; 10
Farajollahi (10.1016/j.ijepes.2024.110251_b0120) 2020; 11
References_xml – reference: Deka D, Backhaus S, Chertkov M. Estimating distribution grid topologies: A graphical learning based approach. In: Power Systems Computation Conference (PSCC). Jun. 2016.
– year: Oct. 2009
  ident: b0050
  article-title: Topology error identification using branch current state estimation for distribution systems
  publication-title: In: Transmission Distrib Conf Exposition
– volume: 4
  start-page: 325
  year: 2020
  end-page: 330
  ident: b0070
  article-title: Real-time identifiability of power distribution network topologies with limited monitoring
  publication-title: IEEE Control Syst Lett
– reference: Weng Y, Rajagopal R. Probabilistic baseline estimation via gaussian process. In: IEEE Power and Energy Society General Meeting (PESGM), Jul. 2015.
– volume: 19
  start-page: 8600
  year: 2023
  end-page: 8613
  ident: b0095
  article-title: Distribution network topology identification using smart meter data and considering the same-bus-different-feeder condition
  publication-title: IEEE Trans Ind Informatics
– volume: 12
  start-page: 5299
  year: 2021
  end-page: 5309
  ident: b0125
  article-title: Joint topology identification and state estimation in unobservable distribution grids
  publication-title: IEEE Trans Smart Grid
– volume: 34
  start-page: 5217
  year: 2018
  end-page: 5226
  ident: b0165
  article-title: Two-stage distribution circuit design framework for high levels of photovoltaic generation
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 4714
  year: 2020
  end-page: 4726
  ident: b0090
  article-title: Full-scale distribution system topology identification using markov random field
  publication-title: IEEE Trans Smart Grid
– volume: 25
  start-page: 1329
  year: 2010
  end-page: 1336
  ident: b0055
  article-title: A recursive Bayesian approach for identification of network configuration changes in distribution system state estimation
  publication-title: IEEE Trans Power Syst
– volume: 133
  start-page: 338
  year: 2016
  end-page: 346
  ident: b0060
  article-title: Simultaneous estimation of state variables and network topology for power system real-time modelling
  publication-title: Electr Power Syst Res
– volume: 17
  start-page: 818
  year: 2002
  end-page: 825
  ident: b0065
  article-title: Identification of circuit breaker statuses in WLS state estimator
  publication-title: IEEE Trans Power Syst
– volume: 6
  start-page: 1964
  year: 2015
  end-page: 1971
  ident: b0080
  article-title: Smart meter data analytics for distribution network connectivity verification
  publication-title: IEEE Trans Smart Grid
– volume: 10
  start-page: 1058
  year: 2019
  end-page: 1067
  ident: b0085
  article-title: Voltage analytics for power distribution network topology verification
  publication-title: IEEE Trans Smart Grid
– volume: 65
  start-page: 2503
  year: 2017
  end-page: 2516
  ident: b0140
  article-title: Kernel-based structural equation models for topology identification of directed networks
  publication-title: IEEE Trans Signal Process
– volume: 9
  start-page: 5113
  year: 2018
  end-page: 5122
  ident: b0075
  article-title: Identifying topology of low voltage distribution networks based on smart meter data
  publication-title: IEEE Trans Smart Grid
– volume: 35
  start-page: 1479
  year: 2020
  end-page: 1488
  ident: b0110
  article-title: Power distribution network dynamic topology awareness and localization based on subspace perturbation model
  publication-title: IEEE Trans Power Syst
– volume: 65
  start-page: 985
  year: 2017
  end-page: 997
  ident: b0150
  article-title: Tracking switched dynamic network topologies from information cascades
  publication-title: IEEE Trans Signal Process
– year: Jul. 2015
  ident: b0035
  article-title: Data-driven approach for distribution network topology detection
  publication-title: In: IEEE Power Energy Soc Gen Meet
– volume: 9
  year: 2013
  ident: b0145
  article-title: Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations
  publication-title: PLoS Comput Biol
– volume: 37
  start-page: 2019
  year: 2022
  end-page: 2031
  ident: b0130
  article-title: Topology identification of distribution networks using a split-EM based data-driven approach
  publication-title: IEEE Trans Power Syst
– volume: 52
  start-page: 4375
  year: 2016
  end-page: 4384
  ident: b0100
  article-title: Smart-grid topology identification using sparse recovery
  publication-title: IEEE Trans Ind Appl
– volume: 31
  start-page: 827
  year: 2016
  end-page: 828
  ident: b0155
  article-title: A linear three-phase load flow for power distribution systems
  publication-title: IEEE Trans Power Syst
– volume: 9
  start-page: 5953
  year: 2018
  end-page: 5961
  ident: b0020
  article-title: Enhancing observability in distribution grids using smart meter data
  publication-title: IEEE Trans Smart Grid
– volume: 15
  start-page: 5365
  year: 2019
  end-page: 5377
  ident: b0010
  article-title: Robust faulted line identification in power distribution networks via hybrid state estimator
  publication-title: IEEE Trans Ind Informatics
– volume: 10
  start-page: 6965
  year: 2019
  end-page: 6973
  ident: b0135
  article-title: A physical probabilistic network model for distribution network topology recognition using smart meter data
  publication-title: IEEE Trans Smart Grid
– volume: 31
  start-page: 823
  year: 2016
  end-page: 824
  ident: b0115
  article-title: A mixed integer quadratic programming model for topology identification in distribution network
  publication-title: IEEE Trans Power Syst
– volume: 33
  start-page: 3500
  year: 2018
  end-page: 3509
  ident: b0015
  article-title: Power distribution network topology detection with time-series signature verification method
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 662
  year: 2020
  end-page: 673
  ident: b0005
  article-title: Energy management strategy in dynamic distribution network reconfiguration considering renewable energy resources and storage
  publication-title: IEEE Trans Sustain Energy
– volume: 12
  start-page: 532
  year: 2016
  end-page: 543
  ident: b0105
  article-title: Compressive sensing-based topology identification for smart grids
  publication-title: IEEE Trans Ind Informatics
– volume: 4
  start-page: 176
  year: 1989
  end-page: 183
  ident: b0045
  article-title: Detection of topology errors by state estimation (power systems)
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 1159
  year: 2020
  end-page: 1170
  ident: b0120
  article-title: Topology identification in distribution systems using line current sensors: An MILP approach
  publication-title: IEEE Trans Smart Grid
– reference: Yu J, Weng Y, Tan C-W, Rajagopal R. Probabilistic estimation of the potentials of intervention-based demand side energy management. In: International conference on smart grid communications. Nov. 2015.
– volume: 12
  start-page: 2413
  year: 2021
  end-page: 2424
  ident: b0160
  article-title: Switch status identification in distribution networks using harmonic synchrophasor measurements
  publication-title: IEEE Trans Smart Grid
– volume: 31
  start-page: 823
  issue: 1
  year: 2016
  ident: 10.1016/j.ijepes.2024.110251_b0115
  article-title: A mixed integer quadratic programming model for topology identification in distribution network
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2394454
– volume: 12
  start-page: 5299
  issue: 6
  year: 2021
  ident: 10.1016/j.ijepes.2024.110251_b0125
  article-title: Joint topology identification and state estimation in unobservable distribution grids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2021.3102179
– volume: 12
  start-page: 2413
  issue: 3
  year: 2021
  ident: 10.1016/j.ijepes.2024.110251_b0160
  article-title: Switch status identification in distribution networks using harmonic synchrophasor measurements
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.3038214
– volume: 15
  start-page: 5365
  issue: 9
  year: 2019
  ident: 10.1016/j.ijepes.2024.110251_b0010
  article-title: Robust faulted line identification in power distribution networks via hybrid state estimator
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2019.2899130
– volume: 33
  start-page: 3500
  issue: 4
  year: 2018
  ident: 10.1016/j.ijepes.2024.110251_b0015
  article-title: Power distribution network topology detection with time-series signature verification method
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2779129
– volume: 9
  year: 2013
  ident: 10.1016/j.ijepes.2024.110251_b0145
  article-title: Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003068
– year: 2009
  ident: 10.1016/j.ijepes.2024.110251_b0050
  article-title: Topology error identification using branch current state estimation for distribution systems
  publication-title: In: Transmission Distrib Conf Exposition
– volume: 31
  start-page: 827
  issue: 1
  year: 2016
  ident: 10.1016/j.ijepes.2024.110251_b0155
  article-title: A linear three-phase load flow for power distribution systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2394296
– volume: 37
  start-page: 2019
  issue: 3
  year: 2022
  ident: 10.1016/j.ijepes.2024.110251_b0130
  article-title: Topology identification of distribution networks using a split-EM based data-driven approach
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2021.3119649
– volume: 11
  start-page: 662
  issue: 2
  year: 2020
  ident: 10.1016/j.ijepes.2024.110251_b0005
  article-title: Energy management strategy in dynamic distribution network reconfiguration considering renewable energy resources and storage
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2901429
– volume: 6
  start-page: 1964
  issue: 4
  year: 2015
  ident: 10.1016/j.ijepes.2024.110251_b0080
  article-title: Smart meter data analytics for distribution network connectivity verification
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2421304
– volume: 10
  start-page: 6965
  issue: 6
  year: 2019
  ident: 10.1016/j.ijepes.2024.110251_b0135
  article-title: A physical probabilistic network model for distribution network topology recognition using smart meter data
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2936148
– volume: 10
  start-page: 1058
  issue: 1
  year: 2019
  ident: 10.1016/j.ijepes.2024.110251_b0085
  article-title: Voltage analytics for power distribution network topology verification
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2758600
– volume: 25
  start-page: 1329
  issue: 3
  year: 2010
  ident: 10.1016/j.ijepes.2024.110251_b0055
  article-title: A recursive Bayesian approach for identification of network configuration changes in distribution system state estimation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2040294
– ident: 10.1016/j.ijepes.2024.110251_b0030
  doi: 10.1109/SmartGridComm.2015.7436410
– volume: 9
  start-page: 5953
  issue: 6
  year: 2018
  ident: 10.1016/j.ijepes.2024.110251_b0020
  article-title: Enhancing observability in distribution grids using smart meter data
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2699939
– ident: 10.1016/j.ijepes.2024.110251_b0040
  doi: 10.1109/PSCC.2016.7541005
– volume: 4
  start-page: 325
  issue: 2
  year: 2020
  ident: 10.1016/j.ijepes.2024.110251_b0070
  article-title: Real-time identifiability of power distribution network topologies with limited monitoring
  publication-title: IEEE Control Syst Lett
  doi: 10.1109/LCSYS.2019.2926101
– volume: 19
  start-page: 8600
  issue: 8
  year: 2023
  ident: 10.1016/j.ijepes.2024.110251_b0095
  article-title: Distribution network topology identification using smart meter data and considering the same-bus-different-feeder condition
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2022.3220855
– volume: 34
  start-page: 5217
  issue: 6
  year: 2018
  ident: 10.1016/j.ijepes.2024.110251_b0165
  article-title: Two-stage distribution circuit design framework for high levels of photovoltaic generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2871640
– volume: 9
  start-page: 5113
  issue: 5
  year: 2018
  ident: 10.1016/j.ijepes.2024.110251_b0075
  article-title: Identifying topology of low voltage distribution networks based on smart meter data
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2680542
– ident: 10.1016/j.ijepes.2024.110251_b0025
  doi: 10.1109/PESGM.2015.7285756
– year: 2015
  ident: 10.1016/j.ijepes.2024.110251_b0035
  article-title: Data-driven approach for distribution network topology detection
  publication-title: In: IEEE Power Energy Soc Gen Meet
– volume: 65
  start-page: 2503
  issue: 10
  year: 2017
  ident: 10.1016/j.ijepes.2024.110251_b0140
  article-title: Kernel-based structural equation models for topology identification of directed networks
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2017.2664039
– volume: 133
  start-page: 338
  year: 2016
  ident: 10.1016/j.ijepes.2024.110251_b0060
  article-title: Simultaneous estimation of state variables and network topology for power system real-time modelling
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2015.12.029
– volume: 11
  start-page: 1159
  issue: 2
  year: 2020
  ident: 10.1016/j.ijepes.2024.110251_b0120
  article-title: Topology identification in distribution systems using line current sensors: An MILP approach
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2933006
– volume: 52
  start-page: 4375
  issue: 5
  year: 2016
  ident: 10.1016/j.ijepes.2024.110251_b0100
  article-title: Smart-grid topology identification using sparse recovery
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2016.2574767
– volume: 65
  start-page: 985
  issue: 4
  year: 2017
  ident: 10.1016/j.ijepes.2024.110251_b0150
  article-title: Tracking switched dynamic network topologies from information cascades
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2016.2628354
– volume: 4
  start-page: 176
  issue: 1
  year: 1989
  ident: 10.1016/j.ijepes.2024.110251_b0045
  article-title: Detection of topology errors by state estimation (power systems)
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.32475
– volume: 12
  start-page: 532
  issue: 2
  year: 2016
  ident: 10.1016/j.ijepes.2024.110251_b0105
  article-title: Compressive sensing-based topology identification for smart grids
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2016.2520396
– volume: 17
  start-page: 818
  issue: 3
  year: 2002
  ident: 10.1016/j.ijepes.2024.110251_b0065
  article-title: Identification of circuit breaker statuses in WLS state estimator
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2002.800943
– volume: 11
  start-page: 4714
  issue: 6
  year: 2020
  ident: 10.1016/j.ijepes.2024.110251_b0090
  article-title: Full-scale distribution system topology identification using markov random field
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2995164
– volume: 35
  start-page: 1479
  issue: 2
  year: 2020
  ident: 10.1016/j.ijepes.2024.110251_b0110
  article-title: Power distribution network dynamic topology awareness and localization based on subspace perturbation model
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2943695
SSID ssj0007942
Score 2.4311755
Snippet Compared with the existing methods, the current-based identification method proposed in this paper ensures high identification accuracy at a lower observation...
Distribution network topology identification (DNTI) is an important prerequisite for distribution system operation. Frequent topology changes and limited...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 110251
SubjectTerms Distribution network
Graph theory
Mixed integer programming method
PMU
Structural equation model
Topology identification
Title Distribution network topology identification method based on state estimation with mixed integer programming and structural equation model
URI https://dx.doi.org/10.1016/j.ijepes.2024.110251
https://doaj.org/article/545956d9d1174d52b3b9f218c678507d
Volume 162
WOSCitedRecordID wos001324449600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0142-0615
  databaseCode: DOA
  dateStart: 20240101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0007942
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0142-0615
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007942
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTt0wELUq6IIuEH0gLi950W3U2Hk4XkILartAXbTS3UW2ZyIFQYDbWwS_wFczEzvosoFNl0kcO_KMZo6jmXOE-AydQgqOVVY4X2alr_PM6y7PELzCUuUejRvFJszZWTOf218rUl9cExbpgePGfaEMTxAeLCjCzlBpX3jbUV4KFGUJywBHX0I902EqxWDyMh2LFzVrF1RT09xY2dWf4zUyVbcuuQpeV-pZUhq5-1dy00q-Od0SmwkoyqP4ge_FGxw-iHcr9IEfxcM3Zr1NglVyiAXdchllD-5lD6kSaNx8GbWiJactkHQ9thJJJtmI3YuSf8nKy_6OHo8kEriQqXrrkpaTbgAZ2WaZqUPizb80L2vpfBJ_Tk9-f_2eJW2FLJSqWWauzq3xNnSgdLAmB4veaoPaYe7Qdq7rmjpYn_uaMAOaUBqsfVX6UEMBzhXbYm24GnBHSKhUDdhZsE1Bx8OKGedNk1vA0NDpU81EMW1uGxLxOOtfXLRThdl5G03SsknaaJKZyJ7euo7EG6-MP2a7PY1l2uzxBjlTm5ypfc2ZZsJMVm8TAonIgqbqX1x-938svyc2eMrY6rgv1simeCDehttl_3dxKNaPfpzMfx6Onv4IeNYDww
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+network+topology+identification+method+based+on+state+estimation+with+mixed+integer+programming+and+structural+equation+model&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Bo+Liu&rft.au=Jiaxuan+Chen&rft.au=Jiang+Li&rft.date=2024-11-01&rft.pub=Elsevier&rft.issn=0142-0615&rft.volume=162&rft.spage=110251&rft_id=info:doi/10.1016%2Fj.ijepes.2024.110251&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_545956d9d1174d52b3b9f218c678507d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon