Distribution network topology identification method based on state estimation with mixed integer programming and structural equation model
Compared with the existing methods, the current-based identification method proposed in this paper ensures high identification accuracy at a lower observation level, and its main contributions are summarized as follows:•Topology identification can be performed with limited node measurements using SE...
Gespeichert in:
| Veröffentlicht in: | International journal of electrical power & energy systems Jg. 162; S. 110251 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 0142-0615 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Compared with the existing methods, the current-based identification method proposed in this paper ensures high identification accuracy at a lower observation level, and its main contributions are summarized as follows:•Topology identification can be performed with limited node measurements using SEM to improve the dynamic topology identification accuracy.•The introduction of auxiliary variables relaxes the constraints, solves the problem of intersection of feasible regions, and improves the solvability of the algorithm.•Reprogramming the operation mode constraints and equivalently relaxing the quadratic terms in them reduces the computational complexity while improving the identification accuracy.
Distribution network topology identification (DNTI) is an important prerequisite for distribution system operation. Frequent topology changes and limited measurement equipment make identifying the correct topology unavoidably challenging. To this end, this paper proposes a state estimation method for distribution network topology identification using a small amount of phasor measurement unit (PMU) measurement data. Firstly, this paper introduces the application of the structural equation model (SEM) in distribution networks and explains the relationship between branch currents and topology. Then, auxiliary variables are introduced for the feasible domain problem present in the algorithm, which improves the solvability of the algorithm. In addition, this paper reconsiders the operation mode constraints in terms of nodes from the perspective of distribution network operation mode. The Structural Equation Modeling-based Mixed Integer Programming (SEM-MIP) method proposed in this paper can be solved using existing commercial solvers, and its effectiveness has been verified by simulation in IEEE 33-node test system and IEEE 123-node test system. |
|---|---|
| AbstractList | Compared with the existing methods, the current-based identification method proposed in this paper ensures high identification accuracy at a lower observation level, and its main contributions are summarized as follows:•Topology identification can be performed with limited node measurements using SEM to improve the dynamic topology identification accuracy.•The introduction of auxiliary variables relaxes the constraints, solves the problem of intersection of feasible regions, and improves the solvability of the algorithm.•Reprogramming the operation mode constraints and equivalently relaxing the quadratic terms in them reduces the computational complexity while improving the identification accuracy.
Distribution network topology identification (DNTI) is an important prerequisite for distribution system operation. Frequent topology changes and limited measurement equipment make identifying the correct topology unavoidably challenging. To this end, this paper proposes a state estimation method for distribution network topology identification using a small amount of phasor measurement unit (PMU) measurement data. Firstly, this paper introduces the application of the structural equation model (SEM) in distribution networks and explains the relationship between branch currents and topology. Then, auxiliary variables are introduced for the feasible domain problem present in the algorithm, which improves the solvability of the algorithm. In addition, this paper reconsiders the operation mode constraints in terms of nodes from the perspective of distribution network operation mode. The Structural Equation Modeling-based Mixed Integer Programming (SEM-MIP) method proposed in this paper can be solved using existing commercial solvers, and its effectiveness has been verified by simulation in IEEE 33-node test system and IEEE 123-node test system. Distribution network topology identification (DNTI) is an important prerequisite for distribution system operation. Frequent topology changes and limited measurement equipment make identifying the correct topology unavoidably challenging. To this end, this paper proposes a state estimation method for distribution network topology identification using a small amount of phasor measurement unit (PMU) measurement data. Firstly, this paper introduces the application of the structural equation model (SEM) in distribution networks and explains the relationship between branch currents and topology. Then, auxiliary variables are introduced for the feasible domain problem present in the algorithm, which improves the solvability of the algorithm. In addition, this paper reconsiders the operation mode constraints in terms of nodes from the perspective of distribution network operation mode. The Structural Equation Modeling-based Mixed Integer Programming (SEM-MIP) method proposed in this paper can be solved using existing commercial solvers, and its effectiveness has been verified by simulation in IEEE 33-node test system and IEEE 123-node test system. |
| ArticleNumber | 110251 |
| Author | Liu, Bo Chen, Jiaxuan Li, Jiang |
| Author_xml | – sequence: 1 givenname: Bo surname: Liu fullname: Liu, Bo email: liubo973@shiep.edu.cn – sequence: 2 givenname: Jiaxuan surname: Chen fullname: Chen, Jiaxuan email: chenjx@mail.shiep.edu.cn – sequence: 3 givenname: Jiang surname: Li fullname: Li, Jiang email: lijiang_ee@shiep.edu.cn |
| BookMark | eNqFkc1u1DAQx30oUj_oG3DwC-xiex075oCECrSVKnGBs-WPSTohiRfbS-kr8NRNN-XCAU6WPf79NDP_c3IypxkIecPZljOu3g5bHGAPZSuYkFvOmWj4CTljXIoNU7w5JeelDIwxbaQ4I78_YqkZ_aFimukM9SHl77SmfRpT_0gxwlyxw-CO9QnqfYrUuwKRLvdSXQUKpeK0fnjAek8n_LWUca7QQ6b7nPrspgnnnro5Lkw-hHrIbqTw4_DiTRHG1-RV58YCly_nBfn2-dPXq5vN3Zfr26sPd5sgeVs3TjGjvQld5CIYzaIBb4QG4YA5MJ3rulYF45lXLTegg9SgfCN9UHEXndtdkNvVG5Mb7D4vvedHmxza40PKvXW5YhjBNrIxjYomcq5lbITfedMJ3gal24bpuLjera6QUykZOhuwHmeq2eFoObPPqdjBrqnY51TsmsoCy7_gP838B3u_YrAs6SdCtiUgzAEiZgh1mQL_LXgCaUeyJA |
| CitedBy_id | crossref_primary_10_3390_pr13030782 crossref_primary_10_3390_en18112821 crossref_primary_10_1016_j_ijepes_2025_110868 |
| Cites_doi | 10.1109/TPWRS.2015.2394454 10.1109/TSG.2021.3102179 10.1109/TSG.2020.3038214 10.1109/TII.2019.2899130 10.1109/TPWRS.2017.2779129 10.1371/journal.pcbi.1003068 10.1109/TPWRS.2015.2394296 10.1109/TPWRS.2021.3119649 10.1109/TSTE.2019.2901429 10.1109/TSG.2015.2421304 10.1109/TSG.2019.2936148 10.1109/TSG.2017.2758600 10.1109/TPWRS.2010.2040294 10.1109/SmartGridComm.2015.7436410 10.1109/TSG.2017.2699939 10.1109/PSCC.2016.7541005 10.1109/LCSYS.2019.2926101 10.1109/TII.2022.3220855 10.1109/TPWRS.2018.2871640 10.1109/TSG.2017.2680542 10.1109/PESGM.2015.7285756 10.1109/TSP.2017.2664039 10.1016/j.epsr.2015.12.029 10.1109/TSG.2019.2933006 10.1109/TIA.2016.2574767 10.1109/TSP.2016.2628354 10.1109/59.32475 10.1109/TII.2016.2520396 10.1109/TPWRS.2002.800943 10.1109/TSG.2020.2995164 10.1109/TPWRS.2019.2943695 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.ijepes.2024.110251 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | oai_doaj_org_article_545956d9d1174d52b3b9f218c678507d 10_1016_j_ijepes_2024_110251 S0142061524004721 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH ADVLN AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ GROUPED_DOAJ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c418t-a6097b9cfd12c970d9eb927e2ae0ae9faff86c9b0b6819e7c47e6b54bc6d3daa3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001324449600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-0615 |
| IngestDate | Fri Oct 03 12:51:40 EDT 2025 Tue Nov 18 21:04:34 EST 2025 Sat Nov 29 03:56:25 EST 2025 Sat Nov 16 16:00:11 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PMU Graph theory Mixed integer programming method Distribution network Structural equation model Topology identification |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-a6097b9cfd12c970d9eb927e2ae0ae9faff86c9b0b6819e7c47e6b54bc6d3daa3 |
| OpenAccessLink | https://doaj.org/article/545956d9d1174d52b3b9f218c678507d |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_545956d9d1174d52b3b9f218c678507d crossref_citationtrail_10_1016_j_ijepes_2024_110251 crossref_primary_10_1016_j_ijepes_2024_110251 elsevier_sciencedirect_doi_10_1016_j_ijepes_2024_110251 |
| PublicationCentury | 2000 |
| PublicationDate | November 2024 2024-11-00 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical power & energy systems |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Cai, Bazerque, Giannakis (b0145) 2013; 9 Zhou, Luo, Sheng, Jiang (b0110) 2020; 35 Farajollahi, Shahsavari, Mohsenian-Rad (b0120) 2020; 11 Garces (b0155) 2016; 31 Chen, Farajollahi, Ghamkhari, Zhao, Huang, Mohsenian-Rad (b0160) 2021; 12 Baran, Jung, McDermott (b0050) Oct. 2009 Azizivahed (b0005) 2020; 11 Yu J, Weng Y, Tan C-W, Rajagopal R. Probabilistic estimation of the potentials of intervention-based demand side energy management. In: International conference on smart grid communications. Nov. 2015. Cavraro, Arghandeh, Poolla, Von Meier (b0035) Jul. 2015 Xu, Wu, Yu, Zhu (b0010) 2019; 15 Jothibasu, Dubey, Santoso (b0165) 2018; 34 Bhela, Kekatos, Veeramachaneni (b0020) 2018; 9 Zhao, Li, Xu, Wang, Wang, Shao (b0090) 2020; 11 Babakmehr, Simoes, Wakin, Al Durra, Harirchi (b0100) 2016; 52 Tian, Wu, Zhang (b0115) 2016; 31 Korres, Katsikas (b0065) 2002; 17 Deka D, Backhaus S, Chertkov M. Estimating distribution grid topologies: A graphical learning based approach. In: Power Systems Computation Conference (PSCC). Jun. 2016. Ma, Wang, Liu (b0130) 2022; 37 Weng Y, Rajagopal R. Probabilistic baseline estimation via gaussian process. In: IEEE Power and Energy Society General Meeting (PESGM), Jul. 2015. Da Silva, Costa, Clements, Andreoli (b0060) 2016; 133 Pappu, Bhatt, Pasumarthy, Rajeswaran (b0075) 2018; 9 Cavraro, Kekatos, Veeramachaneni (b0085) 2019; 10 Babakmehr, Simoes, Wakin, Harirchi (b0105) 2016; 12 Singh, Manitsas, Pal, Strbac (b0055) 2010; 25 Shen, Baingana, Giannakis (b0140) 2017; 65 Luan, Peng, Maras, Lo, Harapnuk (b0080) 2015; 6 Baingana, Giannakis (b0150) 2017; 65 Cavraro, Arghandeh (b0015) 2018; 33 Xu (b0095) 2023; 19 Karimi, Natarajan (b0125) 2021; 12 Wu, Liu (b0045) 1989; 4 Cavraro, Bernstein, Kekatos, Zhang (b0070) 2020; 4 Jiang (b0135) 2019; 10 Cavraro (10.1016/j.ijepes.2024.110251_b0015) 2018; 33 Tian (10.1016/j.ijepes.2024.110251_b0115) 2016; 31 Karimi (10.1016/j.ijepes.2024.110251_b0125) 2021; 12 10.1016/j.ijepes.2024.110251_b0040 Baran (10.1016/j.ijepes.2024.110251_b0050) 2009 Xu (10.1016/j.ijepes.2024.110251_b0095) 2023; 19 Cavraro (10.1016/j.ijepes.2024.110251_b0070) 2020; 4 10.1016/j.ijepes.2024.110251_b0025 Babakmehr (10.1016/j.ijepes.2024.110251_b0105) 2016; 12 Garces (10.1016/j.ijepes.2024.110251_b0155) 2016; 31 Zhou (10.1016/j.ijepes.2024.110251_b0110) 2020; 35 Ma (10.1016/j.ijepes.2024.110251_b0130) 2022; 37 Baingana (10.1016/j.ijepes.2024.110251_b0150) 2017; 65 Cavraro (10.1016/j.ijepes.2024.110251_b0085) 2019; 10 Bhela (10.1016/j.ijepes.2024.110251_b0020) 2018; 9 Babakmehr (10.1016/j.ijepes.2024.110251_b0100) 2016; 52 Cavraro (10.1016/j.ijepes.2024.110251_b0035) 2015 Wu (10.1016/j.ijepes.2024.110251_b0045) 1989; 4 Azizivahed (10.1016/j.ijepes.2024.110251_b0005) 2020; 11 10.1016/j.ijepes.2024.110251_b0030 Jothibasu (10.1016/j.ijepes.2024.110251_b0165) 2018; 34 Luan (10.1016/j.ijepes.2024.110251_b0080) 2015; 6 Korres (10.1016/j.ijepes.2024.110251_b0065) 2002; 17 Pappu (10.1016/j.ijepes.2024.110251_b0075) 2018; 9 Zhao (10.1016/j.ijepes.2024.110251_b0090) 2020; 11 Singh (10.1016/j.ijepes.2024.110251_b0055) 2010; 25 Da Silva (10.1016/j.ijepes.2024.110251_b0060) 2016; 133 Xu (10.1016/j.ijepes.2024.110251_b0010) 2019; 15 Chen (10.1016/j.ijepes.2024.110251_b0160) 2021; 12 Cai (10.1016/j.ijepes.2024.110251_b0145) 2013; 9 Shen (10.1016/j.ijepes.2024.110251_b0140) 2017; 65 Jiang (10.1016/j.ijepes.2024.110251_b0135) 2019; 10 Farajollahi (10.1016/j.ijepes.2024.110251_b0120) 2020; 11 |
| References_xml | – reference: Deka D, Backhaus S, Chertkov M. Estimating distribution grid topologies: A graphical learning based approach. In: Power Systems Computation Conference (PSCC). Jun. 2016. – year: Oct. 2009 ident: b0050 article-title: Topology error identification using branch current state estimation for distribution systems publication-title: In: Transmission Distrib Conf Exposition – volume: 4 start-page: 325 year: 2020 end-page: 330 ident: b0070 article-title: Real-time identifiability of power distribution network topologies with limited monitoring publication-title: IEEE Control Syst Lett – reference: Weng Y, Rajagopal R. Probabilistic baseline estimation via gaussian process. In: IEEE Power and Energy Society General Meeting (PESGM), Jul. 2015. – volume: 19 start-page: 8600 year: 2023 end-page: 8613 ident: b0095 article-title: Distribution network topology identification using smart meter data and considering the same-bus-different-feeder condition publication-title: IEEE Trans Ind Informatics – volume: 12 start-page: 5299 year: 2021 end-page: 5309 ident: b0125 article-title: Joint topology identification and state estimation in unobservable distribution grids publication-title: IEEE Trans Smart Grid – volume: 34 start-page: 5217 year: 2018 end-page: 5226 ident: b0165 article-title: Two-stage distribution circuit design framework for high levels of photovoltaic generation publication-title: IEEE Trans Power Syst – volume: 11 start-page: 4714 year: 2020 end-page: 4726 ident: b0090 article-title: Full-scale distribution system topology identification using markov random field publication-title: IEEE Trans Smart Grid – volume: 25 start-page: 1329 year: 2010 end-page: 1336 ident: b0055 article-title: A recursive Bayesian approach for identification of network configuration changes in distribution system state estimation publication-title: IEEE Trans Power Syst – volume: 133 start-page: 338 year: 2016 end-page: 346 ident: b0060 article-title: Simultaneous estimation of state variables and network topology for power system real-time modelling publication-title: Electr Power Syst Res – volume: 17 start-page: 818 year: 2002 end-page: 825 ident: b0065 article-title: Identification of circuit breaker statuses in WLS state estimator publication-title: IEEE Trans Power Syst – volume: 6 start-page: 1964 year: 2015 end-page: 1971 ident: b0080 article-title: Smart meter data analytics for distribution network connectivity verification publication-title: IEEE Trans Smart Grid – volume: 10 start-page: 1058 year: 2019 end-page: 1067 ident: b0085 article-title: Voltage analytics for power distribution network topology verification publication-title: IEEE Trans Smart Grid – volume: 65 start-page: 2503 year: 2017 end-page: 2516 ident: b0140 article-title: Kernel-based structural equation models for topology identification of directed networks publication-title: IEEE Trans Signal Process – volume: 9 start-page: 5113 year: 2018 end-page: 5122 ident: b0075 article-title: Identifying topology of low voltage distribution networks based on smart meter data publication-title: IEEE Trans Smart Grid – volume: 35 start-page: 1479 year: 2020 end-page: 1488 ident: b0110 article-title: Power distribution network dynamic topology awareness and localization based on subspace perturbation model publication-title: IEEE Trans Power Syst – volume: 65 start-page: 985 year: 2017 end-page: 997 ident: b0150 article-title: Tracking switched dynamic network topologies from information cascades publication-title: IEEE Trans Signal Process – year: Jul. 2015 ident: b0035 article-title: Data-driven approach for distribution network topology detection publication-title: In: IEEE Power Energy Soc Gen Meet – volume: 9 year: 2013 ident: b0145 article-title: Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations publication-title: PLoS Comput Biol – volume: 37 start-page: 2019 year: 2022 end-page: 2031 ident: b0130 article-title: Topology identification of distribution networks using a split-EM based data-driven approach publication-title: IEEE Trans Power Syst – volume: 52 start-page: 4375 year: 2016 end-page: 4384 ident: b0100 article-title: Smart-grid topology identification using sparse recovery publication-title: IEEE Trans Ind Appl – volume: 31 start-page: 827 year: 2016 end-page: 828 ident: b0155 article-title: A linear three-phase load flow for power distribution systems publication-title: IEEE Trans Power Syst – volume: 9 start-page: 5953 year: 2018 end-page: 5961 ident: b0020 article-title: Enhancing observability in distribution grids using smart meter data publication-title: IEEE Trans Smart Grid – volume: 15 start-page: 5365 year: 2019 end-page: 5377 ident: b0010 article-title: Robust faulted line identification in power distribution networks via hybrid state estimator publication-title: IEEE Trans Ind Informatics – volume: 10 start-page: 6965 year: 2019 end-page: 6973 ident: b0135 article-title: A physical probabilistic network model for distribution network topology recognition using smart meter data publication-title: IEEE Trans Smart Grid – volume: 31 start-page: 823 year: 2016 end-page: 824 ident: b0115 article-title: A mixed integer quadratic programming model for topology identification in distribution network publication-title: IEEE Trans Power Syst – volume: 33 start-page: 3500 year: 2018 end-page: 3509 ident: b0015 article-title: Power distribution network topology detection with time-series signature verification method publication-title: IEEE Trans Power Syst – volume: 11 start-page: 662 year: 2020 end-page: 673 ident: b0005 article-title: Energy management strategy in dynamic distribution network reconfiguration considering renewable energy resources and storage publication-title: IEEE Trans Sustain Energy – volume: 12 start-page: 532 year: 2016 end-page: 543 ident: b0105 article-title: Compressive sensing-based topology identification for smart grids publication-title: IEEE Trans Ind Informatics – volume: 4 start-page: 176 year: 1989 end-page: 183 ident: b0045 article-title: Detection of topology errors by state estimation (power systems) publication-title: IEEE Trans Power Syst – volume: 11 start-page: 1159 year: 2020 end-page: 1170 ident: b0120 article-title: Topology identification in distribution systems using line current sensors: An MILP approach publication-title: IEEE Trans Smart Grid – reference: Yu J, Weng Y, Tan C-W, Rajagopal R. Probabilistic estimation of the potentials of intervention-based demand side energy management. In: International conference on smart grid communications. Nov. 2015. – volume: 12 start-page: 2413 year: 2021 end-page: 2424 ident: b0160 article-title: Switch status identification in distribution networks using harmonic synchrophasor measurements publication-title: IEEE Trans Smart Grid – volume: 31 start-page: 823 issue: 1 year: 2016 ident: 10.1016/j.ijepes.2024.110251_b0115 article-title: A mixed integer quadratic programming model for topology identification in distribution network publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2394454 – volume: 12 start-page: 5299 issue: 6 year: 2021 ident: 10.1016/j.ijepes.2024.110251_b0125 article-title: Joint topology identification and state estimation in unobservable distribution grids publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2021.3102179 – volume: 12 start-page: 2413 issue: 3 year: 2021 ident: 10.1016/j.ijepes.2024.110251_b0160 article-title: Switch status identification in distribution networks using harmonic synchrophasor measurements publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.3038214 – volume: 15 start-page: 5365 issue: 9 year: 2019 ident: 10.1016/j.ijepes.2024.110251_b0010 article-title: Robust faulted line identification in power distribution networks via hybrid state estimator publication-title: IEEE Trans Ind Informatics doi: 10.1109/TII.2019.2899130 – volume: 33 start-page: 3500 issue: 4 year: 2018 ident: 10.1016/j.ijepes.2024.110251_b0015 article-title: Power distribution network topology detection with time-series signature verification method publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2779129 – volume: 9 year: 2013 ident: 10.1016/j.ijepes.2024.110251_b0145 article-title: Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003068 – year: 2009 ident: 10.1016/j.ijepes.2024.110251_b0050 article-title: Topology error identification using branch current state estimation for distribution systems publication-title: In: Transmission Distrib Conf Exposition – volume: 31 start-page: 827 issue: 1 year: 2016 ident: 10.1016/j.ijepes.2024.110251_b0155 article-title: A linear three-phase load flow for power distribution systems publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2394296 – volume: 37 start-page: 2019 issue: 3 year: 2022 ident: 10.1016/j.ijepes.2024.110251_b0130 article-title: Topology identification of distribution networks using a split-EM based data-driven approach publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2021.3119649 – volume: 11 start-page: 662 issue: 2 year: 2020 ident: 10.1016/j.ijepes.2024.110251_b0005 article-title: Energy management strategy in dynamic distribution network reconfiguration considering renewable energy resources and storage publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2019.2901429 – volume: 6 start-page: 1964 issue: 4 year: 2015 ident: 10.1016/j.ijepes.2024.110251_b0080 article-title: Smart meter data analytics for distribution network connectivity verification publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2421304 – volume: 10 start-page: 6965 issue: 6 year: 2019 ident: 10.1016/j.ijepes.2024.110251_b0135 article-title: A physical probabilistic network model for distribution network topology recognition using smart meter data publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2936148 – volume: 10 start-page: 1058 issue: 1 year: 2019 ident: 10.1016/j.ijepes.2024.110251_b0085 article-title: Voltage analytics for power distribution network topology verification publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2758600 – volume: 25 start-page: 1329 issue: 3 year: 2010 ident: 10.1016/j.ijepes.2024.110251_b0055 article-title: A recursive Bayesian approach for identification of network configuration changes in distribution system state estimation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2010.2040294 – ident: 10.1016/j.ijepes.2024.110251_b0030 doi: 10.1109/SmartGridComm.2015.7436410 – volume: 9 start-page: 5953 issue: 6 year: 2018 ident: 10.1016/j.ijepes.2024.110251_b0020 article-title: Enhancing observability in distribution grids using smart meter data publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2699939 – ident: 10.1016/j.ijepes.2024.110251_b0040 doi: 10.1109/PSCC.2016.7541005 – volume: 4 start-page: 325 issue: 2 year: 2020 ident: 10.1016/j.ijepes.2024.110251_b0070 article-title: Real-time identifiability of power distribution network topologies with limited monitoring publication-title: IEEE Control Syst Lett doi: 10.1109/LCSYS.2019.2926101 – volume: 19 start-page: 8600 issue: 8 year: 2023 ident: 10.1016/j.ijepes.2024.110251_b0095 article-title: Distribution network topology identification using smart meter data and considering the same-bus-different-feeder condition publication-title: IEEE Trans Ind Informatics doi: 10.1109/TII.2022.3220855 – volume: 34 start-page: 5217 issue: 6 year: 2018 ident: 10.1016/j.ijepes.2024.110251_b0165 article-title: Two-stage distribution circuit design framework for high levels of photovoltaic generation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2871640 – volume: 9 start-page: 5113 issue: 5 year: 2018 ident: 10.1016/j.ijepes.2024.110251_b0075 article-title: Identifying topology of low voltage distribution networks based on smart meter data publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2680542 – ident: 10.1016/j.ijepes.2024.110251_b0025 doi: 10.1109/PESGM.2015.7285756 – year: 2015 ident: 10.1016/j.ijepes.2024.110251_b0035 article-title: Data-driven approach for distribution network topology detection publication-title: In: IEEE Power Energy Soc Gen Meet – volume: 65 start-page: 2503 issue: 10 year: 2017 ident: 10.1016/j.ijepes.2024.110251_b0140 article-title: Kernel-based structural equation models for topology identification of directed networks publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2017.2664039 – volume: 133 start-page: 338 year: 2016 ident: 10.1016/j.ijepes.2024.110251_b0060 article-title: Simultaneous estimation of state variables and network topology for power system real-time modelling publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2015.12.029 – volume: 11 start-page: 1159 issue: 2 year: 2020 ident: 10.1016/j.ijepes.2024.110251_b0120 article-title: Topology identification in distribution systems using line current sensors: An MILP approach publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2933006 – volume: 52 start-page: 4375 issue: 5 year: 2016 ident: 10.1016/j.ijepes.2024.110251_b0100 article-title: Smart-grid topology identification using sparse recovery publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2016.2574767 – volume: 65 start-page: 985 issue: 4 year: 2017 ident: 10.1016/j.ijepes.2024.110251_b0150 article-title: Tracking switched dynamic network topologies from information cascades publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2016.2628354 – volume: 4 start-page: 176 issue: 1 year: 1989 ident: 10.1016/j.ijepes.2024.110251_b0045 article-title: Detection of topology errors by state estimation (power systems) publication-title: IEEE Trans Power Syst doi: 10.1109/59.32475 – volume: 12 start-page: 532 issue: 2 year: 2016 ident: 10.1016/j.ijepes.2024.110251_b0105 article-title: Compressive sensing-based topology identification for smart grids publication-title: IEEE Trans Ind Informatics doi: 10.1109/TII.2016.2520396 – volume: 17 start-page: 818 issue: 3 year: 2002 ident: 10.1016/j.ijepes.2024.110251_b0065 article-title: Identification of circuit breaker statuses in WLS state estimator publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2002.800943 – volume: 11 start-page: 4714 issue: 6 year: 2020 ident: 10.1016/j.ijepes.2024.110251_b0090 article-title: Full-scale distribution system topology identification using markov random field publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.2995164 – volume: 35 start-page: 1479 issue: 2 year: 2020 ident: 10.1016/j.ijepes.2024.110251_b0110 article-title: Power distribution network dynamic topology awareness and localization based on subspace perturbation model publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2943695 |
| SSID | ssj0007942 |
| Score | 2.4311755 |
| Snippet | Compared with the existing methods, the current-based identification method proposed in this paper ensures high identification accuracy at a lower observation... Distribution network topology identification (DNTI) is an important prerequisite for distribution system operation. Frequent topology changes and limited... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 110251 |
| SubjectTerms | Distribution network Graph theory Mixed integer programming method PMU Structural equation model Topology identification |
| Title | Distribution network topology identification method based on state estimation with mixed integer programming and structural equation model |
| URI | https://dx.doi.org/10.1016/j.ijepes.2024.110251 https://doaj.org/article/545956d9d1174d52b3b9f218c678507d |
| Volume | 162 |
| WOSCitedRecordID | wos001324449600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 0142-0615 databaseCode: DOA dateStart: 20240101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0007942 providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0142-0615 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007942 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTt0wELUq6IIuEH0gLi950W3U2Hk4XkILartAXbTS3UW2ZyIFQYDbWwS_wFczEzvosoFNl0kcO_KMZo6jmXOE-AydQgqOVVY4X2alr_PM6y7PELzCUuUejRvFJszZWTOf218rUl9cExbpgePGfaEMTxAeLCjCzlBpX3jbUV4KFGUJywBHX0I902EqxWDyMh2LFzVrF1RT09xY2dWf4zUyVbcuuQpeV-pZUhq5-1dy00q-Od0SmwkoyqP4ge_FGxw-iHcr9IEfxcM3Zr1NglVyiAXdchllD-5lD6kSaNx8GbWiJactkHQ9thJJJtmI3YuSf8nKy_6OHo8kEriQqXrrkpaTbgAZ2WaZqUPizb80L2vpfBJ_Tk9-f_2eJW2FLJSqWWauzq3xNnSgdLAmB4veaoPaYe7Qdq7rmjpYn_uaMAOaUBqsfVX6UEMBzhXbYm24GnBHSKhUDdhZsE1Bx8OKGedNk1vA0NDpU81EMW1uGxLxOOtfXLRThdl5G03SsknaaJKZyJ7euo7EG6-MP2a7PY1l2uzxBjlTm5ypfc2ZZsJMVm8TAonIgqbqX1x-938svyc2eMrY6rgv1simeCDehttl_3dxKNaPfpzMfx6Onv4IeNYDww |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+network+topology+identification+method+based+on+state+estimation+with+mixed+integer+programming+and+structural+equation+model&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Bo+Liu&rft.au=Jiaxuan+Chen&rft.au=Jiang+Li&rft.date=2024-11-01&rft.pub=Elsevier&rft.issn=0142-0615&rft.volume=162&rft.spage=110251&rft_id=info:doi/10.1016%2Fj.ijepes.2024.110251&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_545956d9d1174d52b3b9f218c678507d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |